Skip to main content
Top
Published in: BMC Oral Health 1/2016

Open Access 01-12-2016 | Research article

HSP70 mRNA expression by cells of the epithelial rest of Malassez due to mechanical forces in vitro

Authors: Hideki Kogai, Kei Nakajima, Tungalag Ser-Od, Akram Al-Wahabi, Kenichi Matsuzaka, Taneaki Nakagawa, Takashi Inoue

Published in: BMC Oral Health | Issue 1/2016

Login to get access

Abstract

Background

The purpose of the present study was to examine the in vitro responses of ERM cells under the combination of centrifugal and compression forces, in terms of their expression of HSP70 mRNA.

Methods

The ERM cells were positive for CK19 indicating that they were derived from the odontogenic epithelium. Cultured ERM cells were applied centrifugal force and compressing force at one to three times as mechanical forces. After addition of forces, cells were observed using scanning electron microscope (SEM) and were measured expression of HSP70 mRNA by RT-PCR.

Results

SEM observations showed the cells were flattened immediately after the application of mechanical force, but nuclear protrusions recovered the same as the control 3 h later. A significantly higher expression of HSP70 mRNA was observed in ERM cells under mechanical force compared with the control, but it gradually decreased with time. No accumulation of HSP70 mRNA expression occurred with intermittent force. However, the expression of HSP70 mRNA with intermittent force repeated 3 times was significantly higher compared with intermittent force applied only once or twice.

Conclusions

These findings suggest that ERM cells express HSP70 mRNA in response to mechanical force, and that intermittent force maintains the level of HSP70 mRNA expression.
Literature
1.
go back to reference Lindskog S, Blomlof L, Hammarstrom L. Evidence for a role of odontogenic epithelium in maintaining the periodontal space. J Clin Periodontol. 1988;15:371–3.CrossRefPubMed Lindskog S, Blomlof L, Hammarstrom L. Evidence for a role of odontogenic epithelium in maintaining the periodontal space. J Clin Periodontol. 1988;15:371–3.CrossRefPubMed
2.
go back to reference Suzuki M, Inoue T, Shimono M, Yamada S. Behavior of epithelial root sheath during tooth root formation in porcine molars: TUNEL, TEM, and immunohistochemical studies. Anat Embryol. 2002;206:13–20.CrossRefPubMed Suzuki M, Inoue T, Shimono M, Yamada S. Behavior of epithelial root sheath during tooth root formation in porcine molars: TUNEL, TEM, and immunohistochemical studies. Anat Embryol. 2002;206:13–20.CrossRefPubMed
3.
go back to reference Suzuki M, Matsuzaka K, Yamada S, Shimono M, Abiko Y, Inoue T. Morphology of Malassez’s epithelial rest-like cells in the cementum:transmission electron microscopy, immunohistochemical, and TdT-mediated dUTP-biotin nick end labeling studies. J Periodontal Res. 2006;41:280–7.CrossRefPubMed Suzuki M, Matsuzaka K, Yamada S, Shimono M, Abiko Y, Inoue T. Morphology of Malassez’s epithelial rest-like cells in the cementum:transmission electron microscopy, immunohistochemical, and TdT-mediated dUTP-biotin nick end labeling studies. J Periodontal Res. 2006;41:280–7.CrossRefPubMed
4.
go back to reference Cerri PS, Katchburian E. Apoptosis in the epithelial cells of the rests of Malassez of the periodontium of rat molars. J Periodontal Res. 2005;40:365–72.CrossRefPubMed Cerri PS, Katchburian E. Apoptosis in the epithelial cells of the rests of Malassez of the periodontium of rat molars. J Periodontal Res. 2005;40:365–72.CrossRefPubMed
5.
go back to reference Inoue T, Enokiya Y, Hashimoto S, Fukumashi K, Shimono M. Homeostasis of periodontal ligament during wound healing, the effect of epithelial rest of Malassez. Jpn J Oral Sci. 1995;37:58–69.CrossRef Inoue T, Enokiya Y, Hashimoto S, Fukumashi K, Shimono M. Homeostasis of periodontal ligament during wound healing, the effect of epithelial rest of Malassez. Jpn J Oral Sci. 1995;37:58–69.CrossRef
6.
go back to reference Yamashiro T, Tummers M, Thesleff I. Expression of bone morphogenetic proteins and Msx genes during root formation. J Dent Res. 2003;82:172–6.CrossRefPubMed Yamashiro T, Tummers M, Thesleff I. Expression of bone morphogenetic proteins and Msx genes during root formation. J Dent Res. 2003;82:172–6.CrossRefPubMed
7.
go back to reference Mine K, Kanno Z, Muramoto T, Soma K. Occlusal forces promote periodontal healing of transplanted teeth and prevent dento alveolar ankylosis: an experimental study in rats. Angle Orthod. 2005;75:637–44.PubMed Mine K, Kanno Z, Muramoto T, Soma K. Occlusal forces promote periodontal healing of transplanted teeth and prevent dento alveolar ankylosis: an experimental study in rats. Angle Orthod. 2005;75:637–44.PubMed
8.
go back to reference Matsuzaka K, Kokubu E, Inoue T. The effects of epithelial rests of Malassez cells on periodontal ligament fibroblasts: a co-culture investigation for epithelial mesenchymal interactions. Oral Med Pathol. 2011;16:15–9.CrossRef Matsuzaka K, Kokubu E, Inoue T. The effects of epithelial rests of Malassez cells on periodontal ligament fibroblasts: a co-culture investigation for epithelial mesenchymal interactions. Oral Med Pathol. 2011;16:15–9.CrossRef
9.
go back to reference Goto K, Okuyama R, Sugiyama H, Honda M, Kobayashi T, Uehara K, et al. Effects of heat stress and mechanical stretch on protein expression in cultured skeletal muscle cells. Eru J Physiol. 2003;447:247–53.CrossRef Goto K, Okuyama R, Sugiyama H, Honda M, Kobayashi T, Uehara K, et al. Effects of heat stress and mechanical stretch on protein expression in cultured skeletal muscle cells. Eru J Physiol. 2003;447:247–53.CrossRef
10.
go back to reference Kaneko-Tanaka K, Kurokawa A, Mitsuhashi M, Fujita S, Goseki T, Yamaguchi M, et al. Expression of heat shock protein 70 in the periodontal ligament during orthodontic tooth movement. Int J Oral Med Sci. 2010;9:115–21.CrossRef Kaneko-Tanaka K, Kurokawa A, Mitsuhashi M, Fujita S, Goseki T, Yamaguchi M, et al. Expression of heat shock protein 70 in the periodontal ligament during orthodontic tooth movement. Int J Oral Med Sci. 2010;9:115–21.CrossRef
11.
go back to reference Muraoka R, Nakano K, Matsuda H, Tomoda M, Okafuji N, Yamada K, et al. A consideration on the role of HSP70 appearing in the periodontal tissue due to experimental orthodontic force. J Hard Tissue Biol. 2011;20:275–82.CrossRef Muraoka R, Nakano K, Matsuda H, Tomoda M, Okafuji N, Yamada K, et al. A consideration on the role of HSP70 appearing in the periodontal tissue due to experimental orthodontic force. J Hard Tissue Biol. 2011;20:275–82.CrossRef
12.
go back to reference Garrido C, Gurbuxani S, Ravagnan L, Kroemer G. Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Communicat. 2001;286:433–42.CrossRef Garrido C, Gurbuxani S, Ravagnan L, Kroemer G. Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Communicat. 2001;286:433–42.CrossRef
13.
go back to reference Naito K, Matsuzaka K, Ishigami K, Inoue T. Mechanical force promotes proliferation and early differentiation of bone marrow derived osteoblast-like cells in vitro. Oral Med Pathol. 2009;13:151–7.CrossRef Naito K, Matsuzaka K, Ishigami K, Inoue T. Mechanical force promotes proliferation and early differentiation of bone marrow derived osteoblast-like cells in vitro. Oral Med Pathol. 2009;13:151–7.CrossRef
14.
go back to reference Hoshina S, Matsuzaka K, Motoyoshi Y, Koike Y, Takeda T, Ishigami K, et al. Osteoblast-like cell behavior of rat bone marrow under continuous compressive force in vitro. Biomed Res. 2004;25:109–17.CrossRef Hoshina S, Matsuzaka K, Motoyoshi Y, Koike Y, Takeda T, Ishigami K, et al. Osteoblast-like cell behavior of rat bone marrow under continuous compressive force in vitro. Biomed Res. 2004;25:109–17.CrossRef
15.
go back to reference Kook SH, Hwang JM, Park JS, Kim EM, Heo JS, Jeon YM, et al. Mechanical force induces type 1 collagen expression in human periodontal ligament fibroblasts through activation of ERK/JNK and AP-1. J Cell Biochem. 2009;15:1060–7.CrossRef Kook SH, Hwang JM, Park JS, Kim EM, Heo JS, Jeon YM, et al. Mechanical force induces type 1 collagen expression in human periodontal ligament fibroblasts through activation of ERK/JNK and AP-1. J Cell Biochem. 2009;15:1060–7.CrossRef
16.
go back to reference Mabuchi R, Matsuzaka K, Shimono M. Cell proliferation and cell death in periodontal ligaments during orthodontic tooth movement. J Periodontal Res. 2002;37:118–24.CrossRefPubMed Mabuchi R, Matsuzaka K, Shimono M. Cell proliferation and cell death in periodontal ligaments during orthodontic tooth movement. J Periodontal Res. 2002;37:118–24.CrossRefPubMed
17.
go back to reference Lui JC, Kong SK. Heat shock protein 70 inhibits the nuclear import of apoptosis-inducing factor to avoid DNA fragmentation in TF-1 cells during erythropoiesis. FEBS Lett. 2007;581:109–17.CrossRefPubMed Lui JC, Kong SK. Heat shock protein 70 inhibits the nuclear import of apoptosis-inducing factor to avoid DNA fragmentation in TF-1 cells during erythropoiesis. FEBS Lett. 2007;581:109–17.CrossRefPubMed
19.
go back to reference Redlich M, Palmon A, Zaks B, Geremi E, Rayzman S, Shoshan S. The effect of centrifugal force on the transcription levels of collagen type 1 and collagenase in cultured canine gingival fibroblasts. Arch Oral Biol. 1998;43:313–6.CrossRefPubMed Redlich M, Palmon A, Zaks B, Geremi E, Rayzman S, Shoshan S. The effect of centrifugal force on the transcription levels of collagen type 1 and collagenase in cultured canine gingival fibroblasts. Arch Oral Biol. 1998;43:313–6.CrossRefPubMed
20.
go back to reference Redlich M, Roos H, Reichenberg E, Zaks B, Grosskop A, Bar Kana I, et al. The effect of centrifugal force on mRNA levels of collagenase, collagen type-I, tissue inhibitors of metalloproteinases and beta-actin in cultured human periodontal ligament fibroblasts. J Periodontal Res. 2004;39:27–32.CrossRefPubMed Redlich M, Roos H, Reichenberg E, Zaks B, Grosskop A, Bar Kana I, et al. The effect of centrifugal force on mRNA levels of collagenase, collagen type-I, tissue inhibitors of metalloproteinases and beta-actin in cultured human periodontal ligament fibroblasts. J Periodontal Res. 2004;39:27–32.CrossRefPubMed
21.
go back to reference Matsuoka K, Matsuzaka K, Yoshinari M, Inoue T. Tenascin-C promotes differentiation of rat dental pulp cells in vitro. Int Endod J. 2013;46:30–9.CrossRefPubMed Matsuoka K, Matsuzaka K, Yoshinari M, Inoue T. Tenascin-C promotes differentiation of rat dental pulp cells in vitro. Int Endod J. 2013;46:30–9.CrossRefPubMed
22.
go back to reference Tsuruoka M, Ishizaki K, Sakurai K, Matsuzaka K, Inoue T. Morphological and molecular changes in denture-supporting tissues under persistent mechanical stress in rats. J Oral Rehabil. 2008;35:889–97.CrossRefPubMed Tsuruoka M, Ishizaki K, Sakurai K, Matsuzaka K, Inoue T. Morphological and molecular changes in denture-supporting tissues under persistent mechanical stress in rats. J Oral Rehabil. 2008;35:889–97.CrossRefPubMed
23.
go back to reference Kaarniranta K, Holmberg CI, Lammi MJ, Eriksson JE, Sistonen L, Helminen HJ. Primary chondrocytes resist hydrostatic pressure-induced stress while primary synovial cells and fibroblasts show modified Hsp70 response. Osteoarthritis. 2001;9:7–13.CrossRef Kaarniranta K, Holmberg CI, Lammi MJ, Eriksson JE, Sistonen L, Helminen HJ. Primary chondrocytes resist hydrostatic pressure-induced stress while primary synovial cells and fibroblasts show modified Hsp70 response. Osteoarthritis. 2001;9:7–13.CrossRef
24.
go back to reference Lee DH, Park JC, Suh H. Effect of centrifugal force on cellar activity of osteoblastic MC3T3-E1 cells in vitro. Yonsei Med J. 2001;42:405–10.CrossRefPubMed Lee DH, Park JC, Suh H. Effect of centrifugal force on cellar activity of osteoblastic MC3T3-E1 cells in vitro. Yonsei Med J. 2001;42:405–10.CrossRefPubMed
25.
go back to reference Salter DM, Robb JE, Wright MO. Electrophysiological responses of human bone cells to mechanical stimulation: evidence for specific integrin function in mechanotransduction. J Bone Miner Res. 1997;12:1133–41.CrossRefPubMed Salter DM, Robb JE, Wright MO. Electrophysiological responses of human bone cells to mechanical stimulation: evidence for specific integrin function in mechanotransduction. J Bone Miner Res. 1997;12:1133–41.CrossRefPubMed
26.
go back to reference Tanaka H. Mechanical stress and bone resorption. Mol Med. 2001;38:656–60. Tanaka H. Mechanical stress and bone resorption. Mol Med. 2001;38:656–60.
Metadata
Title
HSP70 mRNA expression by cells of the epithelial rest of Malassez due to mechanical forces in vitro
Authors
Hideki Kogai
Kei Nakajima
Tungalag Ser-Od
Akram Al-Wahabi
Kenichi Matsuzaka
Taneaki Nakagawa
Takashi Inoue
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2016
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-016-0181-4

Other articles of this Issue 1/2016

BMC Oral Health 1/2016 Go to the issue