Skip to main content
Top
Published in: Immunologic Research 2/2017

01-04-2017 | Novel Aspects in Lupus, 2017

HPV and systemic lupus erythematosus: a mosaic of potential crossreactions

Authors: Yahel Segal, Shani Dahan, Michele Calabrò, Darja Kanduc, Yehuda Shoenfeld

Published in: Immunologic Research | Issue 2/2017

Login to get access

Abstract

Etiology, pathogenesis, and immunology of systemic lupus erythematosus (SLE) form a complex, still undeciphered picture that recently has been further made complicated by a new factor of morbidity: human papillomaviruses (HPVs). Indeed, a prevalence of HPV infections has been reported among SLE patients. Searching for molecular mechanisms that might underlie and explain the relationship between HPV infection and SLE, we explored the hypothesis that immune responses following HPV infection may crossreact with proteins that, when altered, associate with SLE. Analyzing HPV L1 proteins and using Epstein-Barr virus (EBV) and human retrovirus (HERV) as controls, we found a vast peptide overlap with human proteins comprehending lupus Ku autoantigen proteins p86 and p70, lupus brain antigen 1 homolog, lupus antigen expressed in neurons and muscles, natural killer cell IgG-like receptors, complement proteins C4-A and C4-B, complement receptor CD19, and others. The multitude and heterogeneity of peptide overlaps not only further support the hypothesis that crossreactivity can represent a primum movens in SLE onset, but also provide a molecular framework to the concept of SLE as “an autoimmune mosaic syndrome.” Finally, once more, it emerges the need of using the principle of peptide uniqueness as a new paradigm for safe and efficacious vaccinology.
https://static-content.springer.com/image/art%3A10.1007%2Fs12026-016-8890-y/MediaObjects/12026_2016_8890_Figa_HTML.gif
Appendix
Available only for authorised users
Literature
1.
go back to reference Wallace DJ, Hahn BH, (Eds). Dubois’ lupus erythematosus. Lippincott Williams & Wilkins; Philadelphia, PA: 2007. Wallace DJ, Hahn BH, (Eds). Dubois’ lupus erythematosus. Lippincott Williams & Wilkins; Philadelphia, PA: 2007.
2.
go back to reference Tsokos GC, Gordon C, Smolen JS, (Eds). Systemic lupus erythematosus: a companion to rheumatology. Mosby Elsevier; Philadelphia: 2007. Tsokos GC, Gordon C, Smolen JS, (Eds). Systemic lupus erythematosus: a companion to rheumatology. Mosby Elsevier; Philadelphia: 2007.
3.
go back to reference Zhu H, Luo H, Yan M, Zuo X, Li QZ. Autoantigen microarray for high-throughput autoantibody profiling in systemic lupus erythematosus. Genomics Proteomics Bioinformatics. 2015;13:210–8.CrossRefPubMedPubMedCentral Zhu H, Luo H, Yan M, Zuo X, Li QZ. Autoantigen microarray for high-throughput autoantibody profiling in systemic lupus erythematosus. Genomics Proteomics Bioinformatics. 2015;13:210–8.CrossRefPubMedPubMedCentral
4.
go back to reference Dema B, Charles N. Autoantibodies in SLE: specificities, isotypes and receptors. Antibodies. 2016;5:2.CrossRef Dema B, Charles N. Autoantibodies in SLE: specificities, isotypes and receptors. Antibodies. 2016;5:2.CrossRef
5.
go back to reference Hagberg N, Theorell J, Eloranta ML, Pascal V, Bryceson YT, Rönnblom L. Anti-NKG2A autoantibodies in a patient with systemic lupus erythematosus. Rheumatology (Oxford). 2013;52:1818–23.CrossRef Hagberg N, Theorell J, Eloranta ML, Pascal V, Bryceson YT, Rönnblom L. Anti-NKG2A autoantibodies in a patient with systemic lupus erythematosus. Rheumatology (Oxford). 2013;52:1818–23.CrossRef
6.
go back to reference Nelson P, Rylance P, Roden D, Trela M, Tugnet N. Viruses as potential pathogenic agents in systemic lupus erythematosus. Lupus. 2014;23:596–605.CrossRefPubMed Nelson P, Rylance P, Roden D, Trela M, Tugnet N. Viruses as potential pathogenic agents in systemic lupus erythematosus. Lupus. 2014;23:596–605.CrossRefPubMed
7.
go back to reference Haaheim LR, Halse AK, Kvakestad R, Stern B, Normann O, Jonsson R. Serum antibodies from patients with primary Sjögren’s syndrome and systemic lupus erythematosus recognize multiple epitopes on the La(SS-B) autoantigen resembling viral protein sequences. Scand J Immunol. 1996;43:115–21.CrossRefPubMed Haaheim LR, Halse AK, Kvakestad R, Stern B, Normann O, Jonsson R. Serum antibodies from patients with primary Sjögren’s syndrome and systemic lupus erythematosus recognize multiple epitopes on the La(SS-B) autoantigen resembling viral protein sequences. Scand J Immunol. 1996;43:115–21.CrossRefPubMed
8.
go back to reference Esposito S, Bosis S, Semino M, Rigante D. Infections and systemic lupus erythematosus. Eur J Clin Microbiol Infect Dis. 2014;33:1467–75.CrossRefPubMed Esposito S, Bosis S, Semino M, Rigante D. Infections and systemic lupus erythematosus. Eur J Clin Microbiol Infect Dis. 2014;33:1467–75.CrossRefPubMed
9.
go back to reference Rigante D, Mazzoni MB, Esposito S. The cryptic interplay between systemic lupus erythematosus and infections. Autoimmun Rev. 2014;13:96–102.CrossRefPubMed Rigante D, Mazzoni MB, Esposito S. The cryptic interplay between systemic lupus erythematosus and infections. Autoimmun Rev. 2014;13:96–102.CrossRefPubMed
11.
go back to reference Barzilai O, Ram M, Shoenfeld Y. Viral infection can induce the production of autoantibodies. Curr Opin Rheumatol. 2007;19:636–43.CrossRefPubMed Barzilai O, Ram M, Shoenfeld Y. Viral infection can induce the production of autoantibodies. Curr Opin Rheumatol. 2007;19:636–43.CrossRefPubMed
12.
go back to reference McClain MT, Heinlen LD, Dennis GJ, Roebuck J, Harley JB, James JA. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat Med. 2005;11:85–9.CrossRefPubMed McClain MT, Heinlen LD, Dennis GJ, Roebuck J, Harley JB, James JA. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat Med. 2005;11:85–9.CrossRefPubMed
14.
go back to reference Harley JB, Harley IT, Guthridge JM, James JA. The curiously suspicious: a role for Epstein-Barr virus in lupus. Lupus. 2006;15:768–77.CrossRefPubMed Harley JB, Harley IT, Guthridge JM, James JA. The curiously suspicious: a role for Epstein-Barr virus in lupus. Lupus. 2006;15:768–77.CrossRefPubMed
15.
go back to reference Incaprera M, Rindi L, Bazzichi A, Garzelli C. Potential role of the Epstein-Barr virus in systemic lupus erythematosus autoimmunity. Clin Exp Rheumatol. 1998;16:289–94.PubMed Incaprera M, Rindi L, Bazzichi A, Garzelli C. Potential role of the Epstein-Barr virus in systemic lupus erythematosus autoimmunity. Clin Exp Rheumatol. 1998;16:289–94.PubMed
16.
go back to reference Poole BD, Scofield RH, Harley JB, James JA. Epstein-Barr virus and molecular mimicry in systemic lupus erythematosus. Autoimmunity. 2006;39:63–70.CrossRefPubMed Poole BD, Scofield RH, Harley JB, James JA. Epstein-Barr virus and molecular mimicry in systemic lupus erythematosus. Autoimmunity. 2006;39:63–70.CrossRefPubMed
17.
go back to reference James JA, Harley JB, Scofield RH. Epstein-Barr virus and systemic lupus erythematosus. Curr Opin Rheumatol. 2006;18:462–7.CrossRefPubMed James JA, Harley JB, Scofield RH. Epstein-Barr virus and systemic lupus erythematosus. Curr Opin Rheumatol. 2006;18:462–7.CrossRefPubMed
18.
go back to reference James JA, Neas BR, Moser KL, Hall T, Bruner GR, Sestak AL, Harley JB. Systemic lupus erythematosus in adults is associated with previous Epstein-Barr virus exposure. Arthritis Rheum. 2001;44:1122–6.CrossRefPubMed James JA, Neas BR, Moser KL, Hall T, Bruner GR, Sestak AL, Harley JB. Systemic lupus erythematosus in adults is associated with previous Epstein-Barr virus exposure. Arthritis Rheum. 2001;44:1122–6.CrossRefPubMed
19.
go back to reference Harley JB, James JA. Epstein-Barr virus infection induces lupus autoimmunity. Bull NYU Hosp Jt Dis. 2006;64:45–50.PubMed Harley JB, James JA. Epstein-Barr virus infection induces lupus autoimmunity. Bull NYU Hosp Jt Dis. 2006;64:45–50.PubMed
20.
go back to reference Ascherio A, Munger KL. EBV and autoimmunity. Curr Top Microbiol Immunol. 2015;390:365–85.PubMed Ascherio A, Munger KL. EBV and autoimmunity. Curr Top Microbiol Immunol. 2015;390:365–85.PubMed
21.
go back to reference Kasapcopur O, Ergul Y, Kutlug S, Candan C, Camcioglu Y, Arisoy N. Systemic lupus erythematosus due to Epstein-Barr virus or Epstein-Barr virus infection provocating acute exacerbation of systemic lupus erythematosus? Rheumatol Int. 2006;26:765–7.CrossRefPubMed Kasapcopur O, Ergul Y, Kutlug S, Candan C, Camcioglu Y, Arisoy N. Systemic lupus erythematosus due to Epstein-Barr virus or Epstein-Barr virus infection provocating acute exacerbation of systemic lupus erythematosus? Rheumatol Int. 2006;26:765–7.CrossRefPubMed
22.
go back to reference Toussirot E, Roudier J. Epstein-Barr virus in autoimmune diseases. Best Pract Res Clin Rheumatol. 2008;22:883–96.CrossRefPubMed Toussirot E, Roudier J. Epstein-Barr virus in autoimmune diseases. Best Pract Res Clin Rheumatol. 2008;22:883–96.CrossRefPubMed
23.
go back to reference Posnett DN. Herpesviruses and autoimmunity. Curr Opin Investig Drugs. 2008;9:505–14.PubMed Posnett DN. Herpesviruses and autoimmunity. Curr Opin Investig Drugs. 2008;9:505–14.PubMed
24.
go back to reference Blank M, Shoenfeld Y, Perl A. Cross-talk of the environment with the host genome and the immune system through endogenous retroviruses in systemic lupus erythematosus. Lupus. 2009;18:1136–43.CrossRefPubMed Blank M, Shoenfeld Y, Perl A. Cross-talk of the environment with the host genome and the immune system through endogenous retroviruses in systemic lupus erythematosus. Lupus. 2009;18:1136–43.CrossRefPubMed
25.
go back to reference Perl A, Nagy G, Koncz A, Gergely P, Fernandez D, Doherty E, Telarico T, Bonilla E, Phillips PE. Molecular mimicry and immunomodulation by the HRES-1 endogenous retrovirus in SLE. Autoimmunity. 2008;41:287–97.CrossRefPubMedPubMedCentral Perl A, Nagy G, Koncz A, Gergely P, Fernandez D, Doherty E, Telarico T, Bonilla E, Phillips PE. Molecular mimicry and immunomodulation by the HRES-1 endogenous retrovirus in SLE. Autoimmunity. 2008;41:287–97.CrossRefPubMedPubMedCentral
26.
go back to reference Adelman MK, Marchalonis JJ. Endogenous retroviruses in systemic lupus erythematosus: candidate lupus viruses. Clin Immunol. 2002;102:107–16.CrossRefPubMed Adelman MK, Marchalonis JJ. Endogenous retroviruses in systemic lupus erythematosus: candidate lupus viruses. Clin Immunol. 2002;102:107–16.CrossRefPubMed
27.
go back to reference Naito T, Ogasawara H, Kaneko H, Hishikawa T, Sekigawa I, Hashimoto H, Maruyama N. Immune abnormalities induced by human endogenous retroviral peptides: with reference to the pathogenesis of systemic lupus erythematosus. J Clin Immunol. 2003;23:371–6.CrossRefPubMed Naito T, Ogasawara H, Kaneko H, Hishikawa T, Sekigawa I, Hashimoto H, Maruyama N. Immune abnormalities induced by human endogenous retroviral peptides: with reference to the pathogenesis of systemic lupus erythematosus. J Clin Immunol. 2003;23:371–6.CrossRefPubMed
28.
go back to reference Sukapan P, Promnarate P, Avihingsanon Y, Mutirangura A, Hirankarn N. Types of DNA methylation status of the interspersed repetitive sequences for LINE-1, Alu, HERV-E and HERV-K in the neutrophils from systemic lupus erythematosus patients and healthy controls. J Hum Genet. 2014;59:178–88.CrossRefPubMed Sukapan P, Promnarate P, Avihingsanon Y, Mutirangura A, Hirankarn N. Types of DNA methylation status of the interspersed repetitive sequences for LINE-1, Alu, HERV-E and HERV-K in the neutrophils from systemic lupus erythematosus patients and healthy controls. J Hum Genet. 2014;59:178–88.CrossRefPubMed
29.
go back to reference Christensen T. Association of human endogenous retroviruses with multiple sclerosis and possible interactions with herpes viruses. Rev Med Virol. 2005;15:179–211.CrossRefPubMed Christensen T. Association of human endogenous retroviruses with multiple sclerosis and possible interactions with herpes viruses. Rev Med Virol. 2005;15:179–211.CrossRefPubMed
30.
go back to reference Piotrowski PC, Duriagin S, Jagodzinski PP. Expression of human endogenous retrovirus clone 4–1 may correlate with blood plasma concentration of anti-U1 RNP and anti-Sm nuclear antibodies. Clin Rheumatol. 2005;24:620–4.CrossRefPubMed Piotrowski PC, Duriagin S, Jagodzinski PP. Expression of human endogenous retrovirus clone 4–1 may correlate with blood plasma concentration of anti-U1 RNP and anti-Sm nuclear antibodies. Clin Rheumatol. 2005;24:620–4.CrossRefPubMed
31.
go back to reference Gergely Jr P, Pullmann R, Stancato C, et al. Increased prevalence of transfusion-transmitted virus and cross-reactivity with immunodominant epitopes of the HRES-1/p28 endogenous retroviral autoantigen in patients with systemic lupus erythematosus. Clin Immunol. 2005;116:124–34.CrossRefPubMed Gergely Jr P, Pullmann R, Stancato C, et al. Increased prevalence of transfusion-transmitted virus and cross-reactivity with immunodominant epitopes of the HRES-1/p28 endogenous retroviral autoantigen in patients with systemic lupus erythematosus. Clin Immunol. 2005;116:124–34.CrossRefPubMed
32.
go back to reference Lyrio LD, Grassi MFR, Santana IU, et al. Prevalence of cervical human papillomavirus infection in women with systemic lupus erythematosus. Rheumatol Int. 2013;33:335–40.CrossRefPubMed Lyrio LD, Grassi MFR, Santana IU, et al. Prevalence of cervical human papillomavirus infection in women with systemic lupus erythematosus. Rheumatol Int. 2013;33:335–40.CrossRefPubMed
33.
go back to reference Klumb EM, Pinto AC, Jesus GR, Araujo M, Jascone L, Gayer CR, et al. Are women with lupus at higher risk of HPV infection? Lupus. 2010;19:1485–91.CrossRefPubMed Klumb EM, Pinto AC, Jesus GR, Araujo M, Jascone L, Gayer CR, et al. Are women with lupus at higher risk of HPV infection? Lupus. 2010;19:1485–91.CrossRefPubMed
34.
go back to reference Bae SC, Kim YJ, Suh CH, Kim HA, Hur NW, Lee J. Prevalence of human papilloma virus infections and cervical cytological abnormalities among Korean women with systemic lupus erythematosus. J Korean Med Sci. 2010;25:1431–7.CrossRefPubMedPubMedCentral Bae SC, Kim YJ, Suh CH, Kim HA, Hur NW, Lee J. Prevalence of human papilloma virus infections and cervical cytological abnormalities among Korean women with systemic lupus erythematosus. J Korean Med Sci. 2010;25:1431–7.CrossRefPubMedPubMedCentral
35.
go back to reference Nath R, Mant C, Luxton J, et al. High risk of human papillomavirus type 16 infections and of development of cervical squamous intraepithelial lesions in systemic lupus erythematosus patients. Arthritis Rheum. 2007;57:619–25.CrossRefPubMed Nath R, Mant C, Luxton J, et al. High risk of human papillomavirus type 16 infections and of development of cervical squamous intraepithelial lesions in systemic lupus erythematosus patients. Arthritis Rheum. 2007;57:619–25.CrossRefPubMed
36.
go back to reference Soldevilla HF, Briones SF, Navarra SV. Systemic lupus erythematosus following HPV immunization or infection? Lupus. 2012;21:158–61.CrossRefPubMed Soldevilla HF, Briones SF, Navarra SV. Systemic lupus erythematosus following HPV immunization or infection? Lupus. 2012;21:158–61.CrossRefPubMed
37.
go back to reference Ito H, Noda K, Hirai K, Ukichi T, Furuya K, Kurosaka D. A case of systemic lupus erythematosus (SLE) following human papillomavirus (HPV) vaccination. Nihon Rinsho Meneki Gakkai Kaishi. 2016;39:145–9.CrossRefPubMed Ito H, Noda K, Hirai K, Ukichi T, Furuya K, Kurosaka D. A case of systemic lupus erythematosus (SLE) following human papillomavirus (HPV) vaccination. Nihon Rinsho Meneki Gakkai Kaishi. 2016;39:145–9.CrossRefPubMed
38.
go back to reference Geier DA, Geier MR. Quadrivalent human papillomavirus vaccine and autoimmune adverse events: a case–control assessment of the vaccine adverse event reporting system (VAERS) database. Immunol Res. 2016 Jul;13 Geier DA, Geier MR. Quadrivalent human papillomavirus vaccine and autoimmune adverse events: a case–control assessment of the vaccine adverse event reporting system (VAERS) database. Immunol Res. 2016 Jul;13
39.
go back to reference Natale C, Giannini T, Lucchese A, Kanduc D. Computer-assisted analysis of molecular mimicry between human papillomavirus 16 E7 oncoprotein and human protein sequences. Immunol Cell Biol. 2000 Dec;78(6):580–5.CrossRefPubMed Natale C, Giannini T, Lucchese A, Kanduc D. Computer-assisted analysis of molecular mimicry between human papillomavirus 16 E7 oncoprotein and human protein sequences. Immunol Cell Biol. 2000 Dec;78(6):580–5.CrossRefPubMed
40.
go back to reference Kanduc D, Stufano A, Lucchese G, Kusalik A. Massive peptide sharing between viral and human proteomes. Peptides. 2008 Oct;29(10):1755–66.CrossRefPubMed Kanduc D, Stufano A, Lucchese G, Kusalik A. Massive peptide sharing between viral and human proteomes. Peptides. 2008 Oct;29(10):1755–66.CrossRefPubMed
41.
go back to reference Kanduc D. Penta-and hexapeptide sharing between HPV16 and Homo sapiens proteomes. Int J Med Med Sci. 2009 Oct 1;1:383–7. Kanduc D. Penta-and hexapeptide sharing between HPV16 and Homo sapiens proteomes. Int J Med Med Sci. 2009 Oct 1;1:383–7.
42.
go back to reference Kanduc D. Quantifying the possible cross-reactivity risk of an HPV16 vaccine. J Exp Ther Oncol. 2009;8(1):65–76.PubMed Kanduc D. Quantifying the possible cross-reactivity risk of an HPV16 vaccine. J Exp Ther Oncol. 2009;8(1):65–76.PubMed
43.
go back to reference Kanduc D. Potential cross-reactivity between HPV16 L1 protein and sudden death-associated antigens. J Exp Ther Oncol. 2011;9:159–65.PubMed Kanduc D. Potential cross-reactivity between HPV16 L1 protein and sudden death-associated antigens. J Exp Ther Oncol. 2011;9:159–65.PubMed
44.
go back to reference Kanduc D, Shoenfeld Y. From HBV to HPV: designing vaccines for extensive and intensive vaccination campaigns worldwide. Autoimmun Rev. 2016 Aug 1 Kanduc D, Shoenfeld Y. From HBV to HPV: designing vaccines for extensive and intensive vaccination campaigns worldwide. Autoimmun Rev. 2016 Aug 1
45.
go back to reference Magrane M; UniProt Consortium. UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford). 2011; 2011: bar009. Magrane M; UniProt Consortium. UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford). 2011; 2011: bar009.
46.
go back to reference Hom G, Graham RR, Modrek B, et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med. 2008;358:900–9.CrossRefPubMed Hom G, Graham RR, Modrek B, et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med. 2008;358:900–9.CrossRefPubMed
47.
go back to reference Hatta Y, Tsuchiya N, Matsushita M, Shiota M, Hagiwara K, Tokunaga K. Identification of the gene variations in human CD22. Immunogenetics. 1999;49:280–6.CrossRefPubMed Hatta Y, Tsuchiya N, Matsushita M, Shiota M, Hagiwara K, Tokunaga K. Identification of the gene variations in human CD22. Immunogenetics. 1999;49:280–6.CrossRefPubMed
48.
go back to reference Lokki ML, Circolo A, Ahokas P, Rupert KL, Yu CY, Colten HR. Deficiency of human complement protein C4 due to identical frameshift mutations in the C4A and C4B genes. J Immunol. 1999;162:3687–93.PubMed Lokki ML, Circolo A, Ahokas P, Rupert KL, Yu CY, Colten HR. Deficiency of human complement protein C4 due to identical frameshift mutations in the C4A and C4B genes. J Immunol. 1999;162:3687–93.PubMed
49.
go back to reference Wetsel RA, Kulics J, Lokki ML, et al. Type II human complement C2 deficiency. Allele-specific amino acid substitutions (Ser189->Phe; Gly444->Arg) cause impaired C2 secretion. J Biol Chem. 1996;271:5824–31.CrossRefPubMed Wetsel RA, Kulics J, Lokki ML, et al. Type II human complement C2 deficiency. Allele-specific amino acid substitutions (Ser189->Phe; Gly444->Arg) cause impaired C2 secretion. J Biol Chem. 1996;271:5824–31.CrossRefPubMed
50.
go back to reference Singer L, Whitehead WT, Akama H, Katz Y, Fishelson Z, Wetsel RA. Inherited human complement C3 deficiency. An amino acid substitution in the beta-chain (ASP549 to ASN) impairs C3 secretion. J Biol Chem. 1994;269:28494–9.PubMed Singer L, Whitehead WT, Akama H, Katz Y, Fishelson Z, Wetsel RA. Inherited human complement C3 deficiency. An amino acid substitution in the beta-chain (ASP549 to ASN) impairs C3 secretion. J Biol Chem. 1994;269:28494–9.PubMed
51.
go back to reference Petry F, Hauptmann G, Goetz J, Grosshans E, Loos M. Molecular basis of a new type of C1q-deficiency associated with a non-functional low molecular weight (LMW) C1q: parallels and differences to other known genetic C1q-defects. Immunopharmacology. 1997;38:189–201.CrossRefPubMed Petry F, Hauptmann G, Goetz J, Grosshans E, Loos M. Molecular basis of a new type of C1q-deficiency associated with a non-functional low molecular weight (LMW) C1q: parallels and differences to other known genetic C1q-defects. Immunopharmacology. 1997;38:189–201.CrossRefPubMed
52.
go back to reference Dragon-Durey MA, Quartier P, Frémeaux-Bacchi V, et al. Molecular basis of a selective C1s deficiency associated with early onset multiple autoimmune diseases. J Immunol. 2001;166:7612–6.CrossRefPubMed Dragon-Durey MA, Quartier P, Frémeaux-Bacchi V, et al. Molecular basis of a selective C1s deficiency associated with early onset multiple autoimmune diseases. J Immunol. 2001;166:7612–6.CrossRefPubMed
53.
go back to reference Wu H, Boackle SA, Hanvivadhanakul P, et al. Association of a common complement receptor 2 haplotype with increased risk of systemic lupus erythematosus. Proc Natl Acad Sci U S A. 2007;104:3961–6.CrossRefPubMedPubMedCentral Wu H, Boackle SA, Hanvivadhanakul P, et al. Association of a common complement receptor 2 haplotype with increased risk of systemic lupus erythematosus. Proc Natl Acad Sci U S A. 2007;104:3961–6.CrossRefPubMedPubMedCentral
54.
go back to reference Yasutomo K, Horiuchi T, Kagami S, et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat Genet. 2001;28:313–4.CrossRefPubMed Yasutomo K, Horiuchi T, Kagami S, et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat Genet. 2001;28:313–4.CrossRefPubMed
55.
go back to reference Stenmark H, Aasland R, Toh BH, D’Arrigo A. Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J Biol Chem. 1996;271:24048–54.CrossRefPubMed Stenmark H, Aasland R, Toh BH, D’Arrigo A. Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J Biol Chem. 1996;271:24048–54.CrossRefPubMed
56.
go back to reference Yasuda S, Stevens RL, Terada T, et al. Defective expression of Ras guanyl nucleotide-releasing protein 1 in a subset of patients with systemic lupus erythematosus. J Immunol. 2007;179:4890–900.CrossRefPubMed Yasuda S, Stevens RL, Terada T, et al. Defective expression of Ras guanyl nucleotide-releasing protein 1 in a subset of patients with systemic lupus erythematosus. J Immunol. 2007;179:4890–900.CrossRefPubMed
57.
go back to reference Nath SK, Han S, Kim-Howard X, et al. A nonsynonymous functional variant in integrin-alpha(M) (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat Genet. 2008;40:152–4.CrossRefPubMed Nath SK, Han S, Kim-Howard X, et al. A nonsynonymous functional variant in integrin-alpha(M) (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat Genet. 2008;40:152–4.CrossRefPubMed
58.
go back to reference Lee YH, Bae SC. Association between the functional ITGAM rs1143679 G/A polymorphism and systemic lupus erythematosus/lupus nephritis or rheumatoid arthritis: an update meta-analysis. Rheumatol Int. 2015;35:815–23.CrossRefPubMed Lee YH, Bae SC. Association between the functional ITGAM rs1143679 G/A polymorphism and systemic lupus erythematosus/lupus nephritis or rheumatoid arthritis: an update meta-analysis. Rheumatol Int. 2015;35:815–23.CrossRefPubMed
59.
go back to reference Belot A, Kasher PR, Trotter EW, et al. Protein kinase cδ deficiency causes mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation. Arthritis Rheum. 2013;65:2161–71.CrossRefPubMedPubMedCentral Belot A, Kasher PR, Trotter EW, et al. Protein kinase cδ deficiency causes mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation. Arthritis Rheum. 2013;65:2161–71.CrossRefPubMedPubMedCentral
60.
go back to reference Hou YF, Zhang YC, Jiao YL, et al. Disparate distribution of activating and inhibitory killer cell immunoglobulin-like receptor genes in patients with systemic lupus erythematosus. Lupus. 2010 Jan;19(1):20–6.CrossRefPubMed Hou YF, Zhang YC, Jiao YL, et al. Disparate distribution of activating and inhibitory killer cell immunoglobulin-like receptor genes in patients with systemic lupus erythematosus. Lupus. 2010 Jan;19(1):20–6.CrossRefPubMed
61.
go back to reference Pellett F, Siannis F, Vukin I, Lee P, Urowitz MB, Gladman DD. KIRs and autoimmune disease: studies in systemic lupus erythematosus and scleroderma. Tissue Antigens. 2007 Apr;69(Suppl 1):106–8.CrossRefPubMed Pellett F, Siannis F, Vukin I, Lee P, Urowitz MB, Gladman DD. KIRs and autoimmune disease: studies in systemic lupus erythematosus and scleroderma. Tissue Antigens. 2007 Apr;69(Suppl 1):106–8.CrossRefPubMed
62.
go back to reference Toloza S, Pellett F, Chandran V, Ibanez D, Urowitz M, Gladman D. Association of killer cell immunoglobulin-like receptor genotypes with vascular arterial events and anticardiolipin antibodies in patients with lupus. Lupus. 2008 Sep;17(9):793–8.CrossRefPubMed Toloza S, Pellett F, Chandran V, Ibanez D, Urowitz M, Gladman D. Association of killer cell immunoglobulin-like receptor genotypes with vascular arterial events and anticardiolipin antibodies in patients with lupus. Lupus. 2008 Sep;17(9):793–8.CrossRefPubMed
63.
go back to reference Bai Y, Zhang Y, Yang Q, et al. The aberrant expression of stimulatory and inhibitory killer immunoglobulin-like receptors in NK- and NKT-cells contributes to lupus. Clin Lab. 2014;60:717–27.CrossRefPubMed Bai Y, Zhang Y, Yang Q, et al. The aberrant expression of stimulatory and inhibitory killer immunoglobulin-like receptors in NK- and NKT-cells contributes to lupus. Clin Lab. 2014;60:717–27.CrossRefPubMed
64.
go back to reference Glenn HL, Wang Z, Schwartz LM. Acheron, a lupus antigen family member, regulates integrin expression, adhesion, and motility in differentiating myoblasts. Am J Physiol Cell Physiol. 2010;298:C46–55.CrossRefPubMed Glenn HL, Wang Z, Schwartz LM. Acheron, a lupus antigen family member, regulates integrin expression, adhesion, and motility in differentiating myoblasts. Am J Physiol Cell Physiol. 2010;298:C46–55.CrossRefPubMed
65.
go back to reference McCurdy DK, Tai LQ, Nguyen J, et al. MAGE Xp-2: a member of the MAGE gene family isolated from an expression library using systemic lupus erythematosus sera. Mol Genet Metab. 1998;63:3–13.CrossRefPubMed McCurdy DK, Tai LQ, Nguyen J, et al. MAGE Xp-2: a member of the MAGE gene family isolated from an expression library using systemic lupus erythematosus sera. Mol Genet Metab. 1998;63:3–13.CrossRefPubMed
66.
go back to reference Jin Y, Mailloux CM, Gowan K, et al. NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med. 2007;356:1216–25.CrossRefPubMed Jin Y, Mailloux CM, Gowan K, et al. NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med. 2007;356:1216–25.CrossRefPubMed
67.
go back to reference Matsudaira R, Takeuchi K, Takasaki Y, Yano T, Matsushita M, Hashimoto H. Relationships between autoantibody responses to deletion mutants of Ki antigen and clinical manifestations of lupus. J Rheumatol. 2003;30:1208–14.PubMed Matsudaira R, Takeuchi K, Takasaki Y, Yano T, Matsushita M, Hashimoto H. Relationships between autoantibody responses to deletion mutants of Ki antigen and clinical manifestations of lupus. J Rheumatol. 2003;30:1208–14.PubMed
68.
go back to reference Kyogoku C, Langefeld CD, Ortmann WA, et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet. 2004;75:504–7.CrossRefPubMedPubMedCentral Kyogoku C, Langefeld CD, Ortmann WA, et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet. 2004;75:504–7.CrossRefPubMedPubMedCentral
69.
go back to reference Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet. 2004;36:337–8.CrossRefPubMed Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet. 2004;36:337–8.CrossRefPubMed
70.
go back to reference Ravenscroft JC, Suri M, Rice GI, Szynkiewicz M, Crow YJ. Autosomal dominant inheritance of a heterozygous mutation in SAMHD1 causing familial chilblain lupus. Am J Med Genet A. 2011;155A:235–7.CrossRefPubMed Ravenscroft JC, Suri M, Rice GI, Szynkiewicz M, Crow YJ. Autosomal dominant inheritance of a heterozygous mutation in SAMHD1 causing familial chilblain lupus. Am J Med Genet A. 2011;155A:235–7.CrossRefPubMed
71.
go back to reference Surolia I, Pirnie SP, Chellappa V, et al. Functionally defective germline variants of sialic acid acetylesterase in autoimmunity. Nature. 2010;466:243–7.CrossRefPubMedPubMedCentral Surolia I, Pirnie SP, Chellappa V, et al. Functionally defective germline variants of sialic acid acetylesterase in autoimmunity. Nature. 2010;466:243–7.CrossRefPubMedPubMedCentral
72.
go back to reference Cai LQ, Wang ZX, Lu WS, et al. A single-nucleotide polymorphism of the TNFAIP3 gene is associated with systemic lupus erythematosus in Chinese Han population. Mol Biol Rep. 2010;37:389–94.CrossRefPubMed Cai LQ, Wang ZX, Lu WS, et al. A single-nucleotide polymorphism of the TNFAIP3 gene is associated with systemic lupus erythematosus in Chinese Han population. Mol Biol Rep. 2010;37:389–94.CrossRefPubMed
73.
go back to reference Gateva V, Sandling JK, Hom G, et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet. 2009;41:1228–33.CrossRefPubMedPubMedCentral Gateva V, Sandling JK, Hom G, et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet. 2009;41:1228–33.CrossRefPubMedPubMedCentral
74.
75.
go back to reference Jahantigh D, Salimi S, Mousavi M, et al. Association between functional polymorphisms of DNA double-strand breaks in repair genes XRCC5, XRCC6 and XRCC7 with the risk of systemic lupus erythematosus in south east Iran. DNA Cell Biol. 2015;34:360–6.CrossRefPubMed Jahantigh D, Salimi S, Mousavi M, et al. Association between functional polymorphisms of DNA double-strand breaks in repair genes XRCC5, XRCC6 and XRCC7 with the risk of systemic lupus erythematosus in south east Iran. DNA Cell Biol. 2015;34:360–6.CrossRefPubMed
76.
go back to reference Kelavkar U, Wang S, Badr K. KU 70/80 lupus autoantigen is the transcription factor induced by interleukins (IL)-13 and -4 leading to induction of 15-lipoxygenase (15-LO) in human cells. Adv Exp Med Biol. 2002;507:469–81.CrossRefPubMed Kelavkar U, Wang S, Badr K. KU 70/80 lupus autoantigen is the transcription factor induced by interleukins (IL)-13 and -4 leading to induction of 15-lipoxygenase (15-LO) in human cells. Adv Exp Med Biol. 2002;507:469–81.CrossRefPubMed
77.
go back to reference Kanduc D. Pentapeptides as minimal functional units in cell biology and immunology. Curr Protein Pept Sci. 2013;14:111–20.CrossRefPubMed Kanduc D. Pentapeptides as minimal functional units in cell biology and immunology. Curr Protein Pept Sci. 2013;14:111–20.CrossRefPubMed
78.
go back to reference Lucchese A, Mittelman A, Tessitore L, Serpico R, Sinha AA, Kanduc D. Proteomic definition of a desmoglein linear determinant common to Pemphigus vulgaris and Pemphigus foliaceous. J Transl Med. 2006;4:37.CrossRefPubMedPubMedCentral Lucchese A, Mittelman A, Tessitore L, Serpico R, Sinha AA, Kanduc D. Proteomic definition of a desmoglein linear determinant common to Pemphigus vulgaris and Pemphigus foliaceous. J Transl Med. 2006;4:37.CrossRefPubMedPubMedCentral
79.
go back to reference Kanduc D, Serpico R, Lucchese A, Shoenfeld Y. Correlating low-similarity peptide sequences and HIV B-cell epitopes. Autoimmun Rev. 2008;7:291–6.CrossRefPubMed Kanduc D, Serpico R, Lucchese A, Shoenfeld Y. Correlating low-similarity peptide sequences and HIV B-cell epitopes. Autoimmun Rev. 2008;7:291–6.CrossRefPubMed
80.
go back to reference Lucchese A, Serpico R, Crincoli V, Shoenfeld Y, Kanduc D. Sequence uniqueness as a molecular signature of HIV-1-derived B-cell epitopes. Int J Immunopathol Pharmacol. 2009;22:639–46.CrossRefPubMed Lucchese A, Serpico R, Crincoli V, Shoenfeld Y, Kanduc D. Sequence uniqueness as a molecular signature of HIV-1-derived B-cell epitopes. Int J Immunopathol Pharmacol. 2009;22:639–46.CrossRefPubMed
81.
go back to reference Vita R, Zarebski L, Greenbaum JA, et al. The immune epitope database 2.0. Nucleic Acids Res. 2010;38:D854–62.CrossRefPubMed Vita R, Zarebski L, Greenbaum JA, et al. The immune epitope database 2.0. Nucleic Acids Res. 2010;38:D854–62.CrossRefPubMed
82.
go back to reference Capone G, Fasano C, Lucchese G, Calabrò M, Kanduc D. EBV-associated cancer and autoimmunity: searching for therapies. Vaccines (Basel). 2015 Feb 5;3(1):74–89.CrossRef Capone G, Fasano C, Lucchese G, Calabrò M, Kanduc D. EBV-associated cancer and autoimmunity: searching for therapies. Vaccines (Basel). 2015 Feb 5;3(1):74–89.CrossRef
83.
go back to reference Capone G, Calabrò M, Lucchese G, Fasano C, Girardi B, Polimeno L, Kanduc D. Peptide matching between Epstein-Barr virus and human proteins. Pathog Dis. 2013;69(3):205–12.CrossRefPubMed Capone G, Calabrò M, Lucchese G, Fasano C, Girardi B, Polimeno L, Kanduc D. Peptide matching between Epstein-Barr virus and human proteins. Pathog Dis. 2013;69(3):205–12.CrossRefPubMed
84.
go back to reference Tsokos GC (Ed) Complement in autoimmunity. Curr Dir Autoimmun. vol 7, Basel, Karger, 2004. Tsokos GC (Ed) Complement in autoimmunity. Curr Dir Autoimmun. vol 7, Basel, Karger, 2004.
85.
go back to reference Kanduc D, Lucchese A, Mittelman A. Non-redundant peptidomes from DAPs: towards “the vaccine”? Autoimmun Rev. 2007;6:290–4.CrossRefPubMed Kanduc D, Lucchese A, Mittelman A. Non-redundant peptidomes from DAPs: towards “the vaccine”? Autoimmun Rev. 2007;6:290–4.CrossRefPubMed
86.
go back to reference Kanduc D. Epitopic peptides with low similarity to the host proteome: towards biological therapies without side effects. Expert Opin Biol Ther. 2009;9:45–53.CrossRefPubMed Kanduc D. Epitopic peptides with low similarity to the host proteome: towards biological therapies without side effects. Expert Opin Biol Ther. 2009;9:45–53.CrossRefPubMed
87.
go back to reference Kanduc D. Peptides for anti-ebolavirus vaccines. Curr Drug Discov Technol. 2016 Sep;2 Kanduc D. Peptides for anti-ebolavirus vaccines. Curr Drug Discov Technol. 2016 Sep;2
88.
go back to reference Lucchese G, Kanduc D. Zika virus and autoimmunity: from microcephaly to Guillain-Barré syndrome, and beyond. Autoimmun Rev. 2016;15:801–8.CrossRefPubMed Lucchese G, Kanduc D. Zika virus and autoimmunity: from microcephaly to Guillain-Barré syndrome, and beyond. Autoimmun Rev. 2016;15:801–8.CrossRefPubMed
89.
go back to reference Lucchese G, Kanduc D. Potential crossreactivity of human immune responses against HCMV glycoprotein B. Curr Drug Discov Technol. 2016;13:16–24.CrossRefPubMed Lucchese G, Kanduc D. Potential crossreactivity of human immune responses against HCMV glycoprotein B. Curr Drug Discov Technol. 2016;13:16–24.CrossRefPubMed
90.
go back to reference Kanduc D. Immunogenicity, immunopathogenicity, and immunotolerance in one graph. Anti Cancer Agents Med Chem. 2015;15:1264–8.CrossRef Kanduc D. Immunogenicity, immunopathogenicity, and immunotolerance in one graph. Anti Cancer Agents Med Chem. 2015;15:1264–8.CrossRef
91.
92.
94.
go back to reference Kivity S, Agmon-Levin N, Zandman-Goddard G, Chapman J, Shoenfeld Y. Neuropsychiatric lupus: a mosaic of clinical presentations. BMC Med. 2015;4:13–43. Kivity S, Agmon-Levin N, Zandman-Goddard G, Chapman J, Shoenfeld Y. Neuropsychiatric lupus: a mosaic of clinical presentations. BMC Med. 2015;4:13–43.
Metadata
Title
HPV and systemic lupus erythematosus: a mosaic of potential crossreactions
Authors
Yahel Segal
Shani Dahan
Michele Calabrò
Darja Kanduc
Yehuda Shoenfeld
Publication date
01-04-2017
Publisher
Springer US
Published in
Immunologic Research / Issue 2/2017
Print ISSN: 0257-277X
Electronic ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-016-8890-y

Other articles of this Issue 2/2017

Immunologic Research 2/2017 Go to the issue