Skip to main content
Top
Published in: Infectious Agents and Cancer 1/2010

Open Access 01-12-2010 | Short report

HLA polymorphisms and detection of kaposi sarcoma-associated herpesvirus DNA in saliva and peripheral blood among children and their mothers in the uganda sickle cell anemia KSHV Study

Authors: Mercy Guech-Ongey, Murielle Verboom, Ruth M Pfeiffer, Thomas F Schulz, Christopher M Ndugwa, Anchilla M Owor, Paul M Bakaki, Kishor Bhatia, Constança Figueiredo, Britta Eiz-Vesper, Rainer Blasczyk, Sam M Mbulaiteye

Published in: Infectious Agents and Cancer | Issue 1/2010

Login to get access

Abstract

Kaposi sarcoma-associated herpesvirus (KSHV, also called Human herpesvirus 8 or HHV8) is a γ-2 herpesvirus that causes Kaposi sarcoma. KSHV seroprevalence rates vary geographically with variable rates recorded in different sub Sahara African countries, suggesting that effects of genetic and/or environmental factors may influence the risk of infection. One study conducted in South Africa, where KSHV seroprevalence is relatively low, found that carriage of human leukocyte antigen (HLA) alleles HLA-A*6801, HLA-A*30, HLA-A*4301, and HLA-DRB1*04 was associated with increased shedding of KSHV DNA in saliva. Confirmation of those results would strengthen the hypothesis that genetic factors may influence KSHV distribution by modulating KSHV shedding in saliva. To explore these associations in another setting, we used high resolution HLA-A, B, and DRB1 typing on residual samples from the Uganda Sickle Cell Anemia KSHV study, conducted in a high KSHV seroprevalence region, to investigate associations between HLA and KSHV shedding in saliva or peripheral blood among 233 children and their mothers. HLA-A and HLA-DRB1 alleles were not associated with KSHV shedding in our study, but our study was small and was not adequately powered to exclude small associations. In exploratory analyses, we found marginal association of KSHV DNA shedding in saliva but not in peripheral blood among children carrying HLA- B*4415 and marginal association of KSHV DNA shedding in peripheral blood but not in saliva among children carrying HLA- B*0801 alleles. The contribution of individual HLA polymorphisms to KSHV shedding is important but it may vary in different populations. Larger population-based studies are needed to estimate the magnitude and direction of association of HLA with KSHV shedding and viral control.
Literature
1.
go back to reference Martin JN: Diagnosis and epidemiology of human herpesvirus 8 infection. Semin Hematol. 2003, 40 (2): 133-42. 10.1016/S0037-1963(03)70005-5.PubMedCrossRef Martin JN: Diagnosis and epidemiology of human herpesvirus 8 infection. Semin Hematol. 2003, 40 (2): 133-42. 10.1016/S0037-1963(03)70005-5.PubMedCrossRef
2.
go back to reference Dukers NH, Rezza G: Human herpesvirus 8 epidemiology: what we do and do not know. AIDS. 2003, 17 (12): 1717-30. 10.1097/00002030-200308150-00001.PubMedCrossRef Dukers NH, Rezza G: Human herpesvirus 8 epidemiology: what we do and do not know. AIDS. 2003, 17 (12): 1717-30. 10.1097/00002030-200308150-00001.PubMedCrossRef
3.
go back to reference Mbulaiteye SM: Detection of kaposi sarcoma-associated herpesvirus DNA in saliva and buffy-coat samples from children with sickle cell disease in Uganda. J Infect Dis. 2004, 190 (8): 1382-6. 10.1086/424489.PubMedCrossRef Mbulaiteye SM: Detection of kaposi sarcoma-associated herpesvirus DNA in saliva and buffy-coat samples from children with sickle cell disease in Uganda. J Infect Dis. 2004, 190 (8): 1382-6. 10.1086/424489.PubMedCrossRef
4.
go back to reference Dedicoat M: Mother-to-child transmission of human herpesvirus-8 in South Africa. J Infect Dis. 2004, 190 (6): 1068-75. 10.1086/423326.PubMedCrossRef Dedicoat M: Mother-to-child transmission of human herpesvirus-8 in South Africa. J Infect Dis. 2004, 190 (6): 1068-75. 10.1086/423326.PubMedCrossRef
5.
go back to reference Whitby D: Reactivation of Kaposi's sarcoma-associated herpesvirus by natural products from Kaposi's sarcoma endemic regions. Int J Cancer. 2007, 120 (2): 321-8. 10.1002/ijc.22205.PubMedPubMedCentralCrossRef Whitby D: Reactivation of Kaposi's sarcoma-associated herpesvirus by natural products from Kaposi's sarcoma endemic regions. Int J Cancer. 2007, 120 (2): 321-8. 10.1002/ijc.22205.PubMedPubMedCentralCrossRef
6.
go back to reference Coluzzi M: Reduced seroprevalence of Kaposi's sarcoma-associated herpesvirus (KSHV), human herpesvirus 8 (HHV8), related to suppression of Anopheles density in Italy. Med Vet Entomol. 2003, 17 (4): 461-4. 10.1111/j.1365-2915.2003.00465.x.PubMedCrossRef Coluzzi M: Reduced seroprevalence of Kaposi's sarcoma-associated herpesvirus (KSHV), human herpesvirus 8 (HHV8), related to suppression of Anopheles density in Italy. Med Vet Entomol. 2003, 17 (4): 461-4. 10.1111/j.1365-2915.2003.00465.x.PubMedCrossRef
7.
go back to reference Plancoulaine S: Evidence for a recessive major gene predisposing to human herpesvirus 8 (HHV-8) infection in a population in which HHV-8 is endemic. J Infect Dis. 2003, 187 (12): 1944-50. 10.1086/375345.PubMedCrossRef Plancoulaine S: Evidence for a recessive major gene predisposing to human herpesvirus 8 (HHV-8) infection in a population in which HHV-8 is endemic. J Infect Dis. 2003, 187 (12): 1944-50. 10.1086/375345.PubMedCrossRef
8.
go back to reference Alkharsah KR: Influence of HLA alleles on shedding of Kaposi sarcoma-associated herpesvirus in saliva in an African population. J Infect Dis. 2007, 195 (6): 809-16. 10.1086/511827.PubMedCrossRef Alkharsah KR: Influence of HLA alleles on shedding of Kaposi sarcoma-associated herpesvirus in saliva in an African population. J Infect Dis. 2007, 195 (6): 809-16. 10.1086/511827.PubMedCrossRef
9.
go back to reference Davidson EJ: Association between human leukocyte antigen polymorphism and human papillomavirus 16-positive vulval intraepithelial neoplasia in British women. Cancer Res. 2003, 63 (2): 400-3.PubMed Davidson EJ: Association between human leukocyte antigen polymorphism and human papillomavirus 16-positive vulval intraepithelial neoplasia in British women. Cancer Res. 2003, 63 (2): 400-3.PubMed
10.
go back to reference MacDonald KS: Influence of HLA supertypes on susceptibility and resistance to human immunodeficiency virus type 1 infection. J Infect Dis. 2000, 181 (5): 1581-9. 10.1086/315472.PubMedCrossRef MacDonald KS: Influence of HLA supertypes on susceptibility and resistance to human immunodeficiency virus type 1 infection. J Infect Dis. 2000, 181 (5): 1581-9. 10.1086/315472.PubMedCrossRef
11.
go back to reference Jeffery KJ: The influence of HLA class I alleles and heterozygosity on the outcome of human T cell lymphotropic virus type I infection. J Immunol. 2000, 165 (12): 7278-84.PubMedCrossRef Jeffery KJ: The influence of HLA class I alleles and heterozygosity on the outcome of human T cell lymphotropic virus type I infection. J Immunol. 2000, 165 (12): 7278-84.PubMedCrossRef
12.
go back to reference Mbulaiteye SM: Human herpesvirus 8 infection and transfusion history in children with sickle-cell disease in Uganda. J Natl Cancer Inst. 2003, 95 (17): 1330-5.PubMedCrossRef Mbulaiteye SM: Human herpesvirus 8 infection and transfusion history in children with sickle-cell disease in Uganda. J Natl Cancer Inst. 2003, 95 (17): 1330-5.PubMedCrossRef
13.
go back to reference Verboom M: Bioinformatic integration of biomechanics makes HLA sequencing universally applicable. Tissue Antigens. 2007, 70 (4): 338-9. 10.1111/j.1399-0039.2007.00919.x.PubMedCrossRef Verboom M: Bioinformatic integration of biomechanics makes HLA sequencing universally applicable. Tissue Antigens. 2007, 70 (4): 338-9. 10.1111/j.1399-0039.2007.00919.x.PubMedCrossRef
14.
go back to reference Albis-Camps M, Blasczyk R: Fluorotyping of HLA-DRB by sequence-specific priming and fluorogenic probing. Tissue Antigens. 1999, 53 (3): 301-7. 10.1034/j.1399-0039.1999.530312.x.PubMedCrossRef Albis-Camps M, Blasczyk R: Fluorotyping of HLA-DRB by sequence-specific priming and fluorogenic probing. Tissue Antigens. 1999, 53 (3): 301-7. 10.1034/j.1399-0039.1999.530312.x.PubMedCrossRef
15.
go back to reference Pfeiffer RM: Combining assays for estimating prevalence of human herpesvirus 8 infection using multivariate mixture models. Biostatistics. 2008, 9 (1): 137-51. 10.1093/biostatistics/kxm018.PubMedPubMedCentralCrossRef Pfeiffer RM: Combining assays for estimating prevalence of human herpesvirus 8 infection using multivariate mixture models. Biostatistics. 2008, 9 (1): 137-51. 10.1093/biostatistics/kxm018.PubMedPubMedCentralCrossRef
16.
go back to reference Kijak GH: HLA class I allele and haplotype diversity in Ugandans supports the presence of a major east African genetic cluster. Tissue Antigens. 2009, 73 (3): 262-9. 10.1111/j.1399-0039.2008.01192.x.PubMedCrossRef Kijak GH: HLA class I allele and haplotype diversity in Ugandans supports the presence of a major east African genetic cluster. Tissue Antigens. 2009, 73 (3): 262-9. 10.1111/j.1399-0039.2008.01192.x.PubMedCrossRef
17.
go back to reference Cao K: Differentiation between African populations is evidenced by the diversity of alleles and haplotypes of HLA class I loci. Tissue Antigens. 2004, 63 (4): 293-325. 10.1111/j.0001-2815.2004.00192.x.PubMedCrossRef Cao K: Differentiation between African populations is evidenced by the diversity of alleles and haplotypes of HLA class I loci. Tissue Antigens. 2004, 63 (4): 293-325. 10.1111/j.0001-2815.2004.00192.x.PubMedCrossRef
18.
go back to reference Trachtenberg E: Advantage of rare HLA supertype in HIV disease progression. Nat Med. 2003, 9 (7): 928-35. 10.1038/nm893.PubMedCrossRef Trachtenberg E: Advantage of rare HLA supertype in HIV disease progression. Nat Med. 2003, 9 (7): 928-35. 10.1038/nm893.PubMedCrossRef
19.
go back to reference A global network for investigating the genomic epidemiology of malaria. Nature. 2008, 456 (7223): 732-7. 10.1038/nature07632. A global network for investigating the genomic epidemiology of malaria. Nature. 2008, 456 (7223): 732-7. 10.1038/nature07632.
20.
go back to reference Hill AV: Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature. 1992, 360 (6403): 434-9. 10.1038/360434a0.PubMedCrossRef Hill AV: Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature. 1992, 360 (6403): 434-9. 10.1038/360434a0.PubMedCrossRef
21.
go back to reference Hill AV: Common west African HLA antigens are associated with protection from severe malaria. Nature. 1991, 352 (6336): 595-600. 10.1038/352595a0.PubMedCrossRef Hill AV: Common west African HLA antigens are associated with protection from severe malaria. Nature. 1991, 352 (6336): 595-600. 10.1038/352595a0.PubMedCrossRef
22.
go back to reference Hill AV: The immunogenetics of human infectious diseases. Annu Rev Immunol. 1998, 16: 593-617. 10.1146/annurev.immunol.16.1.593.PubMedCrossRef Hill AV: The immunogenetics of human infectious diseases. Annu Rev Immunol. 1998, 16: 593-617. 10.1146/annurev.immunol.16.1.593.PubMedCrossRef
23.
go back to reference Osafo-Addo AD: HLA-DRB1*04 allele is associated with severe malaria in northern Ghana. Am J Trop Med Hyg. 2008, 78 (2): 251-5.PubMed Osafo-Addo AD: HLA-DRB1*04 allele is associated with severe malaria in northern Ghana. Am J Trop Med Hyg. 2008, 78 (2): 251-5.PubMed
24.
go back to reference Ellis JM: HLA-B allele frequencies in Cote d'Ivoire defined by direct DNA sequencing: identification of HLA-B*1405, B*4410, and B*5302. Tissue Antigens. 2001, 57 (4): 339-43. 10.1034/j.1399-0039.2001.057004339.x.PubMedCrossRef Ellis JM: HLA-B allele frequencies in Cote d'Ivoire defined by direct DNA sequencing: identification of HLA-B*1405, B*4410, and B*5302. Tissue Antigens. 2001, 57 (4): 339-43. 10.1034/j.1399-0039.2001.057004339.x.PubMedCrossRef
Metadata
Title
HLA polymorphisms and detection of kaposi sarcoma-associated herpesvirus DNA in saliva and peripheral blood among children and their mothers in the uganda sickle cell anemia KSHV Study
Authors
Mercy Guech-Ongey
Murielle Verboom
Ruth M Pfeiffer
Thomas F Schulz
Christopher M Ndugwa
Anchilla M Owor
Paul M Bakaki
Kishor Bhatia
Constança Figueiredo
Britta Eiz-Vesper
Rainer Blasczyk
Sam M Mbulaiteye
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Infectious Agents and Cancer / Issue 1/2010
Electronic ISSN: 1750-9378
DOI
https://doi.org/10.1186/1750-9378-5-21

Other articles of this Issue 1/2010

Infectious Agents and Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine