Skip to main content
Top
Published in: Molecular Imaging and Biology 3/2015

01-06-2015 | Research Article

Hippocampal Deep Brain Stimulation Reduces Glucose Utilization in the Healthy Rat Brain

Authors: Nathalie Van Den Berge, Vincent Keereman, Christian Vanhove, Bregt Van Nieuwenhuyse, Pieter van Mierlo, Robrecht Raedt, Kristl Vonck, Paul Boon, Roel Van Holen

Published in: Molecular Imaging and Biology | Issue 3/2015

Login to get access

Abstract

Purpose

The effects of deep brain stimulation (DBS) have been studied primarily by cellular studies, which lack the ability to elucidate DBS-related responses on a whole-brain scale. 2-Deoxy-2-[18F]fluoro-d-glucose positron emission tomography ([18F]FDG-PET) reflects changes in neural activity throughout the entire brain volume. The aim of this study was to investigate the whole-brain effect of DBS on the glucose utilization in healthy rats.

Procedures

Seven rats were implanted with a DBS electrode in the right hippocampus and injected with [18F]FDG to measure the glucose metabolism during DBS.

Results

Analysis reveals significant DBS-induced decreases in the glucose metabolism in the bilateral hippocampus and other limbic structures.

Conclusions

This study demonstrates that DBS exhibits not only a local effect around the electrode tip but also in other limbic regions. [18F]FDG-PET studies have the potential to provide better insight into the mechanism of action of DBS by simultaneously observing activity at multiple sites in the brain.
Literature
1.
2.
go back to reference Bronstein JM, Tagliati M, Alterman RL et al (2011) Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol 68(2):165–171CrossRefPubMed Bronstein JM, Tagliati M, Alterman RL et al (2011) Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol 68(2):165–171CrossRefPubMed
3.
go back to reference Birdno MJ, Grill WM (2008) Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics 5:14–25CrossRefPubMedCentralPubMed Birdno MJ, Grill WM (2008) Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics 5:14–25CrossRefPubMedCentralPubMed
4.
go back to reference Benabid AL (2003) Deep brain stimulation for Parkinson’s disease. Curr Opin Neurobiol 13:696–706CrossRefPubMed Benabid AL (2003) Deep brain stimulation for Parkinson’s disease. Curr Opin Neurobiol 13:696–706CrossRefPubMed
5.
go back to reference Fischer R, Salanova V, Witt T, SANTE Study Group (2010) Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51(5):899–908CrossRef Fischer R, Salanova V, Witt T, SANTE Study Group (2010) Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51(5):899–908CrossRef
6.
go back to reference Boon P, Raedt R, De Herdt V et al (2009) Electrical stimulation for the treatment of epilepsy. Neurotherapeutics 6:218–277CrossRefPubMed Boon P, Raedt R, De Herdt V et al (2009) Electrical stimulation for the treatment of epilepsy. Neurotherapeutics 6:218–277CrossRefPubMed
7.
go back to reference Vonck K, Sprengers M, Carrette E et al (2013) A decade of experience with deep brain stimulation for patients with refractory medial temporal lobe epilepsy. Int J Neural Syst 23(1):1–13CrossRef Vonck K, Sprengers M, Carrette E et al (2013) A decade of experience with deep brain stimulation for patients with refractory medial temporal lobe epilepsy. Int J Neural Syst 23(1):1–13CrossRef
8.
go back to reference Nuttin B, Cosyns P, Demeulemeester H et al (1999) Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet 354:1526CrossRefPubMed Nuttin B, Cosyns P, Demeulemeester H et al (1999) Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet 354:1526CrossRefPubMed
9.
go back to reference Abelson JL, Curtis GC, Sagher O et al (2005) Deep brain stimulation for refractory obsessive-compulsive disorder. Biol Psychiatry 75(5):510–516CrossRef Abelson JL, Curtis GC, Sagher O et al (2005) Deep brain stimulation for refractory obsessive-compulsive disorder. Biol Psychiatry 75(5):510–516CrossRef
10.
go back to reference Lai HY, Albaugh DL, Kao Y-CJ et al (2014) Robust deep brain stimulation functional MRI procedures in rats and mice using an MR-compatible tungsten microwire electrode. Magn Reson Med. doi:10.1002/mrm.25239 PubMedCentral Lai HY, Albaugh DL, Kao Y-CJ et al (2014) Robust deep brain stimulation functional MRI procedures in rats and mice using an MR-compatible tungsten microwire electrode. Magn Reson Med. doi:10.​1002/​mrm.​25239 PubMedCentral
11.
go back to reference Younce JR, Albaugh DL, Shih Y-YL (2014) Deep brain stimulation with simultaneous FMRI in rodents. J Vis Exp 84:e51271PubMed Younce JR, Albaugh DL, Shih Y-YL (2014) Deep brain stimulation with simultaneous FMRI in rodents. J Vis Exp 84:e51271PubMed
12.
go back to reference Kerklaan BJ, Berckel BN, Herholz K et al (2014) The added value of 18-Fluorodeoxyglucose-positron emission tomography in the diagnosis of the behavioral variant of frontotemporal dementia. Am J Alzheimers Dis Dement. doi:10.1177/1533317514524811 Kerklaan BJ, Berckel BN, Herholz K et al (2014) The added value of 18-Fluorodeoxyglucose-positron emission tomography in the diagnosis of the behavioral variant of frontotemporal dementia. Am J Alzheimers Dis Dement. doi:10.​1177/​1533317514524811​
13.
go back to reference Jueptner M, Weiller C (1995) Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage 2(2):148–156CrossRefPubMed Jueptner M, Weiller C (1995) Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage 2(2):148–156CrossRefPubMed
14.
go back to reference Magistretti PJ, Pellerin L (1996) The contribution of astrocytes to the 18F-2-deoxyglucose signal in PET activation studies. Mol Psychiatry 1(6):445–452PubMed Magistretti PJ, Pellerin L (1996) The contribution of astrocytes to the 18F-2-deoxyglucose signal in PET activation studies. Mol Psychiatry 1(6):445–452PubMed
15.
go back to reference Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738CrossRefPubMed Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738CrossRefPubMed
16.
go back to reference Hershey T, Revilla FJ, Wernle AR et al (2003) Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD. Neurology 61(6):816–821CrossRefPubMed Hershey T, Revilla FJ, Wernle AR et al (2003) Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD. Neurology 61(6):816–821CrossRefPubMed
17.
go back to reference Asanuma K, Tang C, Ma Y et al (2006) Network modulation in the treatment of Parkinson’s disease. Brain 129:2667–2678CrossRefPubMed Asanuma K, Tang C, Ma Y et al (2006) Network modulation in the treatment of Parkinson’s disease. Brain 129:2667–2678CrossRefPubMed
18.
go back to reference Trost M, Su S, Su P et al (2006) Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease. Neuroimage 31:301–307CrossRefPubMed Trost M, Su S, Su P et al (2006) Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease. Neuroimage 31:301–307CrossRefPubMed
19.
go back to reference Goerendt K, Lawrence AD, Mehta MA et al (2006) Distributed neural actions of anti-parkinsonian therapies as revealed by PET. J Neural Transm 113:75–86CrossRefPubMed Goerendt K, Lawrence AD, Mehta MA et al (2006) Distributed neural actions of anti-parkinsonian therapies as revealed by PET. J Neural Transm 113:75–86CrossRefPubMed
20.
go back to reference Karimi M, Golchin N, Tabbal SD et al (2008) Subthalamic nucleus stimulation-induced regional blood flow responses correlate with improvement of motor signs in Parkinson disease. Brain 131:2710–2719CrossRefPubMedCentralPubMed Karimi M, Golchin N, Tabbal SD et al (2008) Subthalamic nucleus stimulation-induced regional blood flow responses correlate with improvement of motor signs in Parkinson disease. Brain 131:2710–2719CrossRefPubMedCentralPubMed
21.
go back to reference Geday J, Ostergaard K, Johnsen E, Gjedde A (2009) STN-stimulation in Parkinson’s disease restores striatal inhibition of thalamocortical projection. Hum Brain Mapp 30:112–121CrossRefPubMed Geday J, Ostergaard K, Johnsen E, Gjedde A (2009) STN-stimulation in Parkinson’s disease restores striatal inhibition of thalamocortical projection. Hum Brain Mapp 30:112–121CrossRefPubMed
22.
go back to reference Borghammer P, Cumming P, Aanerud J, Gjedde A (2009) Artefactual subcortical hyperperfusion in PET studies normalized to global mean: lessons from Parkinson’s disease. Neuroimage 45:249–257CrossRefPubMed Borghammer P, Cumming P, Aanerud J, Gjedde A (2009) Artefactual subcortical hyperperfusion in PET studies normalized to global mean: lessons from Parkinson’s disease. Neuroimage 45:249–257CrossRefPubMed
23.
24.
go back to reference Spencer SS (2002) Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia 43:219–227CrossRefPubMed Spencer SS (2002) Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia 43:219–227CrossRefPubMed
25.
go back to reference Morrell M (2006) Brain stimulation for epilepsy: can scheduled or responsive neurostimulation stop seizures? Curr Opin Neurol 19:164–168CrossRefPubMed Morrell M (2006) Brain stimulation for epilepsy: can scheduled or responsive neurostimulation stop seizures? Curr Opin Neurol 19:164–168CrossRefPubMed
26.
27.
go back to reference Wyckhuys T, De Smedt T, Claeys P et al (2007) High frequency deep brain stimulation in the hippocampus modifies seizure characteristics in kindled rats. Epilepsia 48:1543–1550CrossRefPubMed Wyckhuys T, De Smedt T, Claeys P et al (2007) High frequency deep brain stimulation in the hippocampus modifies seizure characteristics in kindled rats. Epilepsia 48:1543–1550CrossRefPubMed
28.
go back to reference Wyckhuys T, Boon P, Raedt R (2010) Suppression of hippocampal epileptic seizures in the kainate rat by Poisson distributed stimulation. Epilepsia 51(11):2297–2304CrossRefPubMed Wyckhuys T, Boon P, Raedt R (2010) Suppression of hippocampal epileptic seizures in the kainate rat by Poisson distributed stimulation. Epilepsia 51(11):2297–2304CrossRefPubMed
29.
go back to reference Cuellar-Herrera M, Neri-Bazan L, Rocha (2006) Behavioral effects of high frequency electrical stimulation of the hippocampus on electrical kindling in rats. Epilepsy Res 72:10–17CrossRefPubMed Cuellar-Herrera M, Neri-Bazan L, Rocha (2006) Behavioral effects of high frequency electrical stimulation of the hippocampus on electrical kindling in rats. Epilepsy Res 72:10–17CrossRefPubMed
30.
go back to reference Velasco AL, Fischer RS (2014) Electrical brain stimulation for epilepsy. Nat Rev Neurol 10:261–270CrossRefPubMed Velasco AL, Fischer RS (2014) Electrical brain stimulation for epilepsy. Nat Rev Neurol 10:261–270CrossRefPubMed
31.
go back to reference Velasco AL, Velasco F, Velasco M et al (2007) Electrical stimulation of the hippocampal epileptic foci for seizure control: a double-blind, long-term follow-up study. Epilepsia 48:1895–1903CrossRefPubMed Velasco AL, Velasco F, Velasco M et al (2007) Electrical stimulation of the hippocampal epileptic foci for seizure control: a double-blind, long-term follow-up study. Epilepsia 48:1895–1903CrossRefPubMed
32.
go back to reference Velasco F, Velasco M, Velasco AL et al (2001) Electrical stimulation for epilepsy: stimulation of hippocampal foci. Stereotact Funct Neurosurg 77:223–227CrossRefPubMed Velasco F, Velasco M, Velasco AL et al (2001) Electrical stimulation for epilepsy: stimulation of hippocampal foci. Stereotact Funct Neurosurg 77:223–227CrossRefPubMed
33.
go back to reference Vonck K, Boon P, Achten E et al (2002) Long-term amygdalohippocampal stimulation for refractory temporal lobe epilepsy. Ann Neurol 52:556–565CrossRefPubMed Vonck K, Boon P, Achten E et al (2002) Long-term amygdalohippocampal stimulation for refractory temporal lobe epilepsy. Ann Neurol 52:556–565CrossRefPubMed
34.
go back to reference Osorio I, Frei MG, Sunderam S et al (2005) Automated seizure abatement in humans using electrical stimulation. Ann Neurol 57:258–268CrossRefPubMed Osorio I, Frei MG, Sunderam S et al (2005) Automated seizure abatement in humans using electrical stimulation. Ann Neurol 57:258–268CrossRefPubMed
35.
go back to reference Boon P, Vonck K, De Herdt V et al (2007) Deep brain stimulation in patients with refractory temporal lobe epilepsy. Epilepsia 48:1551–1560CrossRefPubMed Boon P, Vonck K, De Herdt V et al (2007) Deep brain stimulation in patients with refractory temporal lobe epilepsy. Epilepsia 48:1551–1560CrossRefPubMed
36.
go back to reference Cuckiert A, Cuckiert CM, Burattini JA, Lima AM (2014) Seizure outcome after hippocampal deep brain stimulation in a prospective cohort of patients with refractory temporal lobe epilepsy. Seizure 23(1):6–9CrossRef Cuckiert A, Cuckiert CM, Burattini JA, Lima AM (2014) Seizure outcome after hippocampal deep brain stimulation in a prospective cohort of patients with refractory temporal lobe epilepsy. Seizure 23(1):6–9CrossRef
37.
go back to reference Goodman JH, Berger RE, Tcheng TK (2005) Preemptive low-frequency stimulation decreases the incidence of amygdala-kindled seizures. Epilepsia 46:1–7CrossRefPubMed Goodman JH, Berger RE, Tcheng TK (2005) Preemptive low-frequency stimulation decreases the incidence of amygdala-kindled seizures. Epilepsia 46:1–7CrossRefPubMed
38.
go back to reference Akman T, Erken H, Acar G et al (2011) Effects of the hippocampal deep brain stimulation on cortical epileptic discharges in penicillin-induced epilepsy model in rats. Turk Neurosurg 21(1):1–5PubMed Akman T, Erken H, Acar G et al (2011) Effects of the hippocampal deep brain stimulation on cortical epileptic discharges in penicillin-induced epilepsy model in rats. Turk Neurosurg 21(1):1–5PubMed
39.
go back to reference Paxinos G, Watson C (2007) In: The rat brain in stereotactic coordinates, 6th edn. Academic Press Paxinos G, Watson C (2007) In: The rat brain in stereotactic coordinates, 6th edn. Academic Press
40.
go back to reference Wyckhuys T, Staelens S, Van Nieuwenhuyse B et al (2010) Hippocampal deep brain stimulation induces decreased rCBF in the hippocampal formation of the rat. Neuroimage 52(1):55–61CrossRefPubMed Wyckhuys T, Staelens S, Van Nieuwenhuyse B et al (2010) Hippocampal deep brain stimulation induces decreased rCBF in the hippocampal formation of the rat. Neuroimage 52(1):55–61CrossRefPubMed
41.
go back to reference Rondouin G, Lerner-Natoli M, Hashizume A (1987) Wet dog shakes in limbic versus generalized seizures. Exp Neurol 95(2):500–505CrossRefPubMed Rondouin G, Lerner-Natoli M, Hashizume A (1987) Wet dog shakes in limbic versus generalized seizures. Exp Neurol 95(2):500–505CrossRefPubMed
42.
go back to reference Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Direction set (Powell’s) methods in multidimensions. In: Numerical recipes in C, 2nd edn. Cambridge University Press, New York, pp 412–420 Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Direction set (Powell’s) methods in multidimensions. In: Numerical recipes in C, 2nd edn. Cambridge University Press, New York, pp 412–420
44.
go back to reference Jonckers E, Van Audekerke J, De Visscher G et al (2011) Functional connectivity of the rodent brain: comparison of functional connectivity networks in rat and mouse. PLoS One 6(4):e18876CrossRefPubMedCentralPubMed Jonckers E, Van Audekerke J, De Visscher G et al (2011) Functional connectivity of the rodent brain: comparison of functional connectivity networks in rat and mouse. PLoS One 6(4):e18876CrossRefPubMedCentralPubMed
45.
go back to reference Buchhalter JR, Fieles A, Dichter MA (1990) Hippocampal commissural connections in the neonatal rat. Dev Brain Res 56:211–216CrossRef Buchhalter JR, Fieles A, Dichter MA (1990) Hippocampal commissural connections in the neonatal rat. Dev Brain Res 56:211–216CrossRef
46.
go back to reference Klein J, Soto-Montenegro ML, Pascau J et al (2011) A novel approach to investigate neuronal network activity patterns affected by deep brain stimulation in rats. J Psychiatr Res 45:927–930CrossRefPubMed Klein J, Soto-Montenegro ML, Pascau J et al (2011) A novel approach to investigate neuronal network activity patterns affected by deep brain stimulation in rats. J Psychiatr Res 45:927–930CrossRefPubMed
47.
go back to reference McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL (2004) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115:1239–1248CrossRefPubMed McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL (2004) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115:1239–1248CrossRefPubMed
48.
go back to reference Canals S, Beyerlein M, Murayama Y, Logothetis NK (2008) Electric stimulation fMRI of the perforant pathway to the rat hippocampus. Magn Reson Imaging 26:978–986CrossRefPubMed Canals S, Beyerlein M, Murayama Y, Logothetis NK (2008) Electric stimulation fMRI of the perforant pathway to the rat hippocampus. Magn Reson Imaging 26:978–986CrossRefPubMed
49.
go back to reference Shih Y-YI, Yash TV, Rogers B, Duong TQ (2014) FMRI of deep brain stimulation at the rat ventral posteromedial thalamus. Brain Stimulation 7(2):190–193CrossRefPubMedCentralPubMed Shih Y-YI, Yash TV, Rogers B, Duong TQ (2014) FMRI of deep brain stimulation at the rat ventral posteromedial thalamus. Brain Stimulation 7(2):190–193CrossRefPubMedCentralPubMed
51.
go back to reference van Welie I, van Hooft JA, Wadman WJ (2004) Homeostatic scaling of neuronal excitability by synaptic modulation of somatic hyperpolarization-activated I-h channels. Proc Natl Acad Sci U S A 101:5123–5128CrossRefPubMedCentralPubMed van Welie I, van Hooft JA, Wadman WJ (2004) Homeostatic scaling of neuronal excitability by synaptic modulation of somatic hyperpolarization-activated I-h channels. Proc Natl Acad Sci U S A 101:5123–5128CrossRefPubMedCentralPubMed
52.
go back to reference Beurrier C, Bioulac B, Audin J, Hammond C (2001) High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 85(4):1351–1356PubMed Beurrier C, Bioulac B, Audin J, Hammond C (2001) High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 85(4):1351–1356PubMed
53.
go back to reference Vedam-Mai V, van Battum EY, Kamphuis W et al (2012) Deep brain stimulation and the role of astrocytes. Mol Psychiatry 17:124–131CrossRefPubMed Vedam-Mai V, van Battum EY, Kamphuis W et al (2012) Deep brain stimulation and the role of astrocytes. Mol Psychiatry 17:124–131CrossRefPubMed
54.
go back to reference Volman V, Ben-Jacob E, Levine H (2007) The astrocyte as a gatekeeper of synaptic information transfer. Neural Comput 19:303–326CrossRefPubMed Volman V, Ben-Jacob E, Levine H (2007) The astrocyte as a gatekeeper of synaptic information transfer. Neural Comput 19:303–326CrossRefPubMed
55.
56.
go back to reference Magistretti PJ, Pellerin L (1999) Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond Ser B 354:1155–1163CrossRef Magistretti PJ, Pellerin L (1999) Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond Ser B 354:1155–1163CrossRef
57.
go back to reference Dalsgaard MK, Ide K, Cai Y et al (2002) The intent to exercise influences the cerebral O(2)/carbohydrate uptake ratio in humans. J Physiol 540:681–689CrossRefPubMedCentralPubMed Dalsgaard MK, Ide K, Cai Y et al (2002) The intent to exercise influences the cerebral O(2)/carbohydrate uptake ratio in humans. J Physiol 540:681–689CrossRefPubMedCentralPubMed
58.
go back to reference Pellerin L, Bouzier-Sore AK, Aubert A et al (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55(12):1251–1262CrossRefPubMed Pellerin L, Bouzier-Sore AK, Aubert A et al (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55(12):1251–1262CrossRefPubMed
59.
go back to reference Braitenberg V, Schüz A (1998) Density of neurons and synapses. In: Cortex: statistics and geometry of neuronal connectivity, 2nd edn. Springer, Berlin Heidelberg, pp 23–39CrossRef Braitenberg V, Schüz A (1998) Density of neurons and synapses. In: Cortex: statistics and geometry of neuronal connectivity, 2nd edn. Springer, Berlin Heidelberg, pp 23–39CrossRef
60.
go back to reference Waldvogel D (2000) The relative metabolic demand of excitation and inhibition. Nature 406:995–998CrossRefPubMed Waldvogel D (2000) The relative metabolic demand of excitation and inhibition. Nature 406:995–998CrossRefPubMed
61.
go back to reference Weeks RA, Gerloff C, Dalakas M, Hallett M (1999) PET study of visually and non-visually guided finger movements in patients with severe pan-sensory neuropathies and healthy controls. Exp Brain Res 128:291–302CrossRefPubMed Weeks RA, Gerloff C, Dalakas M, Hallett M (1999) PET study of visually and non-visually guided finger movements in patients with severe pan-sensory neuropathies and healthy controls. Exp Brain Res 128:291–302CrossRefPubMed
62.
go back to reference Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5:97–107CrossRefPubMed Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5:97–107CrossRefPubMed
63.
go back to reference Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9(1):65–75CrossRefPubMed Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9(1):65–75CrossRefPubMed
64.
go back to reference Benazzouz A, Gao DM, Ni ZG et al (2000) Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat. Neuroscience 99(2):289–295CrossRefPubMed Benazzouz A, Gao DM, Ni ZG et al (2000) Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat. Neuroscience 99(2):289–295CrossRefPubMed
65.
go back to reference van den Heuvel P, Mandl RCW, Kahn RS, Hulshoff Pol HE (2009) Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 30(10):3127–3141CrossRefPubMed van den Heuvel P, Mandl RCW, Kahn RS, Hulshoff Pol HE (2009) Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 30(10):3127–3141CrossRefPubMed
66.
go back to reference Damoiseaux JS, Rombouts SA, Barkhof F et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103:13848–13853CrossRefPubMedCentralPubMed Damoiseaux JS, Rombouts SA, Barkhof F et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103:13848–13853CrossRefPubMedCentralPubMed
67.
go back to reference Chang SY, Kim I, Marsh MP (2012) Wireless fast-scan cyclic voltammetry to monitor adenosine in patients with essential tremor during deep brain stimulation. Mayo Clin Proc 87(8):760–765CrossRefPubMedCentralPubMed Chang SY, Kim I, Marsh MP (2012) Wireless fast-scan cyclic voltammetry to monitor adenosine in patients with essential tremor during deep brain stimulation. Mayo Clin Proc 87(8):760–765CrossRefPubMedCentralPubMed
69.
go back to reference Schiffer WK, Mirrione MM, Biegon A et al (2006) Serial microPET measures of the metabolic reaction to a microdialysis probe implant. J Neurosci Methods 155(2):272–284CrossRefPubMed Schiffer WK, Mirrione MM, Biegon A et al (2006) Serial microPET measures of the metabolic reaction to a microdialysis probe implant. J Neurosci Methods 155(2):272–284CrossRefPubMed
70.
go back to reference van Luijtelaar G, Huang L (2013) Brain computer interface for epilepsy treatment—recent progress and future prospects. In: InTech open science—open minds 239–252. doi:10.5772/55800 van Luijtelaar G, Huang L (2013) Brain computer interface for epilepsy treatment—recent progress and future prospects. In: InTech open science—open minds 239–252. doi:10.​5772/​55800
Metadata
Title
Hippocampal Deep Brain Stimulation Reduces Glucose Utilization in the Healthy Rat Brain
Authors
Nathalie Van Den Berge
Vincent Keereman
Christian Vanhove
Bregt Van Nieuwenhuyse
Pieter van Mierlo
Robrecht Raedt
Kristl Vonck
Paul Boon
Roel Van Holen
Publication date
01-06-2015
Publisher
Springer US
Published in
Molecular Imaging and Biology / Issue 3/2015
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-014-0801-9

Other articles of this Issue 3/2015

Molecular Imaging and Biology 3/2015 Go to the issue