Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2019

Open Access 01-12-2019 | Hip-TEP | Research article

Macrophage inhibits the osteogenesis of fibroblasts in ultrahigh molecular weight polyethylene (UHMWPE) wear particle-induced osteolysis

Authors: Pengfei Lei, Zixun Dai, Yu Shrike Zhang, Hua Liu, Wanting Niu, Kun Li, Long Wang, Yihe Hu, Jie Xie

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2019

Login to get access

Abstract

Background

In the ultrahigh molecular weight polyethylene (UHMWPE) prosthetic environment, fibroblasts affected by wear particles have the capacity of osteogenesis to reduce osteolysis. We aimed to assess the effects of macrophages on the osteogenic capability of fibroblasts treated with UHMWPE wear particles.

Methods

The effect of different concentrations of UHMWPE (0, 0.01, 0.1, and 1 mg/ml, respectively) on macrophage proliferation were validated by MTT assay to determine the optimum one. The fibroblasts viability was further determined in the co-culture system of UHMWPE particles and macrophage supernatants. The experiment was designed as seven groups: (A) fibroblasts only; (B) fibroblasts + 1 mg/ml UHMWPE particles; and (C1–C5) fibroblasts + 1/16, 1/8, 1/4, 1/2, and 1/1 supernatants of macrophage cultures stimulated by 1 mg/ml UHMWPE particles vs. fibroblast complete media, respectively. Alizarin red staining was used to detect calcium accumulation. The expression levels of osteogenic proteins were detected by Western blot and ELISA, including alkaline phosphatase (ALP) and osteocalcin (OCN).

Results

The concentration of 0.1 mg/ml was considered as the optimum concentration for macrophage proliferation due to the survival rate and was highest among the four concentrations. Fibroblast viability was better in the group of fibroblasts + 1/16 ratio of macrophage supernatants stimulated by 1 mg/ml of UHMWPE particles than the other groups (1:8, 1:4, 1:2, 1:1). ALP and OCN expressions were significantly decreased in the group of fibroblasts + 1/4, 1/2, and 1/1 supernatants stimulated by 1 mg/ml of UHMWPE particles compared with other groups (1/8, 1/16) and the group of fibroblasts + 1 mg/ml UHMWPE (p < 0.5).

Conclusions

Macrophages are potentially involved in the periprosthetic osteolysis by reducing the osteogenic capability of fibroblasts treated with wear particles generated from UHMWPE materials in total hip arthroplasty.
Literature
1.
go back to reference Purdue PE, Koulouvaris P, Nestor BJ, Sculco TP. The central role of wear debris in periprosthetic osteolysis. HSS J. 2006;2(2):102–13.PubMedPubMedCentral Purdue PE, Koulouvaris P, Nestor BJ, Sculco TP. The central role of wear debris in periprosthetic osteolysis. HSS J. 2006;2(2):102–13.PubMedPubMedCentral
2.
go back to reference Patel AK, Trivedi P, Balani K. Processing and mechanical characterization of compression-molded ultrahigh molecular weight polyethylene biocomposite reinforced with aluminum oxide. J NanoScience, NanoEngineering and Applications. 2014;4(3):1–11. Patel AK, Trivedi P, Balani K. Processing and mechanical characterization of compression-molded ultrahigh molecular weight polyethylene biocomposite reinforced with aluminum oxide. J NanoScience, NanoEngineering and Applications. 2014;4(3):1–11.
3.
go back to reference Gallo J, Goodman SB, Konttinen YT, Raska M. Particle disease: biologic mechanisms of periprosthetic osteolysis in total hip arthroplasty. Innate Immun. 2013;19(2):213–24.PubMed Gallo J, Goodman SB, Konttinen YT, Raska M. Particle disease: biologic mechanisms of periprosthetic osteolysis in total hip arthroplasty. Innate Immun. 2013;19(2):213–24.PubMed
4.
go back to reference Koreny T, Tunyogi-Csapó M, Gál I, Vermes C, Jacobs JJ, Glant TT. The role of fibroblasts and fibroblast-derived factors in periprosthetic osteolysis. Arthritis Rheum. 2006;54(10):3221–32.PubMed Koreny T, Tunyogi-Csapó M, Gál I, Vermes C, Jacobs JJ, Glant TT. The role of fibroblasts and fibroblast-derived factors in periprosthetic osteolysis. Arthritis Rheum. 2006;54(10):3221–32.PubMed
5.
go back to reference Tunyogi-Csapo M, Koreny T, Vermes C, Galante JO, Jacobs JJ, Glant TT. Role of fibroblasts and fibroblast-derived growth factors in periprosthetic angiogenesis. J Orthop Res. 2007;25(10):1378–88.PubMed Tunyogi-Csapo M, Koreny T, Vermes C, Galante JO, Jacobs JJ, Glant TT. Role of fibroblasts and fibroblast-derived growth factors in periprosthetic angiogenesis. J Orthop Res. 2007;25(10):1378–88.PubMed
6.
go back to reference Rakshit DS, Ly K, Sengupta TK, Nestor BJ, Sculco TP, Ivashkiv LB, et al. Wear debris inhibition of anti-osteoclastogenic signaling by interleukin-6 and interferon-gamma. Mechanistic insights and implications for periprosthetic osteolysis. J Bone Joint Surg Am. 2006;88(4):788–99.PubMed Rakshit DS, Ly K, Sengupta TK, Nestor BJ, Sculco TP, Ivashkiv LB, et al. Wear debris inhibition of anti-osteoclastogenic signaling by interleukin-6 and interferon-gamma. Mechanistic insights and implications for periprosthetic osteolysis. J Bone Joint Surg Am. 2006;88(4):788–99.PubMed
7.
go back to reference Wright TM. CORR insights(®): periprosthetic UHMWPE wear debris induces inflammation, vascularization, and innervation after total disc replacement in the lumbar spine. Clin Orthop Relat Res. 2017;475(5):1369–81. Wright TM. CORR insights(®): periprosthetic UHMWPE wear debris induces inflammation, vascularization, and innervation after total disc replacement in the lumbar spine. Clin Orthop Relat Res. 2017;475(5):1369–81.
8.
go back to reference Jonitz-Heincke A, Lochner K, Schulze C, Pohle D, Pustlauk W, Hansmann D, et al. Contribution of human osteoblasts and macrophages to bone matrix degradation and proinflammatory cytokine release after exposure to abrasive endoprosthetic wear particles. Mol Med Rep. 2016;14(2):1491–500.PubMedPubMedCentral Jonitz-Heincke A, Lochner K, Schulze C, Pohle D, Pustlauk W, Hansmann D, et al. Contribution of human osteoblasts and macrophages to bone matrix degradation and proinflammatory cytokine release after exposure to abrasive endoprosthetic wear particles. Mol Med Rep. 2016;14(2):1491–500.PubMedPubMedCentral
9.
go back to reference Bladen CL, Tzu-Yin L, Fisher J, Tipper JL. In vitro analysis of the cytotoxic and anti-inflammatory effects of antioxidant compounds used as additives in ultra high-molecular weight polyethylene in total joint replacement components. Journal of biomedical materials research Part B, Applied biomaterials. 2013;101(3):407–13. Bladen CL, Tzu-Yin L, Fisher J, Tipper JL. In vitro analysis of the cytotoxic and anti-inflammatory effects of antioxidant compounds used as additives in ultra high-molecular weight polyethylene in total joint replacement components. Journal of biomedical materials research Part B, Applied biomaterials. 2013;101(3):407–13.
10.
go back to reference Lin T, Goodman SB. Suppression of NF-κB signaling mitigates polyethylene wear particle-induced inflammatory response. Inflamm Cell Signal. 2014;1(4):319–25. Lin T, Goodman SB. Suppression of NF-κB signaling mitigates polyethylene wear particle-induced inflammatory response. Inflamm Cell Signal. 2014;1(4):319–25.
11.
go back to reference Loi F, Córdova LA, Zhang R, Pajarinen J, Lin T-h, Goodman SB, et al. The effects of immunomodulation by macrophage subsets on osteogenesis in vitro. Stem Cell Res Ther. 2016;7(1):1–11. Loi F, Córdova LA, Zhang R, Pajarinen J, Lin T-h, Goodman SB, et al. The effects of immunomodulation by macrophage subsets on osteogenesis in vitro. Stem Cell Res Ther. 2016;7(1):1–11.
12.
go back to reference Tu M-G, Chen Y-W, Shie M-Y. Macrophage-mediated osteogenesis activation in co-culture with osteoblast on calcium silicate cement. J Mater Sci Mater Med. 2015;26(12):1–10. Tu M-G, Chen Y-W, Shie M-Y. Macrophage-mediated osteogenesis activation in co-culture with osteoblast on calcium silicate cement. J Mater Sci Mater Med. 2015;26(12):1–10.
13.
go back to reference Neuerburg C, Loer T, Mittlmeier L, Polan C, Farkas Z, Holdt LM, et al. Impact of vitamin E-blended UHMWPE wear particles on the osseous microenvironment in polyethylene particle-induced osteolysis. International journal of molecular medicine. 2016;38(6):1652–60. Neuerburg C, Loer T, Mittlmeier L, Polan C, Farkas Z, Holdt LM, et al. Impact of vitamin E-blended UHMWPE wear particles on the osseous microenvironment in polyethylene particle-induced osteolysis. International journal of molecular medicine. 2016;38(6):1652–60.
14.
go back to reference Alias E, Dharmapatni A, Holding A, Atkins G, Findlay D, Howie D, et al. Polyethylene particles stimulate expression of ITAM-related molecules in peri-implant tissues and when stimulating osteoclastogenesis in vitro. Acta Biomater. 2012;8(8):3104–12.PubMed Alias E, Dharmapatni A, Holding A, Atkins G, Findlay D, Howie D, et al. Polyethylene particles stimulate expression of ITAM-related molecules in peri-implant tissues and when stimulating osteoclastogenesis in vitro. Acta Biomater. 2012;8(8):3104–12.PubMed
15.
go back to reference Dai Z, Lei P, Zhang YS, Liu H, Niu W, Li K, et al. Effect of stimulation by ultrahigh molecular weight polyethylene wear particles on the osteogenesis capability of fibroblasts. J Biomater Tissue Eng. 2018;8(5):723–30. Dai Z, Lei P, Zhang YS, Liu H, Niu W, Li K, et al. Effect of stimulation by ultrahigh molecular weight polyethylene wear particles on the osteogenesis capability of fibroblasts. J Biomater Tissue Eng. 2018;8(5):723–30.
16.
go back to reference Zhang Y, Böse T, Unger RE, Jansen JA, Kirkpatrick CJ, van den Beucken JJJP. Macrophage type modulates osteogenic differentiation of adipose tissue MSCs. Cell and tissue research. 2017;369(2):273–86. Zhang Y, Böse T, Unger RE, Jansen JA, Kirkpatrick CJ, van den Beucken JJJP. Macrophage type modulates osteogenic differentiation of adipose tissue MSCs. Cell and tissue research. 2017;369(2):273–86.
17.
go back to reference Li T, Li H, Wang Y, Li T, Fan J, Xiao K, et al. microRNA-23a inhibits osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting LRP5. Int J Biochem Cell Biol. 2016;72:55–62.PubMed Li T, Li H, Wang Y, Li T, Fan J, Xiao K, et al. microRNA-23a inhibits osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting LRP5. Int J Biochem Cell Biol. 2016;72:55–62.PubMed
18.
go back to reference Wang H, He X-Q, Jin T, Li Y, Fan X-Y, Wang Y, et al. Wnt11 plays an important role in the osteogenesis of human mesenchymal stem cells in a PHA/FN/ALG composite scaffold: possible treatment for infected bone defect. Stem Cell Res Ther. 2016;7(1):1. Wang H, He X-Q, Jin T, Li Y, Fan X-Y, Wang Y, et al. Wnt11 plays an important role in the osteogenesis of human mesenchymal stem cells in a PHA/FN/ALG composite scaffold: possible treatment for infected bone defect. Stem Cell Res Ther. 2016;7(1):1.
19.
go back to reference Hwang NS, Varghese S, Lee HJ, Zhang Z, Elisseeff J. Biomaterials directed in vivo osteogenic differentiation of mesenchymal cells derived from human embryonic stem cells. Tissue Eng A. 2013;19(15–16):1723–32. Hwang NS, Varghese S, Lee HJ, Zhang Z, Elisseeff J. Biomaterials directed in vivo osteogenic differentiation of mesenchymal cells derived from human embryonic stem cells. Tissue Eng A. 2013;19(15–16):1723–32.
20.
go back to reference Wang C-T, Lin Y-T, Chiang B-L, Lee S-S, Hou S-M. Over-expression of receptor activator of nuclear factor-κB ligand (RANKL), inflammatory cytokines, and chemokines in periprosthetic osteolysis of loosened total hip arthroplasty. Biomaterials. 2010;31(1):77–82.PubMed Wang C-T, Lin Y-T, Chiang B-L, Lee S-S, Hou S-M. Over-expression of receptor activator of nuclear factor-κB ligand (RANKL), inflammatory cytokines, and chemokines in periprosthetic osteolysis of loosened total hip arthroplasty. Biomaterials. 2010;31(1):77–82.PubMed
21.
go back to reference Beck RT, Illingworth KD, Saleh KJ. Review of periprosthetic osteolysis in total joint arthroplasty: an emphasis on host factors and future directions. J Orthop Res. 2012;30(4):541–6.PubMed Beck RT, Illingworth KD, Saleh KJ. Review of periprosthetic osteolysis in total joint arthroplasty: an emphasis on host factors and future directions. J Orthop Res. 2012;30(4):541–6.PubMed
22.
go back to reference Chiu R, Ma T, Smith RL, Goodman SB. Ultrahigh molecular weight polyethylene wear debris inhibits osteoprogenitor proliferation and differentiation in vitro. J Biomed Mater Res A. 2009;89(1):242–7.PubMed Chiu R, Ma T, Smith RL, Goodman SB. Ultrahigh molecular weight polyethylene wear debris inhibits osteoprogenitor proliferation and differentiation in vitro. J Biomed Mater Res A. 2009;89(1):242–7.PubMed
23.
go back to reference Jiang Y, Jia T, Wooley PH, Yang S-Y. Current research in the pathogenesis of aseptic implant loosening associated with particulate wear debris. Acta Orthop Belg. 2013;79(1):1–9.PubMed Jiang Y, Jia T, Wooley PH, Yang S-Y. Current research in the pathogenesis of aseptic implant loosening associated with particulate wear debris. Acta Orthop Belg. 2013;79(1):1–9.PubMed
24.
go back to reference Green JM, Hallab NJ, Liao Y-S, Narayan V, Schwarz EM, Xie C. Anti-oxidation treatment of ultra high molecular weight polyethylene components to decrease periprosthetic osteolysis: evaluation of osteolytic and osteogenic properties of wear debris particles in a murine calvaria model. Curr Rheumatol Rep. 2013;15(5):1–5. Green JM, Hallab NJ, Liao Y-S, Narayan V, Schwarz EM, Xie C. Anti-oxidation treatment of ultra high molecular weight polyethylene components to decrease periprosthetic osteolysis: evaluation of osteolytic and osteogenic properties of wear debris particles in a murine calvaria model. Curr Rheumatol Rep. 2013;15(5):1–5.
25.
go back to reference Agarwal S. Osteolysis—basic science, incidence and diagnosis. Curr Orthop. 2004;18(3):220–31. Agarwal S. Osteolysis—basic science, incidence and diagnosis. Curr Orthop. 2004;18(3):220–31.
26.
27.
go back to reference Laurent MP, Johnson TS, Crowninshield RD, Blanchard CR, Bhambri SK, Yao JQ. Characterization of a highly cross-linked ultrahigh molecular-weight polyethylene in clinical use in total hip arthroplasty. J Arthroplast. 2008;23(5):751–61. Laurent MP, Johnson TS, Crowninshield RD, Blanchard CR, Bhambri SK, Yao JQ. Characterization of a highly cross-linked ultrahigh molecular-weight polyethylene in clinical use in total hip arthroplasty. J Arthroplast. 2008;23(5):751–61.
28.
go back to reference Oral E, Malhi AS, Wannomae KK, Muratoglu OK. Highly cross-linked ultrahigh molecular weight polyethylene with improved fatigue resistance for total joint arthroplasty: recipient of the 2006 Hap Paul Award. J Arthroplast. 2008;23(7):1037–44. Oral E, Malhi AS, Wannomae KK, Muratoglu OK. Highly cross-linked ultrahigh molecular weight polyethylene with improved fatigue resistance for total joint arthroplasty: recipient of the 2006 Hap Paul Award. J Arthroplast. 2008;23(7):1037–44.
29.
go back to reference Matthews J, Mitchell W, Stone M, Fisher J, Ingham E. A novel three-dimensional tissue equivalent model to study the combined effects of cyclic mechanical strain and wear particles on the osteolytic potential of primary human macrophages in vitro. Proc Inst Mech Eng H J Eng Med. 2001;215(5):479–86. Matthews J, Mitchell W, Stone M, Fisher J, Ingham E. A novel three-dimensional tissue equivalent model to study the combined effects of cyclic mechanical strain and wear particles on the osteolytic potential of primary human macrophages in vitro. Proc Inst Mech Eng H J Eng Med. 2001;215(5):479–86.
30.
go back to reference Haynes D, Crotti T, Potter A, Loric M, Atkins G, Howie D, et al. The osteoclastogenic molecules RANKL and RANK are associated with periprosthetic osteolysis. J Bone Joint Surg, Br. 2001;83(6):902–11. Haynes D, Crotti T, Potter A, Loric M, Atkins G, Howie D, et al. The osteoclastogenic molecules RANKL and RANK are associated with periprosthetic osteolysis. J Bone Joint Surg, Br. 2001;83(6):902–11.
31.
go back to reference Alley C, Haggard W, Smith R. Effect of UHMWPE particle size, dose, and endotoxin on in vitro macrophage response. J Long-Term Eff Med Implants. 2014;24(1):45–56.PubMed Alley C, Haggard W, Smith R. Effect of UHMWPE particle size, dose, and endotoxin on in vitro macrophage response. J Long-Term Eff Med Implants. 2014;24(1):45–56.PubMed
32.
go back to reference Zaveri TD, Dolgova NV, Lewis JS, Hamaker K, Claresalzler MJ, Keselowsky BG. Macrophage integrins modulate response to ultra-high molecular weight polyethylene particles and direct particle-induced osteolysis. Biomaterials. 2017;115:128–40.PubMed Zaveri TD, Dolgova NV, Lewis JS, Hamaker K, Claresalzler MJ, Keselowsky BG. Macrophage integrins modulate response to ultra-high molecular weight polyethylene particles and direct particle-induced osteolysis. Biomaterials. 2017;115:128–40.PubMed
33.
go back to reference Ren PG, Irani A, Huang Z, Ma T, Biswal S, Goodman SB. Continuous infusion of UHMWPE particles induces increased bone macrophages and osteolysis. Clin Orthop Relat Res®. 2011;469(1):113–22. Ren PG, Irani A, Huang Z, Ma T, Biswal S, Goodman SB. Continuous infusion of UHMWPE particles induces increased bone macrophages and osteolysis. Clin Orthop Relat Res®. 2011;469(1):113–22.
34.
go back to reference Lin T-h, Yao Z, Sato T, Keeney M, Li C, Pajarinen J, et al. Suppression of wear-particle-induced pro-inflammatory cytokine and chemokine production in macrophages via NF-κB decoy oligodeoxynucleotide: a preliminary report. Acta Biomater. 2014;10(8):3747–55.PubMedPubMedCentral Lin T-h, Yao Z, Sato T, Keeney M, Li C, Pajarinen J, et al. Suppression of wear-particle-induced pro-inflammatory cytokine and chemokine production in macrophages via NF-κB decoy oligodeoxynucleotide: a preliminary report. Acta Biomater. 2014;10(8):3747–55.PubMedPubMedCentral
35.
go back to reference Goodman SB, Gibon E, Pajarinen J, Lin TH, Keeney M, Ren PG, et al. Novel biological strategies for treatment of wear particle-induced periprosthetic osteolysis of orthopaedic implants for joint replacement. J R Soc Interface. 2014;11(93):20130962.PubMedPubMedCentral Goodman SB, Gibon E, Pajarinen J, Lin TH, Keeney M, Ren PG, et al. Novel biological strategies for treatment of wear particle-induced periprosthetic osteolysis of orthopaedic implants for joint replacement. J R Soc Interface. 2014;11(93):20130962.PubMedPubMedCentral
36.
go back to reference Zhang X, Zhang Y, Zhang X, Wang Y, Wang J, Lu M, et al. Mechanical properties and cytocompatibility of carbon fibre reinforced nano-hydroxyapatite/polyamide66 ternary biocomposite. J Mech Behav Biomed Mater. 2015;42(42C):267–73.PubMed Zhang X, Zhang Y, Zhang X, Wang Y, Wang J, Lu M, et al. Mechanical properties and cytocompatibility of carbon fibre reinforced nano-hydroxyapatite/polyamide66 ternary biocomposite. J Mech Behav Biomed Mater. 2015;42(42C):267–73.PubMed
37.
go back to reference Wang J, Tao Y, Ping Z, Wen Z, Hu X, Wang Y, et al. Icariin attenuates titanium-particle inhibition of bone formation by activating the Wnt/β-catenin signaling pathway in vivo and in vitro. Sci Rep. 2016;6:23827.PubMedPubMedCentral Wang J, Tao Y, Ping Z, Wen Z, Hu X, Wang Y, et al. Icariin attenuates titanium-particle inhibition of bone formation by activating the Wnt/β-catenin signaling pathway in vivo and in vitro. Sci Rep. 2016;6:23827.PubMedPubMedCentral
Metadata
Title
Macrophage inhibits the osteogenesis of fibroblasts in ultrahigh molecular weight polyethylene (UHMWPE) wear particle-induced osteolysis
Authors
Pengfei Lei
Zixun Dai
Yu Shrike Zhang
Hua Liu
Wanting Niu
Kun Li
Long Wang
Yihe Hu
Jie Xie
Publication date
01-12-2019
Publisher
BioMed Central
Keywords
Hip-TEP
Hip-TEP
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2019
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-019-1119-8

Other articles of this Issue 1/2019

Journal of Orthopaedic Surgery and Research 1/2019 Go to the issue