Skip to main content
Top
Published in: European Radiology 7/2015

01-07-2015 | Head and Neck

High-resolution dynamic angiography using flat-panel volume CT: feasibility demonstration for neuro and lower limb vascular applications

Authors: Amit Mehndiratta, James D. Rabinov, Michael Grasruck, Eric C. Liao, David Crandell, Rajiv Gupta

Published in: European Radiology | Issue 7/2015

Login to get access

Abstract

Objective

This paper evaluates a prototype flat-panel volume CT (fpVCT) for dynamic in vivo imaging in a variety of neurovascular and lower limb applications.

Methods

Dynamic CTA was performed on 12 patients (neuro = 8, lower limb = 4) using an fpVCT with 120 kVp, 50 mA, rotation time varying from 8 to 19 s, and field of view of 25 × 25 × 18 cm3. Four-dimensional data sets (i.e. 3D images over time) were reconstructed and reviewed.

Results

Dynamic CTA demonstrated sufficient spatio-temporal resolution to elucidate first-pass and recirculation dynamics of contrast bolus through neurovasclaur pathologies and phasic blood flow though lower-limb vasculature and grafts. The high spatial resolution of fpVCT resulted in reduced partial volume and metal beam-hardening artefacts. This facilitated assessment of vascular lumen in the presence of calcified plaque and evaluation of fractures, especially in the presence of fixation hardware. Evaluation of arteriovenous malformation using dynamic fpVCT angiography was of limited utility.

Conclusions

Dynamic CTA using fpVCT can visualize time-varying phenomena in neuro and lower limb vascular applications and has suffcient diagnostic imaging quality to evaluate a number of pathologies affecting these regions.

Key Points

CTA using fpVCT has sufficient spatial and temporal resolution to study phasic blood flow.
CTA using fpVCT reveals recurrence of aneurysms even after clipping/coiling.
fpVCT has reduced partial volume and metal beam-hardening artefacts.
fpVCT can show vessel lumen in the presence of calcified plaque.
CTA using fpVCT can demonstrate vascular supply to transplanted grafts.
Literature
1.
go back to reference Konstas AA, Goldmakher GV, Lee T-Y, Lev MH (2009) Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 2: technical implementations. AJNR Am J Neuroradiol 30:885–892PubMedCrossRef Konstas AA, Goldmakher GV, Lee T-Y, Lev MH (2009) Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 2: technical implementations. AJNR Am J Neuroradiol 30:885–892PubMedCrossRef
2.
go back to reference Gupta R, Mani S, Mehndiratta A et al (2011) In: Law M, Som PM, Naidich TP (eds) Multi-detector computed tomography as a problem solving tool in neuroradiology. Problem solving in neuroradiology. Saunders, Philadelphia Gupta R, Mani S, Mehndiratta A et al (2011) In: Law M, Som PM, Naidich TP (eds) Multi-detector computed tomography as a problem solving tool in neuroradiology. Problem solving in neuroradiology. Saunders, Philadelphia
3.
go back to reference Gupta R, Mehndiratta A, Mitha AP et al (2011) Temporal resolution of dynamic angiography using flat panel volume CT: in vivo evaluation of time-dependent vascular pathologies. AJNR Am J Neuroradiol 32:1688–1696PubMedCrossRef Gupta R, Mehndiratta A, Mitha AP et al (2011) Temporal resolution of dynamic angiography using flat panel volume CT: in vivo evaluation of time-dependent vascular pathologies. AJNR Am J Neuroradiol 32:1688–1696PubMedCrossRef
4.
go back to reference Mitha AP, Reichardt B, Grasruck M et al (2009) Dynamic imaging of a model of intracranial saccular aneurysms using ultra-high-resolution flat-panel volumetric computed tomography. Laboratory investigation. J Neurosurg 111:947–957PubMedCrossRef Mitha AP, Reichardt B, Grasruck M et al (2009) Dynamic imaging of a model of intracranial saccular aneurysms using ultra-high-resolution flat-panel volumetric computed tomography. Laboratory investigation. J Neurosurg 111:947–957PubMedCrossRef
5.
go back to reference Gupta R, Grasruck M, Suess C et al (2006) Ultra-high resolution flat-panel volume CT: fundamental principles, design architecture, and system characterization. Eur Radiol 16:1191–1205PubMedCrossRef Gupta R, Grasruck M, Suess C et al (2006) Ultra-high resolution flat-panel volume CT: fundamental principles, design architecture, and system characterization. Eur Radiol 16:1191–1205PubMedCrossRef
6.
go back to reference Bartling S, Kuntz J, Mehndiratta A et al (2012) Prior image constrained compressed sensing (PICCS) on a flat-panel cone-beam CT: a new method for low dose, 4D human angiography. Radiol Soc N Am, pp SSQ19–09 Bartling S, Kuntz J, Mehndiratta A et al (2012) Prior image constrained compressed sensing (PICCS) on a flat-panel cone-beam CT: a new method for low dose, 4D human angiography. Radiol Soc N Am, pp SSQ19–09
7.
go back to reference Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am 1:612–619CrossRef Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am 1:612–619CrossRef
8.
go back to reference Grasruck M, Suess C, Stierstorfer K et al (2005) Evaluation of image quality and dose on a flat-panel CT-scanner. Proc SPIE 5745:179–188 Grasruck M, Suess C, Stierstorfer K et al (2005) Evaluation of image quality and dose on a flat-panel CT-scanner. Proc SPIE 5745:179–188
9.
go back to reference Shrimpton PC, Hillier MC, Lewis MA, Dunn M (2006) National survey of doses from CT in the UK: 2003. Br J Radiol 79:968–980PubMedCrossRef Shrimpton PC, Hillier MC, Lewis MA, Dunn M (2006) National survey of doses from CT in the UK: 2003. Br J Radiol 79:968–980PubMedCrossRef
10.
go back to reference Jessen K, Panzer W, Shrimpton P et al (2000) EUR 16262: European guidelines on quality criteria for computed tomography. Office for Official Publications of the European Communities, Luxembourg Jessen K, Panzer W, Shrimpton P et al (2000) EUR 16262: European guidelines on quality criteria for computed tomography. Office for Official Publications of the European Communities, Luxembourg
11.
go back to reference Ikram S, Leesar M, Fahsah I (2009) Peripheral angiography. In: Dieter RS, Dieter RA III, Dieter RA Jr (eds) Peripheral artery disease, 1st edn. McGraw-Hill, New York, pp 341–373 Ikram S, Leesar M, Fahsah I (2009) Peripheral angiography. In: Dieter RS, Dieter RA III, Dieter RA Jr (eds) Peripheral artery disease, 1st edn. McGraw-Hill, New York, pp 341–373
12.
go back to reference Grzyska U, Freitag J, Zeumer H (1990) Selective cerebral intraarterial DSA. Complication rate and control of risk factors. Neuroradiology 32:296–299PubMedCrossRef Grzyska U, Freitag J, Zeumer H (1990) Selective cerebral intraarterial DSA. Complication rate and control of risk factors. Neuroradiology 32:296–299PubMedCrossRef
13.
go back to reference Agid R, Willinsky RA, Lee S-K et al (2008) Characterization of aneurysm remnants after endovascular treatment: contrast-enhanced MR angiography versus catheter digital subtraction angiography. AJNR Am J Neuroradiol 29:1570–1574PubMedCrossRef Agid R, Willinsky RA, Lee S-K et al (2008) Characterization of aneurysm remnants after endovascular treatment: contrast-enhanced MR angiography versus catheter digital subtraction angiography. AJNR Am J Neuroradiol 29:1570–1574PubMedCrossRef
14.
go back to reference Reichardt B, Sarwar A, Bartling SH et al (2008) Musculoskeletal applications of flat-panel volume CT. Skeletal Radiol 37:1069–1076PubMedCrossRef Reichardt B, Sarwar A, Bartling SH et al (2008) Musculoskeletal applications of flat-panel volume CT. Skeletal Radiol 37:1069–1076PubMedCrossRef
15.
go back to reference Cheung AC, Bredella MA, Al Khalaf M et al (2009) Reproducibility of trabecular structure analysis using flat-panel volume computed tomography. Skeletal Radiol 38:1003–1008PubMedCrossRef Cheung AC, Bredella MA, Al Khalaf M et al (2009) Reproducibility of trabecular structure analysis using flat-panel volume computed tomography. Skeletal Radiol 38:1003–1008PubMedCrossRef
16.
go back to reference Phan CM, Macklin EA, Bredella MA et al (2011) Trabecular structure analysis using C-arm CT: comparison with MDCT and flat-panel volume CT. Skeletal Radiol 40:1065–1072PubMedCrossRef Phan CM, Macklin EA, Bredella MA et al (2011) Trabecular structure analysis using C-arm CT: comparison with MDCT and flat-panel volume CT. Skeletal Radiol 40:1065–1072PubMedCrossRef
17.
go back to reference Fritzsche SD (2001) Comorbid risk factors in TRAM flap failure. Plast Surg Nurs 21:178, 181–183; quiz 184PubMedCrossRef Fritzsche SD (2001) Comorbid risk factors in TRAM flap failure. Plast Surg Nurs 21:178, 181–183; quiz 184PubMedCrossRef
18.
go back to reference Molina AR, Jones ME, Hazari A et al (2012) Correlating the deep inferior epigastric artery branching pattern with type of abdominal free flap performed in a series of 145 breast reconstruction patients. Ann R Coll Surg Engl 94:493–495PubMedCentralPubMedCrossRef Molina AR, Jones ME, Hazari A et al (2012) Correlating the deep inferior epigastric artery branching pattern with type of abdominal free flap performed in a series of 145 breast reconstruction patients. Ann R Coll Surg Engl 94:493–495PubMedCentralPubMedCrossRef
19.
go back to reference Sbitany H, Mirzabeigi MN, Kovach SJ et al (2012) Strategies for recognizing and managing intraoperative venous congestion in abdominally based autologous breast reconstruction. Plast Reconstr Surg 129:809–815PubMedCrossRef Sbitany H, Mirzabeigi MN, Kovach SJ et al (2012) Strategies for recognizing and managing intraoperative venous congestion in abdominally based autologous breast reconstruction. Plast Reconstr Surg 129:809–815PubMedCrossRef
20.
go back to reference Scheufler O, Exner K, Andresen R (2004) Investigation of TRAM flap oxygenation and perfusion by near-infrared reflection spectroscopy and color-coded duplex sonography. Plast Reconstr Surg 113:141–152, discussion 153–155PubMedCrossRef Scheufler O, Exner K, Andresen R (2004) Investigation of TRAM flap oxygenation and perfusion by near-infrared reflection spectroscopy and color-coded duplex sonography. Plast Reconstr Surg 113:141–152, discussion 153–155PubMedCrossRef
Metadata
Title
High-resolution dynamic angiography using flat-panel volume CT: feasibility demonstration for neuro and lower limb vascular applications
Authors
Amit Mehndiratta
James D. Rabinov
Michael Grasruck
Eric C. Liao
David Crandell
Rajiv Gupta
Publication date
01-07-2015
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 7/2015
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-015-3612-8

Other articles of this Issue 7/2015

European Radiology 7/2015 Go to the issue