Skip to main content
Top
Published in: Critical Care 4/2013

Open Access 01-08-2013 | Research

High positive end-expiratory pressure: only a dam against oedema formation?

Authors: Alessandro Protti, Davide T Andreis, Giacomo E Iapichino, Massimo Monti, Beatrice Comini, Marta Milesi, Loredana Zani, Stefano Gatti, Luciano Lombardi, Luciano Gattinoni

Published in: Critical Care | Issue 4/2013

Login to get access

Abstract

Introduction

Healthy piglets ventilated with no positive end-expiratory pressure (PEEP) and with tidal volume (VT) close to inspiratory capacity (IC) develop fatal pulmonary oedema within 36 h. In contrast, those ventilated with high PEEP and low VT, resulting in the same volume of gas inflated (close to IC), do not. If the real threat to the blood-gas barrier is lung overinflation, then a similar damage will occur with the two settings. If PEEP only hydrostatically counteracts fluid filtration, then its removal will lead to oedema formation, thus revealing the deleterious effects of overinflation.

Methods

Following baseline lung computed tomography (CT), five healthy piglets were ventilated with high PEEP (volume of gas around 75% of IC) and low VT (25% of IC) for 36 h. PEEP was then suddenly zeroed and low VT was maintained for 18 h. Oedema was diagnosed if final lung weight (measured on a balance following autopsy) exceeded the initial one (CT).

Results

Animals were ventilated with PEEP 18 ± 1 cmH2O (volume of gas 875 ± 178 ml, 89 ± 7% of IC) and VT 213 ± 10 ml (22 ± 5% of IC) for the first 36 h, and with no PEEP and VT 213 ± 10 ml for the last 18 h. On average, final lung weight was not higher, and actually it was even lower, than the initial one (284 ± 62 vs. 347 ± 36 g; P = 0.01).

Conclusions

High PEEP (and low VT) do not merely impede fluid extravasation but rather preserve the integrity of the blood-gas barrier in healthy lungs.
Appendix
Available only for authorised users
Literature
1.
go back to reference The Acute Respiratory Distress Syndrome Network: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000, 342: 1301-1308.CrossRef The Acute Respiratory Distress Syndrome Network: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000, 342: 1301-1308.CrossRef
2.
go back to reference Gattinoni L, Protti A, Caironi P, Carlesso E: Ventilator-induced lung injury: the anatomical and physiological framework. Crit Care Med. 2010, 38: S539-S548.PubMedCrossRef Gattinoni L, Protti A, Caironi P, Carlesso E: Ventilator-induced lung injury: the anatomical and physiological framework. Crit Care Med. 2010, 38: S539-S548.PubMedCrossRef
3.
go back to reference Protti A, Cressoni M, Santini A, Langer T, Mietto C, Febres D, Chierichetti M, Coppola S, Conte G, Gatti S, Leopardi O, Masson S, Lombardi L, Lazzerini M, Rampoldi E, Cadringher P, Gattinoni L: Lung stress and strain during mechanical ventilation: any safe threshold?. Am J Respir Crit Care Med. 2011, 183: 1354-1362. 10.1164/rccm.201010-1757OC.PubMedCrossRef Protti A, Cressoni M, Santini A, Langer T, Mietto C, Febres D, Chierichetti M, Coppola S, Conte G, Gatti S, Leopardi O, Masson S, Lombardi L, Lazzerini M, Rampoldi E, Cadringher P, Gattinoni L: Lung stress and strain during mechanical ventilation: any safe threshold?. Am J Respir Crit Care Med. 2011, 183: 1354-1362. 10.1164/rccm.201010-1757OC.PubMedCrossRef
4.
go back to reference Protti A, Andreis DT, Monti M, Santini A, Sparacino CC, Langer T, Votta E, Gatti S, Lombardi L, Leopardi O, Masson S, Cressoni M, Gattinoni L: Lung stress and strain during mechanical ventilation: any difference between statics and dynamics?. Crit Care Med. 2013, 41: 1046-55. 10.1097/CCM.0b013e31827417a6.PubMedCrossRef Protti A, Andreis DT, Monti M, Santini A, Sparacino CC, Langer T, Votta E, Gatti S, Lombardi L, Leopardi O, Masson S, Cressoni M, Gattinoni L: Lung stress and strain during mechanical ventilation: any difference between statics and dynamics?. Crit Care Med. 2013, 41: 1046-55. 10.1097/CCM.0b013e31827417a6.PubMedCrossRef
5.
go back to reference Staub NC: Pulmonary edema due to increased microvascular permeability to fluid and protein. Circ Res. 1978, 43: 143-151. 10.1161/01.RES.43.2.143.PubMedCrossRef Staub NC: Pulmonary edema due to increased microvascular permeability to fluid and protein. Circ Res. 1978, 43: 143-151. 10.1161/01.RES.43.2.143.PubMedCrossRef
6.
go back to reference Webb HH, Tierney DF: Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis. 1974, 110: 556-565.PubMed Webb HH, Tierney DF: Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis. 1974, 110: 556-565.PubMed
7.
go back to reference Dreyfuss D, Basset G, Soler P, Saumon G: Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis. 1985, 132: 880-884.PubMed Dreyfuss D, Basset G, Soler P, Saumon G: Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis. 1985, 132: 880-884.PubMed
8.
go back to reference Dreyfuss D, Saumon G: Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis. 1993, 148: 1194-1203. 10.1164/ajrccm/148.5.1194.PubMedCrossRef Dreyfuss D, Saumon G: Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis. 1993, 148: 1194-1203. 10.1164/ajrccm/148.5.1194.PubMedCrossRef
9.
go back to reference Cournand A, Motley HL, Werko L, Richards DW: Physiological studies of the effects of intermittent positive pressure breathing on cardiac output in man. Am J Physiol. 1948, 152: 162-174.PubMed Cournand A, Motley HL, Werko L, Richards DW: Physiological studies of the effects of intermittent positive pressure breathing on cardiac output in man. Am J Physiol. 1948, 152: 162-174.PubMed
10.
go back to reference Zabner J, Angeli LS, Martinez RR, Sánchez de León R: The effects of graded administration of positive end expiratory pressure on the fluid filtration rate in isolated rabbit lungs, using normal lungs, hydrostatic oedema lungs and oleic acid induced oedema. Intensive Care Med. 1990, 16: 89-94. 10.1007/BF02575300.PubMedCrossRef Zabner J, Angeli LS, Martinez RR, Sánchez de León R: The effects of graded administration of positive end expiratory pressure on the fluid filtration rate in isolated rabbit lungs, using normal lungs, hydrostatic oedema lungs and oleic acid induced oedema. Intensive Care Med. 1990, 16: 89-94. 10.1007/BF02575300.PubMedCrossRef
11.
go back to reference Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council: Guide for the care and use of laboratory animals. 1996, Washington: National Academy Press Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council: Guide for the care and use of laboratory animals. 1996, Washington: National Academy Press
12.
go back to reference Gattinoni L, Caironi P, Pelosi P, Goodman LR: What has computed tomography taught us about the acute respiratory distress syndrome?. Am J Respir Crit Care Med. 2001, 164: 1701-1711. 10.1164/ajrccm.164.9.2103121.PubMedCrossRef Gattinoni L, Caironi P, Pelosi P, Goodman LR: What has computed tomography taught us about the acute respiratory distress syndrome?. Am J Respir Crit Care Med. 2001, 164: 1701-1711. 10.1164/ajrccm.164.9.2103121.PubMedCrossRef
13.
go back to reference Panigada M, Berra L, Greco G, Stylianou M, Kolobow T: Bacterial colonization of the respiratory tract following tracheal intubation-effect of gravity: an experimental study. Crit Care Med. 2003, 31: 729-737. 10.1097/01.CCM.0000049943.01252.E5.PubMedCrossRef Panigada M, Berra L, Greco G, Stylianou M, Kolobow T: Bacterial colonization of the respiratory tract following tracheal intubation-effect of gravity: an experimental study. Crit Care Med. 2003, 31: 729-737. 10.1097/01.CCM.0000049943.01252.E5.PubMedCrossRef
14.
go back to reference Craven KD, Wood LD: Extrapericardial and esophageal pressures with positive end-expiratory pressure in dogs. J Appl Physiol. 1981, 51: 798-805.PubMed Craven KD, Wood LD: Extrapericardial and esophageal pressures with positive end-expiratory pressure in dogs. J Appl Physiol. 1981, 51: 798-805.PubMed
15.
go back to reference Tsuno K, Miura K, Takeya M, Kolobow T, Morioka T: Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am Rev Respir Dis. 1991, 143: 1115-1120. 10.1164/ajrccm/143.5_Pt_1.1115.PubMedCrossRef Tsuno K, Miura K, Takeya M, Kolobow T, Morioka T: Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am Rev Respir Dis. 1991, 143: 1115-1120. 10.1164/ajrccm/143.5_Pt_1.1115.PubMedCrossRef
16.
go back to reference Bo G, Hauge A, Nicolaysen G: Alveolar pressure and lung volume as determinants of net transvascular fluid filtration. J Appl Physiol. 1977, 42: 476-482.PubMed Bo G, Hauge A, Nicolaysen G: Alveolar pressure and lung volume as determinants of net transvascular fluid filtration. J Appl Physiol. 1977, 42: 476-482.PubMed
17.
go back to reference Goldberg HS, Mitzner W, Batra G: Effect of transpulmonary and vascular pressures on rate of pulmonary edema formation. J Appl Physiol. 1977, 43: 14-19.PubMed Goldberg HS, Mitzner W, Batra G: Effect of transpulmonary and vascular pressures on rate of pulmonary edema formation. J Appl Physiol. 1977, 43: 14-19.PubMed
18.
go back to reference Huchon GJ, Hopewell PC, Murray JF: Interactions between permeability an hydrostatic pressure in perfused dogs' lungs. J Appl Physiol. 1981, 50: 905-911.PubMed Huchon GJ, Hopewell PC, Murray JF: Interactions between permeability an hydrostatic pressure in perfused dogs' lungs. J Appl Physiol. 1981, 50: 905-911.PubMed
19.
go back to reference Egan EA: Lung inflation, lung solute permeability, and alveolar edema. J Appl Physiol. 1982, 53: 121-125.PubMed Egan EA: Lung inflation, lung solute permeability, and alveolar edema. J Appl Physiol. 1982, 53: 121-125.PubMed
20.
go back to reference Russell JA, Hoeffel J, Murray JF: Effect of different levels of positive end-expiratory pressure on lung water content. J Appl Physiol. 1982, 53: 9-15.PubMed Russell JA, Hoeffel J, Murray JF: Effect of different levels of positive end-expiratory pressure on lung water content. J Appl Physiol. 1982, 53: 9-15.PubMed
21.
go back to reference Barach AL, Martin J, Eckman M: Positive pressure respiration and its application to the treatment of acute pulmonary edema. Ann Int Med. 1938, 12: 754-795.CrossRef Barach AL, Martin J, Eckman M: Positive pressure respiration and its application to the treatment of acute pulmonary edema. Ann Int Med. 1938, 12: 754-795.CrossRef
22.
go back to reference Prewitt RM, McCarthy J, Wood LD: Treatment of acute low pressure pulmonary edema in dogs: relative effects of hydrostatic and oncotic pressure, nitroprusside, and positive end-expiratory pressure. J Clin Invest. 1981, 67: 409-418. 10.1172/JCI110049.PubMedPubMedCentralCrossRef Prewitt RM, McCarthy J, Wood LD: Treatment of acute low pressure pulmonary edema in dogs: relative effects of hydrostatic and oncotic pressure, nitroprusside, and positive end-expiratory pressure. J Clin Invest. 1981, 67: 409-418. 10.1172/JCI110049.PubMedPubMedCentralCrossRef
23.
go back to reference Young JS, Rayhrer CS, Edmisten TD, Cephas GA, Tribble CG, Kron IL: Sodium nitroprusside mitigates oleic acid-induced acute lung injury. Ann Thorac Surg. 2000, 69: 224-227. 10.1016/S0003-4975(99)01130-3.PubMedCrossRef Young JS, Rayhrer CS, Edmisten TD, Cephas GA, Tribble CG, Kron IL: Sodium nitroprusside mitigates oleic acid-induced acute lung injury. Ann Thorac Surg. 2000, 69: 224-227. 10.1016/S0003-4975(99)01130-3.PubMedCrossRef
24.
go back to reference Staub NC: Pulmonary edema: physiologic approaches to management. Chest. 1978, 74: 559-564. 10.1378/chest.74.5.559.PubMedCrossRef Staub NC: Pulmonary edema: physiologic approaches to management. Chest. 1978, 74: 559-564. 10.1378/chest.74.5.559.PubMedCrossRef
25.
go back to reference Sibbald WJ, Short AK, Warshawski FJ, Cunningham DG, Cheung H: Thermal dye measurements of extravascular lung water in critically ill patients. Intravascular Starling forces and extravascular lung water in the adult respiratory distress syndrome. Chest. 1985, 87: 585-592. 10.1378/chest.87.5.585.PubMedCrossRef Sibbald WJ, Short AK, Warshawski FJ, Cunningham DG, Cheung H: Thermal dye measurements of extravascular lung water in critically ill patients. Intravascular Starling forces and extravascular lung water in the adult respiratory distress syndrome. Chest. 1985, 87: 585-592. 10.1378/chest.87.5.585.PubMedCrossRef
26.
go back to reference National Heart, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wioedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF, Hite RD, Harabin AL: Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006, 354: 2564-2575.CrossRef National Heart, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wioedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF, Hite RD, Harabin AL: Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006, 354: 2564-2575.CrossRef
27.
go back to reference Kubiak BD, Albert SP, Gatto LA, Trikha G, El-Zammar O, Nieman GF: Loss of airway pressure during HFOV results in an extended loss of oxygenation: a retrospective animal study. J Surg Res. 2010, 162: 250-257. 10.1016/j.jss.2009.04.026.PubMedCrossRef Kubiak BD, Albert SP, Gatto LA, Trikha G, El-Zammar O, Nieman GF: Loss of airway pressure during HFOV results in an extended loss of oxygenation: a retrospective animal study. J Surg Res. 2010, 162: 250-257. 10.1016/j.jss.2009.04.026.PubMedCrossRef
28.
go back to reference Ugander M, Kanski M, Engblom H, Götberg M, Olivecrona GK, Erlinge D, Heiberg E, Arheden H: Pulmonary blood volume variation decreases after myocardial infarction in pigs: a quantitative and noninvasive MR imaging measure of heart failure. Radiology. 2010, 256: 415-423. 10.1148/radiol.10090292.PubMedCrossRef Ugander M, Kanski M, Engblom H, Götberg M, Olivecrona GK, Erlinge D, Heiberg E, Arheden H: Pulmonary blood volume variation decreases after myocardial infarction in pigs: a quantitative and noninvasive MR imaging measure of heart failure. Radiology. 2010, 256: 415-423. 10.1148/radiol.10090292.PubMedCrossRef
29.
go back to reference Tschumperlin DJ, Oswari J, Margulies AS: Deformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude. Am J Respir Crit Care Med. 2000, 162: 357-362. 10.1164/ajrccm.162.2.9807003.PubMedCrossRef Tschumperlin DJ, Oswari J, Margulies AS: Deformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude. Am J Respir Crit Care Med. 2000, 162: 357-362. 10.1164/ajrccm.162.2.9807003.PubMedCrossRef
30.
go back to reference Mead J, Takishima T, Leith D: Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol. 1970, 28: 596-608.PubMed Mead J, Takishima T, Leith D: Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol. 1970, 28: 596-608.PubMed
31.
go back to reference Gattinoni L, Pesenti A, Kolobow T, Damia G: A new look at therapy of the adult respiratory distress syndrome: motionless lungs. Int Anesthesiol Clin. 1983, 21: 97-117.PubMedCrossRef Gattinoni L, Pesenti A, Kolobow T, Damia G: A new look at therapy of the adult respiratory distress syndrome: motionless lungs. Int Anesthesiol Clin. 1983, 21: 97-117.PubMedCrossRef
32.
go back to reference Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, Zhou Q, Matte A, Walter SD, Lamontagne F, Granton JT, Arabi YM, Arroliga AC, Stewart TE, Slutsky AS, Meade MO, OSCILLATE Trial Investigators, Canadian Critical Care Trials Group: High-frequency oscillation in early acute repiratory distress syndrome. N Engl J Med. 2013, 368: 795-805. 10.1056/NEJMoa1215554.PubMedCrossRef Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, Zhou Q, Matte A, Walter SD, Lamontagne F, Granton JT, Arabi YM, Arroliga AC, Stewart TE, Slutsky AS, Meade MO, OSCILLATE Trial Investigators, Canadian Critical Care Trials Group: High-frequency oscillation in early acute repiratory distress syndrome. N Engl J Med. 2013, 368: 795-805. 10.1056/NEJMoa1215554.PubMedCrossRef
33.
go back to reference Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, Rowan K, Cuthbertson BH, OSCAR Study Group: High-frequency oscillation for acute repiratory distress syndrome. N Engl J Med. 2013, 368: 806-813. 10.1056/NEJMoa1215716.PubMedCrossRef Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, Rowan K, Cuthbertson BH, OSCAR Study Group: High-frequency oscillation for acute repiratory distress syndrome. N Engl J Med. 2013, 368: 806-813. 10.1056/NEJMoa1215716.PubMedCrossRef
Metadata
Title
High positive end-expiratory pressure: only a dam against oedema formation?
Authors
Alessandro Protti
Davide T Andreis
Giacomo E Iapichino
Massimo Monti
Beatrice Comini
Marta Milesi
Loredana Zani
Stefano Gatti
Luciano Lombardi
Luciano Gattinoni
Publication date
01-08-2013
Publisher
BioMed Central
Published in
Critical Care / Issue 4/2013
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/cc12810

Other articles of this Issue 4/2013

Critical Care 4/2013 Go to the issue