Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2018

Open Access 01-12-2018 | Debate

Heterogeneity of Alzheimer’s disease: consequence for drug trials?

Authors: Gayatri Devi, Philip Scheltens

Published in: Alzheimer's Research & Therapy | Issue 1/2018

Login to get access

Abstract

Background

Alzheimer’s disease is a heterogenous disorder with multiple phenotypes and genotypes, although they eventually converge to a final common clinicopathological endpoint. However, Alzheimer’s disease drug trials do not account for the heterogeneity of the disease in trial design, impeding development of effective drugs.

Discussion

Alzheimer’s disease drug trials commonly have wide inclusion criteria that subsume multiple subtypes of the condition, with varying genotypes, phenotypes, and clinical courses. The outcome variables used in many trials may not be sensitive for the particular disease subtype and trials may not follow patients for the appropriate length of time necessary for the subtype of disease. Methods of stratifying treatment trial design to account for disease heterogeneity using algorithms incorporating demographics, neuroimaging, genetics, and clinical phenotypes, as well as more tailored outcome measures, are proposed to allow for personalized, precision medicine in Alzheimer’s disease therapeutics development.

Summary

Approaching Alzheimer’s disease as a heterogenous disorder will likely improve yield in the search for effective treatments for the condition.
Literature
1.
go back to reference Friedland R, Koss E, Haxby J, et al. NIH conference. Alzheimer disease: clinical and biological heterogeneity. Ann Intern Med. 1988;109(4):298–311.CrossRef Friedland R, Koss E, Haxby J, et al. NIH conference. Alzheimer disease: clinical and biological heterogeneity. Ann Intern Med. 1988;109(4):298–311.CrossRef
2.
go back to reference Scheltens P, Vermersch P, Leys D. Heterogeneity of Alzheimer’s disease. Review. French. Rev Neurol (Paris). 1993;149(1):14–25. Scheltens P, Vermersch P, Leys D. Heterogeneity of Alzheimer’s disease. Review. French. Rev Neurol (Paris). 1993;149(1):14–25.
3.
go back to reference Murray M, Graff-Radford N, Ross O, Petersen R, Duara R, Dickson D. Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: A retrospective study. Lancet Neurol. 2011;10(9):785–96.CrossRef Murray M, Graff-Radford N, Ross O, Petersen R, Duara R, Dickson D. Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: A retrospective study. Lancet Neurol. 2011;10(9):785–96.CrossRef
5.
go back to reference Scheltens N, Galindo-Garre F, Pijnenburg Y, et al. The identtification of cognitive subtypes in Alzheimer's disease dementia using latent class analysis. J Neurol Neurosurg Psychiatry. 2016;87:235–43.CrossRef Scheltens N, Galindo-Garre F, Pijnenburg Y, et al. The identtification of cognitive subtypes in Alzheimer's disease dementia using latent class analysis. J Neurol Neurosurg Psychiatry. 2016;87:235–43.CrossRef
6.
go back to reference Komarova N, Thalhauser C. High degree of heterogeneity in Alzheimer's progression patterns. PLoS Comput Biol. 2011;7(11):e1002251.CrossRef Komarova N, Thalhauser C. High degree of heterogeneity in Alzheimer's progression patterns. PLoS Comput Biol. 2011;7(11):e1002251.CrossRef
7.
go back to reference Smits L, Pijnenburg Y, van der Vlies A, et al. Early onset APOE E4-negative Alzheimer's disease patients show faster cognitive decline on non-memory domains. Eur Neuropsychopharmacol. 2015;25(7):1010–7.CrossRef Smits L, Pijnenburg Y, van der Vlies A, et al. Early onset APOE E4-negative Alzheimer's disease patients show faster cognitive decline on non-memory domains. Eur Neuropsychopharmacol. 2015;25(7):1010–7.CrossRef
8.
go back to reference Scheltens N, Tijms B, Koene T, et al. Cognitive subtypes of probable Alzheimer's disease robustly identified in four cohorts. Alzheimers Dement. 2017;13:1226–36.CrossRef Scheltens N, Tijms B, Koene T, et al. Cognitive subtypes of probable Alzheimer's disease robustly identified in four cohorts. Alzheimers Dement. 2017;13:1226–36.CrossRef
9.
go back to reference Iqbal A, Grundke-Iqbal I. Alzheimer disease, a multifactorial disorder seeking multi-therapies. Alzheimers Dement. 2010;65(5):420–4.CrossRef Iqbal A, Grundke-Iqbal I. Alzheimer disease, a multifactorial disorder seeking multi-therapies. Alzheimers Dement. 2010;65(5):420–4.CrossRef
10.
go back to reference Ossenkoppele R, Schonhaut D, Scholl M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. Brain. 2016;139(5):1551–67.CrossRef Ossenkoppele R, Schonhaut D, Scholl M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. Brain. 2016;139(5):1551–67.CrossRef
11.
go back to reference K. Brickell, J. Leverenz, E. Steinbart et al., “Clinicopathological concordance and discordance in three monozygotic twin pairs with familial Alzheimer’s disesae”. J Neurol Neurosurg Psychiatry. 2007;78(10):1050–5. K. Brickell, J. Leverenz, E. Steinbart et al., “Clinicopathological concordance and discordance in three monozygotic twin pairs with familial Alzheimer’s disesae”. J Neurol Neurosurg Psychiatry. 2007;78(10):1050–5.
12.
go back to reference Rodriguez R, Grinberg L. Argyrophilic grain disease: An underestimated tauopathy. Dement Neuropsychol. 2015;9(1):2–8.CrossRef Rodriguez R, Grinberg L. Argyrophilic grain disease: An underestimated tauopathy. Dement Neuropsychol. 2015;9(1):2–8.CrossRef
13.
go back to reference Dubois B, Epelbaum S, Nyasse S, Barkardjian H, Gangliardi G, et al. Cognitive and neuroimaging features and brain B-amyloidosis in individuals at risk of Alzheimer's disease (INSIGHT-preAD): a longitudinal observational study. Lancet Neurol. 2018;17:335–46.CrossRef Dubois B, Epelbaum S, Nyasse S, Barkardjian H, Gangliardi G, et al. Cognitive and neuroimaging features and brain B-amyloidosis in individuals at risk of Alzheimer's disease (INSIGHT-preAD): a longitudinal observational study. Lancet Neurol. 2018;17:335–46.CrossRef
14.
go back to reference Iturria-Medina Y, Carbonell F, Evans A, the Alzheimer’s Disease Neuroimaging Initiative. Multimodal imaging-based therapeutic fingerprints for optimizing personalized interventions: Application to neurodegeneration. Neuroimage. 2018;179:40–50.CrossRef Iturria-Medina Y, Carbonell F, Evans A, the Alzheimer’s Disease Neuroimaging Initiative. Multimodal imaging-based therapeutic fingerprints for optimizing personalized interventions: Application to neurodegeneration. Neuroimage. 2018;179:40–50.CrossRef
15.
go back to reference Desikan R, Fan C, Wang Y, Schork A, Cabral H, Cupples L, et al. Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score. PLoS Med. 2017;14(3):1–17. Desikan R, Fan C, Wang Y, Schork A, Cabral H, Cupples L, et al. Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score. PLoS Med. 2017;14(3):1–17.
16.
go back to reference Roberts R, Aakre J, Kremers W, et al. Prevalence and outcomes of amyloid positivity among persons without dementia in a longitudinal, population-based setting. JAMA Neurol. 2018;75(8):970–9.CrossRef Roberts R, Aakre J, Kremers W, et al. Prevalence and outcomes of amyloid positivity among persons without dementia in a longitudinal, population-based setting. JAMA Neurol. 2018;75(8):970–9.CrossRef
Metadata
Title
Heterogeneity of Alzheimer’s disease: consequence for drug trials?
Authors
Gayatri Devi
Philip Scheltens
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Alzheimer's Research & Therapy / Issue 1/2018
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-018-0455-y

Other articles of this Issue 1/2018

Alzheimer's Research & Therapy 1/2018 Go to the issue