Skip to main content
Top
Published in: Radiation Oncology 1/2015

Open Access 01-12-2015 | Research

Heterogeneity correction for intensity-modulated frameless SRS in pituitary and cavernous sinus tumors: a retrospective study

Authors: Lisa B. E. Shields, Cindy Bond, Aaron Odom, David A. Sun, Aaron C. Spalding

Published in: Radiation Oncology | Issue 1/2015

Login to get access

Abstract

Background

Frameless immobilization allows for planning and quality assurance of intensity-modulated radiosurgery (IM-SRS) plans. We tested the hypothesis that IM-SRS planning with uniform tissue density corrections results in dose inaccuracy compared to heterogeneity-corrected algorithms.

Methods

Fifteen patients with tumors of the pituitary or cavernous sinus underwent frameless IM-SRS. Treatment planning CT and MRI scans were obtained and fused to delineate the tumor, optic nerves, chiasm, and brainstem. The plan was developed with static gantry IM-SRS fields using a pencil beam (PB), analytical anisotropic (AAA), and Acuros XB (AXB) algorithms. We evaluated measures of target coverage as well as doses to organs at risk (OAR) for each algorithm. We compared the results of each algorithm in the cases where PTV overlapped OAR (n = 10) to cases without overlapping OAR with PTV (n = 5). Utilizing film dosimetry, we measured the dose distribution for each algorithm through a uniform density target to a rando phantom with non-uniform density of air, tissue, and bone.

Results

There was no difference in target coverage measured by DMaxPTV, DMinPTV, D95%PTV, or the isodose surface (IDS) covering 95 % of the PTV regardless of algorithm. However, there were differences in dose to OAR. PB predicted higher (p < 0.05) Dmax for the brainstem, chiasm, right optic nerve, and left optic nerve. In cases of PTV overlapping an optic nerve (n = 7), PB was unable to limit dose to 8Gy while achieving PTV coverage (PB 855 cGy vs. AAA 769 cGy, p = 0.05 vs. AXB 658 cGy, p = 0.03). Within the rando phantom, the PB and AAA algorithms over-estimated the dose delivered in the bone-tissue-air interface of the sinus (+17 %), while the AXB algorithm closely predicted the actual dose delivered through the inhomogeneous tissue (+/- 1 % max, p < 0.05).

Conclusions

Patients undergoing frameless SRS benefit from heterogeneity corrected dose plans when the lesion lies in areas of widely varying tissue density and near critical normal structures such as the skull base. Film dosimetry confirms that the AXB dose calculation algorithm more accurately predicts actual dose delivered though tissues of varying densities than PB or AAA dose calculation algorithms.
Literature
1.
go back to reference Lawson JD, Wang JZ, Nath SK, Rice R, Pawlicki T, Mundt AJ, et al. Intracranial application of IMRT based radiosurgery to treat multiple or large irregular lesions and verification of infra-red frameless localization system. J Neurooncol. 2010;97(1):59–66.PubMedCentralCrossRefPubMed Lawson JD, Wang JZ, Nath SK, Rice R, Pawlicki T, Mundt AJ, et al. Intracranial application of IMRT based radiosurgery to treat multiple or large irregular lesions and verification of infra-red frameless localization system. J Neurooncol. 2010;97(1):59–66.PubMedCentralCrossRefPubMed
2.
go back to reference Wang JZ, Pawlicki T, Rice R, Mundt AJ, Sandhu A, Lawson J, et al. Intensity-modulated radiosurgery with rapidarc for multiple brain metastases and comparison with static approach. Med Dosim. 2012;37(1):31–6.CrossRefPubMed Wang JZ, Pawlicki T, Rice R, Mundt AJ, Sandhu A, Lawson J, et al. Intensity-modulated radiosurgery with rapidarc for multiple brain metastases and comparison with static approach. Med Dosim. 2012;37(1):31–6.CrossRefPubMed
3.
go back to reference Lutz W, Winston KR, Maleki N. A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys. 1988;14(2):373–81.CrossRefPubMed Lutz W, Winston KR, Maleki N. A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys. 1988;14(2):373–81.CrossRefPubMed
4.
go back to reference Salter BJ, Fuss M, Sarkar V, Wang B, Rassiah-Szegedi P, Papanikolaou N, et al. Optimization of isocenter location for intensity modulated stereotactic treatment of small intracranial targets. Int J Radiat Oncol Biol Phys. 2009;73(2):546–55.CrossRefPubMed Salter BJ, Fuss M, Sarkar V, Wang B, Rassiah-Szegedi P, Papanikolaou N, et al. Optimization of isocenter location for intensity modulated stereotactic treatment of small intracranial targets. Int J Radiat Oncol Biol Phys. 2009;73(2):546–55.CrossRefPubMed
5.
go back to reference Kamath R, Ryken TC, Meeks SL, Pennington EC, Ritchie J, Buatti JM. Initial clinical experience with frameless radiosurgery for patients with intracranial metastases. Int J Radiat Oncol Biol Phys. 2005;61(5):1467–72.CrossRefPubMed Kamath R, Ryken TC, Meeks SL, Pennington EC, Ritchie J, Buatti JM. Initial clinical experience with frameless radiosurgery for patients with intracranial metastases. Int J Radiat Oncol Biol Phys. 2005;61(5):1467–72.CrossRefPubMed
6.
go back to reference Ryken TC, Meeks SL, Pennington EC, Hitchon P, Traynelis V, Mayr NA, et al. Initial clinical experience with frameless stereotactic radiosurgery: analysis of accuracy and feasibility. Int J Radiat Oncol Biol Phys. 2001;51(4):1152–8.CrossRefPubMed Ryken TC, Meeks SL, Pennington EC, Hitchon P, Traynelis V, Mayr NA, et al. Initial clinical experience with frameless stereotactic radiosurgery: analysis of accuracy and feasibility. Int J Radiat Oncol Biol Phys. 2001;51(4):1152–8.CrossRefPubMed
7.
go back to reference Ackerly T, Lancaster CM, Geso M, Roxby KJ. Clinical accuracy of ExacTrac intracranial frameless stereotactic system. Med Phys. 2011;38(9):5040–8.CrossRefPubMed Ackerly T, Lancaster CM, Geso M, Roxby KJ. Clinical accuracy of ExacTrac intracranial frameless stereotactic system. Med Phys. 2011;38(9):5040–8.CrossRefPubMed
8.
go back to reference Jelen U, Alber M. A finite size pencil beam algorithm for IMRT dose optimization: density corrections. Phys Med Biol. 2007;52(3):617–33.CrossRefPubMed Jelen U, Alber M. A finite size pencil beam algorithm for IMRT dose optimization: density corrections. Phys Med Biol. 2007;52(3):617–33.CrossRefPubMed
9.
go back to reference Yamashita T, Akagi T, Aso T, Kimura A, Sasaki T. Effect of inhomogeneity in a patient’s body on the accuracy of the pencil beam algorithm in comparison to Monte Carlo. Phys Med Biol. 2012;57(22):7673–88.CrossRefPubMed Yamashita T, Akagi T, Aso T, Kimura A, Sasaki T. Effect of inhomogeneity in a patient’s body on the accuracy of the pencil beam algorithm in comparison to Monte Carlo. Phys Med Biol. 2012;57(22):7673–88.CrossRefPubMed
10.
go back to reference Breitman K, Rathee S, Newcomb C, Murray B, Robinson D, Field C, et al. Experimental validation of the Eclipse AAA algorithm. J Appl Clin Med Phys. 2007;8(2):76–92.PubMed Breitman K, Rathee S, Newcomb C, Murray B, Robinson D, Field C, et al. Experimental validation of the Eclipse AAA algorithm. J Appl Clin Med Phys. 2007;8(2):76–92.PubMed
11.
go back to reference Zacarias AS, Mills MD. Algorithm for correcting optimization convergence errors in Eclipse. J Appl Clin Med Phys. 2009;10(4):281–9. Zacarias AS, Mills MD. Algorithm for correcting optimization convergence errors in Eclipse. J Appl Clin Med Phys. 2009;10(4):281–9.
12.
go back to reference Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L. Dosimetric evaluation of Acuros XB Advanced Dose Calculation algorithm in heterogeneous media. Radiat Oncol. 2011;6:82.PubMedCentralCrossRefPubMed Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L. Dosimetric evaluation of Acuros XB Advanced Dose Calculation algorithm in heterogeneous media. Radiat Oncol. 2011;6:82.PubMedCentralCrossRefPubMed
13.
go back to reference Dogan N, Siebers JV, Keall PJ. Clinical comparison of head and neck and prostate IMRT plans using absorbed dose to medium and absorbed dose to water. Phys Med Biol. 2006;51(19):4967–80.CrossRefPubMed Dogan N, Siebers JV, Keall PJ. Clinical comparison of head and neck and prostate IMRT plans using absorbed dose to medium and absorbed dose to water. Phys Med Biol. 2006;51(19):4967–80.CrossRefPubMed
14.
go back to reference Gil E, Clark B, Cygler JE. Evaluation of dosimetric differences between dose-to-water and dose-to-medium for head and neck patients treated with electron beams [Abstract]. Med Phys. 2009;36:4318.CrossRef Gil E, Clark B, Cygler JE. Evaluation of dosimetric differences between dose-to-water and dose-to-medium for head and neck patients treated with electron beams [Abstract]. Med Phys. 2009;36:4318.CrossRef
15.
go back to reference Khan FM, Gibbons JP. Treatment Planning II: Patient Data Aquisition, Treatment Verification, and Inhomogeneity Corrections. In: Khan FM, Gibbons JP, editors. Khan’s The Physics of Radiation Therapy. Philadelphia: Wolters Kluwer Health, Lippincott Williams & Wilkins; 2014. p. 195–233. Khan FM, Gibbons JP. Treatment Planning II: Patient Data Aquisition, Treatment Verification, and Inhomogeneity Corrections. In: Khan FM, Gibbons JP, editors. Khan’s The Physics of Radiation Therapy. Philadelphia: Wolters Kluwer Health, Lippincott Williams & Wilkins; 2014. p. 195–233.
16.
go back to reference Tishler RB, Loeffler JS, Lunsford LD, Duma C, Alexander III E, Kooy HM, et al. Tolerance of cranial nerves of the cavernous sinus to radiosurgery. Int J Radiat Oncol Biol Phys. 1993;27(2):215–21.CrossRefPubMed Tishler RB, Loeffler JS, Lunsford LD, Duma C, Alexander III E, Kooy HM, et al. Tolerance of cranial nerves of the cavernous sinus to radiosurgery. Int J Radiat Oncol Biol Phys. 1993;27(2):215–21.CrossRefPubMed
17.
go back to reference Pacific Northwest X-Ray Inc. Rando phantoms. 2015. Pacific Northwest X-Ray Inc. Rando phantoms. 2015.
18.
go back to reference Van Esch A, Tillikainen L, Pyykkonen J, Tenhunen M, Helminen H, Siljamaki S, et al. Testing of the analytical anisotropic algorithm for photon dose calculation. Med Phys. 2006;33(11):4130–48.CrossRefPubMed Van Esch A, Tillikainen L, Pyykkonen J, Tenhunen M, Helminen H, Siljamaki S, et al. Testing of the analytical anisotropic algorithm for photon dose calculation. Med Phys. 2006;33(11):4130–48.CrossRefPubMed
19.
go back to reference Leber KA, Bergloff J, Pendl G. Dose–response tolerance of the visual pathways and cranial nerves of the cavernous sinus to stereotactic radiosurgery. J Neurosurg. 1998;88(1):43–50.CrossRefPubMed Leber KA, Bergloff J, Pendl G. Dose–response tolerance of the visual pathways and cranial nerves of the cavernous sinus to stereotactic radiosurgery. J Neurosurg. 1998;88(1):43–50.CrossRefPubMed
20.
go back to reference Kan MW, Leung LH, Yu PK. Dosimetric impact of using the Acuros XB algorithm for intensity modulated radiation therapy and RapidArc planning in nasopharyngeal carcinomas. Int J Radiat Oncol Biol Phys. 2013;85(1):e73–80.CrossRefPubMed Kan MW, Leung LH, Yu PK. Dosimetric impact of using the Acuros XB algorithm for intensity modulated radiation therapy and RapidArc planning in nasopharyngeal carcinomas. Int J Radiat Oncol Biol Phys. 2013;85(1):e73–80.CrossRefPubMed
21.
go back to reference Han T, Followill D, Mikell J, Repchak R, Molineu A, Howell R, et al. Dosimetric impact of Acuros XB deterministic radiation transport algorithm for heterogeneous dose calculation in lung cancer. Med Phys. 2013;40(5):051710.PubMedCentralCrossRefPubMed Han T, Followill D, Mikell J, Repchak R, Molineu A, Howell R, et al. Dosimetric impact of Acuros XB deterministic radiation transport algorithm for heterogeneous dose calculation in lung cancer. Med Phys. 2013;40(5):051710.PubMedCentralCrossRefPubMed
22.
go back to reference Han T, Mourtada F, Kisling K, Mikell J, Followill D, Howell R. Experimental validation of deterministic Acuros XB algorithm for IMRT and VMAT dose calculations with the Radiological Physics Center’s head and neck phantom. Med Phys. 2012;39(4):2193–202.PubMedCentralCrossRefPubMed Han T, Mourtada F, Kisling K, Mikell J, Followill D, Howell R. Experimental validation of deterministic Acuros XB algorithm for IMRT and VMAT dose calculations with the Radiological Physics Center’s head and neck phantom. Med Phys. 2012;39(4):2193–202.PubMedCentralCrossRefPubMed
Metadata
Title
Heterogeneity correction for intensity-modulated frameless SRS in pituitary and cavernous sinus tumors: a retrospective study
Authors
Lisa B. E. Shields
Cindy Bond
Aaron Odom
David A. Sun
Aaron C. Spalding
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2015
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-015-0500-y

Other articles of this Issue 1/2015

Radiation Oncology 1/2015 Go to the issue