Skip to main content
Top
Published in: Journal of the Association for Research in Otolaryngology 3/2009

Open Access 01-09-2009

Hes5 Expression in the Postnatal and Adult Mouse Inner Ear and the Drug-Damaged Cochlea

Authors: Byron H. Hartman, Onur Basak, Branden R. Nelson, Verdon Taylor, Olivia Bermingham-McDonogh, Thomas A. Reh

Published in: Journal of the Association for Research in Otolaryngology | Issue 3/2009

Login to get access

Abstract

The Notch signaling pathway is known to have multiple roles during development of the inner ear. Notch signaling activates transcription of Hes5, a homologue of Drosophila hairy and enhancer of split, which encodes a basic helix-loop-helix transcriptional repressor. Previous studies have shown that Hes5 is expressed in the cochlea during embryonic development, and loss of Hes5 leads to overproduction of auditory and vestibular hair cells. However, due to technical limitations and inconsistency between previous reports, the precise spatial and temporal pattern of Hes5 expression in the postnatal and adult inner ear has remained unclear. In this study, we use Hes5-GFP transgenic mice and in situ hybridization to report the expression pattern of Hes5 in the inner ear. We find that Hes5 is expressed in the developing auditory epithelium of the cochlea beginning at embryonic day 14.5 (E14.5), becomes restricted to a particular subset of cochlear supporting cells, is downregulated in the postnatal cochlea, and is not present in adults. In the vestibular system, we detect Hes5 in developing supporting cells as early as E12.5 and find that Hes5 expression is maintained in some adult vestibular supporting cells. In order to determine the effect of hair cell damage on Notch signaling in the cochlea, we damaged cochlear hair cells of adult Hes5-GFP mice in vivo using injection of kanamycin and furosemide. Although outer hair cells were killed in treated animals and supporting cells were still present after damage, supporting cells did not upregulate Hes5-GFP in the damaged cochlea. Therefore, absence of Notch-Hes5 signaling in the normal and damaged adult cochlea is correlated with lack of regeneration potential, while its presence in the neonatal cochlea and adult vestibular epithelia is associated with greater capacity for plasticity or regeneration in these tissues; which suggests that this pathway may be involved in regulating regenerative potential.
Literature
go back to reference Alexson TO, Hitoshi S, Coles BL, Bernstein A, van der Kooy D. Notch signaling is required to maintain all neural stem cell populations—irrespective of spatial or temporal niche. Dev. Neurosci. 28:34–48, 2006.PubMedCrossRef Alexson TO, Hitoshi S, Coles BL, Bernstein A, van der Kooy D. Notch signaling is required to maintain all neural stem cell populations—irrespective of spatial or temporal niche. Dev. Neurosci. 28:34–48, 2006.PubMedCrossRef
go back to reference Basak O, Taylor V. Identification of self-replicating multipotent progenitors in the embryonic nervous system by high Notch activity and Hes5 expression. Eur. J. Neurosci. 25:1006–1022, 2007.PubMedCrossRef Basak O, Taylor V. Identification of self-replicating multipotent progenitors in the embryonic nervous system by high Notch activity and Hes5 expression. Eur. J. Neurosci. 25:1006–1022, 2007.PubMedCrossRef
go back to reference Bermingham-McDonogh O, Rubel EW. Hair cell regeneration: winging our way towards a sound future. Curr. Opin. Neurobiol. 13:119–126, 2003.PubMedCrossRef Bermingham-McDonogh O, Rubel EW. Hair cell regeneration: winging our way towards a sound future. Curr. Opin. Neurobiol. 13:119–126, 2003.PubMedCrossRef
go back to reference Bermingham-McDonogh O, Oesterle EC, Stone JS, Hume CR, Huynh HM, Hayashi T. Expression of Prox1 during mouse cochlear development. J. Comp. Neurol. 496:172–186, 2006.PubMedCrossRef Bermingham-McDonogh O, Oesterle EC, Stone JS, Hume CR, Huynh HM, Hayashi T. Expression of Prox1 during mouse cochlear development. J. Comp. Neurol. 496:172–186, 2006.PubMedCrossRef
go back to reference Brooker R, Hozumi K, Lewis J. Notch ligands with contrasting functions: Jagged1 and Delta1 in the mouse inner ear. Development 133:1277–1286, 2006.PubMedCrossRef Brooker R, Hozumi K, Lewis J. Notch ligands with contrasting functions: Jagged1 and Delta1 in the mouse inner ear. Development 133:1277–1286, 2006.PubMedCrossRef
go back to reference Burgess BJ, Adams JC, Nadol JB, Jr. Morphologic evidence for innervation of Deiters’ and Hensen’s cells in the guinea pig. Hear. Res. 108:74–82, 1997.PubMedCrossRef Burgess BJ, Adams JC, Nadol JB, Jr. Morphologic evidence for innervation of Deiters’ and Hensen’s cells in the guinea pig. Hear. Res. 108:74–82, 1997.PubMedCrossRef
go back to reference Chardin S, Romand R. Factors modulating supernumerary hair cell production in the postnatal rat cochlea in vitro. Int. J. Dev. Neurosci. 15:497–507, 1997.PubMedCrossRef Chardin S, Romand R. Factors modulating supernumerary hair cell production in the postnatal rat cochlea in vitro. Int. J. Dev. Neurosci. 15:497–507, 1997.PubMedCrossRef
go back to reference Chen P, Johnson JE, Zoghbi HY, Segil N. The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 129:2495–2505, 2002.PubMedCrossRef Chen P, Johnson JE, Zoghbi HY, Segil N. The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 129:2495–2505, 2002.PubMedCrossRef
go back to reference Chitnis AB. The role of Notch in lateral inhibition and cell fate specification. Mol. Cell Neurosci. 6:311–321, 1995.CrossRef Chitnis AB. The role of Notch in lateral inhibition and cell fate specification. Mol. Cell Neurosci. 6:311–321, 1995.CrossRef
go back to reference Cornbrooks C, Bland C, Williams DW, Truman JW, Rand MD. Delta expression in post-mitotic neurons identifies distinct subsets of adult-specific lineages in Drosophila. Dev. Neurobiol. 67:23–38, 2007.PubMedCrossRef Cornbrooks C, Bland C, Williams DW, Truman JW, Rand MD. Delta expression in post-mitotic neurons identifies distinct subsets of adult-specific lineages in Drosophila. Dev. Neurobiol. 67:23–38, 2007.PubMedCrossRef
go back to reference Dabdoub A, Puligilla C, Jones JM, Fritzsch B, Cheah KS, Pevny LH, Kelley MW. Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc. Natl. Acad. Sci. U. S. A. 105:18396–18401, 2008.PubMedCrossRef Dabdoub A, Puligilla C, Jones JM, Fritzsch B, Cheah KS, Pevny LH, Kelley MW. Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc. Natl. Acad. Sci. U. S. A. 105:18396–18401, 2008.PubMedCrossRef
go back to reference Daudet N, Lewis J. Two contrasting roles for Notch activity in chick inner ear development: specification of prosensory patches and lateral inhibition of hair-cell differentiation. Development 132:541–551, 2005.PubMedCrossRef Daudet N, Lewis J. Two contrasting roles for Notch activity in chick inner ear development: specification of prosensory patches and lateral inhibition of hair-cell differentiation. Development 132:541–551, 2005.PubMedCrossRef
go back to reference Daudet N, Ariza-McNaughton L, Lewis J. Notch signalling is needed to maintain, but not to initiate, the formation of prosensory patches in the chick inner ear. Development 134:2369–2378, 2007.PubMedCrossRef Daudet N, Ariza-McNaughton L, Lewis J. Notch signalling is needed to maintain, but not to initiate, the formation of prosensory patches in the chick inner ear. Development 134:2369–2378, 2007.PubMedCrossRef
go back to reference Dechesne CJ, Rabejac D, Desmadryl G. Development of calretinin immunoreactivity in the mouse inner ear. J. Comp. Neurol. 346:517–529, 1994.PubMedCrossRef Dechesne CJ, Rabejac D, Desmadryl G. Development of calretinin immunoreactivity in the mouse inner ear. J. Comp. Neurol. 346:517–529, 1994.PubMedCrossRef
go back to reference Doetzlhofer A, Basch ML, Ohyama T, Gessler M, Groves AK, Segil N. Hey2 regulation by FGF provides a Notch-independent mechanism for maintaining pillar cell fate in the organ of Corti. Dev. Cell. 16:58–69, 2009.PubMedCrossRef Doetzlhofer A, Basch ML, Ohyama T, Gessler M, Groves AK, Segil N. Hey2 regulation by FGF provides a Notch-independent mechanism for maintaining pillar cell fate in the organ of Corti. Dev. Cell. 16:58–69, 2009.PubMedCrossRef
go back to reference Echteler SM. Developmental segregation in the afferent projections to mammalian auditory hair cells. Proc. Natl. Acad. Sci. U. S. A. 89:6324–6327, 1992.PubMedCrossRef Echteler SM. Developmental segregation in the afferent projections to mammalian auditory hair cells. Proc. Natl. Acad. Sci. U. S. A. 89:6324–6327, 1992.PubMedCrossRef
go back to reference Fekete DM, Muthukumar S, Karagogeos D. Hair cells and supporting cells share a common progenitor in the avian inner ear. J. Neurosci. 18:7811–7821, 1998.PubMed Fekete DM, Muthukumar S, Karagogeos D. Hair cells and supporting cells share a common progenitor in the avian inner ear. J. Neurosci. 18:7811–7821, 1998.PubMed
go back to reference Forge A. Outer hair cell loss and supporting cell expansion following chronic gentamicin treatment. Hear. Res. 19:171–182, 1985.PubMedCrossRef Forge A. Outer hair cell loss and supporting cell expansion following chronic gentamicin treatment. Hear. Res. 19:171–182, 1985.PubMedCrossRef
go back to reference Forge A, Li L, Corwin JT, Nevill G. Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science 259:1616–1619, 1993.PubMedCrossRef Forge A, Li L, Corwin JT, Nevill G. Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science 259:1616–1619, 1993.PubMedCrossRef
go back to reference Franklin JL, Berechid BE, Cutting FB, Presente A, Chambers CB, Foltz DR, Ferreira A, Nye JS. Autonomous and non-autonomous regulation of mammalian neurite development by Notch1 and Delta1. Curr Biol. 9:1448–1457, 1999.PubMedCrossRef Franklin JL, Berechid BE, Cutting FB, Presente A, Chambers CB, Foltz DR, Ferreira A, Nye JS. Autonomous and non-autonomous regulation of mammalian neurite development by Notch1 and Delta1. Curr Biol. 9:1448–1457, 1999.PubMedCrossRef
go back to reference Gaiano N, Nye JS, Fishell G. Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26:395–404, 2000.PubMedCrossRef Gaiano N, Nye JS, Fishell G. Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26:395–404, 2000.PubMedCrossRef
go back to reference Ge W, Martinowich K, Wu X, He F, Miyamoto A, Fan G, Weinmaster G, Sun YE. Notch signaling promotes astrogliogenesis via direct CSL-mediated glial gene activation. J. Neurosci. Res. 69:848–860, 2002.PubMedCrossRef Ge W, Martinowich K, Wu X, He F, Miyamoto A, Fan G, Weinmaster G, Sun YE. Notch signaling promotes astrogliogenesis via direct CSL-mediated glial gene activation. J. Neurosci. Res. 69:848–860, 2002.PubMedCrossRef
go back to reference Givogri MI, de Planell M, Galbiati F, Superchi D, Gritti A, Vescovi A, de Vellis J, Bongarzone ER. Notch signaling in astrocytes and neuroblasts of the adult subventricular zone in health and after cortical injury. Dev. Neurosci. 28:81–91, 2006.PubMedCrossRef Givogri MI, de Planell M, Galbiati F, Superchi D, Gritti A, Vescovi A, de Vellis J, Bongarzone ER. Notch signaling in astrocytes and neuroblasts of the adult subventricular zone in health and after cortical injury. Dev. Neurosci. 28:81–91, 2006.PubMedCrossRef
go back to reference Hartman BH, Hayashi T, Nelson BR, Bermingham-McDonogh O, Reh TA. Dll3 is expressed in developing hair cells in the mammalian cochlea. Dev Dyn. 236:2875–2883, 2007.PubMedCrossRef Hartman BH, Hayashi T, Nelson BR, Bermingham-McDonogh O, Reh TA. Dll3 is expressed in developing hair cells in the mammalian cochlea. Dev Dyn. 236:2875–2883, 2007.PubMedCrossRef
go back to reference Hayashi T, Cunningham D, Bermingham-McDonogh O. Loss of Fgfr3 leads to excess hair cell development in the mouse organ of Corti. Dev. Dyn. 236:525–533, 2007.PubMedCrossRef Hayashi T, Cunningham D, Bermingham-McDonogh O. Loss of Fgfr3 leads to excess hair cell development in the mouse organ of Corti. Dev. Dyn. 236:525–533, 2007.PubMedCrossRef
go back to reference Hayashi T, Kokubo H, Hartman BH, Ray CA, Reh TA, Bermingham-McDonogh O. Hesr1 and Hesr2 may act as early effectors of Notch signaling in the developing cochlea. Dev. Biol. 316:87–99, 2008.PubMedCrossRef Hayashi T, Kokubo H, Hartman BH, Ray CA, Reh TA, Bermingham-McDonogh O. Hesr1 and Hesr2 may act as early effectors of Notch signaling in the developing cochlea. Dev. Biol. 316:87–99, 2008.PubMedCrossRef
go back to reference Hayes S, Nelson BR, Buckingham B, Reh TA. Notch signaling regulates regeneration in the avian retina. Dev. Biol. 312:300–311, 2007.PubMedCrossRef Hayes S, Nelson BR, Buckingham B, Reh TA. Notch signaling regulates regeneration in the avian retina. Dev. Biol. 312:300–311, 2007.PubMedCrossRef
go back to reference Hojo M, Ohtsuka T, Hashimoto N, Gradwohl G, Guillemot F, Kageyama R. Glial cell fate specification modulated by the bHLH gene Hes5 in mouse retina. Development 127:2515–2522, 2000.PubMed Hojo M, Ohtsuka T, Hashimoto N, Gradwohl G, Guillemot F, Kageyama R. Glial cell fate specification modulated by the bHLH gene Hes5 in mouse retina. Development 127:2515–2522, 2000.PubMed
go back to reference Huang LC, Thorne PR, Housley GD, Montgomery JM. Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea. Development 134:2925–2933, 2007.PubMedCrossRef Huang LC, Thorne PR, Housley GD, Montgomery JM. Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea. Development 134:2925–2933, 2007.PubMedCrossRef
go back to reference Hume CR, Bratt DL, Oesterle EC. Expression of LHX3 and SOX2 during mouse inner ear development. Gene Expr. Patterns 7:798–807, 2007.PubMedCrossRef Hume CR, Bratt DL, Oesterle EC. Expression of LHX3 and SOX2 during mouse inner ear development. Gene Expr. Patterns 7:798–807, 2007.PubMedCrossRef
go back to reference Jagger DJ, Housley GD. Membrane properties of type II spiral ganglion neurones identified in a neonatal rat cochlear slice. J. Physiol. 552:525–533, 2003.PubMedCrossRef Jagger DJ, Housley GD. Membrane properties of type II spiral ganglion neurones identified in a neonatal rat cochlear slice. J. Physiol. 552:525–533, 2003.PubMedCrossRef
go back to reference Kageyama R, Ohtsuka T. The Notch-Hes pathway in mammalian neural development. Cell Res. 9:179–188, 1999.PubMedCrossRef Kageyama R, Ohtsuka T. The Notch-Hes pathway in mammalian neural development. Cell Res. 9:179–188, 1999.PubMedCrossRef
go back to reference Kauffman MH. The Atlas of Mouse Development. London, Elsevier Academic, p. 525, 1992. Kauffman MH. The Atlas of Mouse Development. London, Elsevier Academic, p. 525, 1992.
go back to reference Kawamoto K, Izumikawa M, Beyer LA, Atkin GM, Raphael Y. Spontaneous hair cell regeneration in the mouse utricle following gentamicin ototoxicity. Hear. Res. 247:17–26, 2009.PubMedCrossRef Kawamoto K, Izumikawa M, Beyer LA, Atkin GM, Raphael Y. Spontaneous hair cell regeneration in the mouse utricle following gentamicin ototoxicity. Hear. Res. 247:17–26, 2009.PubMedCrossRef
go back to reference Kiernan AE, Ahituv N, Fuchs H, Balling R, Avraham KB, Steel KP, Hrabe de Angelis M. The Notch ligand Jagged1 is required for inner ear sensory development. Proc. Natl. Acad. Sci. U. S. A. 98:3873–3878, 2001.PubMedCrossRef Kiernan AE, Ahituv N, Fuchs H, Balling R, Avraham KB, Steel KP, Hrabe de Angelis M. The Notch ligand Jagged1 is required for inner ear sensory development. Proc. Natl. Acad. Sci. U. S. A. 98:3873–3878, 2001.PubMedCrossRef
go back to reference Kiernan AE, Cordes R, Kopan R, Gossler A, Gridley T. The Notch ligands DLL1 and JAG2 act synergistically to regulate hair cell development in the mammalian inner ear. Development 132:4353–4362, 2005a.PubMedCrossRef Kiernan AE, Cordes R, Kopan R, Gossler A, Gridley T. The Notch ligands DLL1 and JAG2 act synergistically to regulate hair cell development in the mammalian inner ear. Development 132:4353–4362, 2005a.PubMedCrossRef
go back to reference Kiernan AE, Pelling AL, Leung KK, Tang AS, Bell DM, Tease C, Lovell-Badge R, Steel KP, Cheah KS. Sox2 is required for sensory organ development in the mammalian inner ear. Nature 434:1031–1035, 2005b.PubMedCrossRef Kiernan AE, Pelling AL, Leung KK, Tang AS, Bell DM, Tease C, Lovell-Badge R, Steel KP, Cheah KS. Sox2 is required for sensory organ development in the mammalian inner ear. Nature 434:1031–1035, 2005b.PubMedCrossRef
go back to reference Kiernan AE, Xu J, Gridley T. The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear. PLoS Genet. 2:e4, 2006.PubMedCrossRef Kiernan AE, Xu J, Gridley T. The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear. PLoS Genet. 2:e4, 2006.PubMedCrossRef
go back to reference Kirjavainen A, Sulg M, Heyd F, Alitalo K, Yla-Herttuala S, Moroy T, Petrova TV, Pirvola U. Prox1 interacts with Atoh1 and Gfi1, and regulates cellular differentiation in the inner ear sensory epithelia. Dev. Biol. 322:33–45, 2008.PubMedCrossRef Kirjavainen A, Sulg M, Heyd F, Alitalo K, Yla-Herttuala S, Moroy T, Petrova TV, Pirvola U. Prox1 interacts with Atoh1 and Gfi1, and regulates cellular differentiation in the inner ear sensory epithelia. Dev. Biol. 322:33–45, 2008.PubMedCrossRef
go back to reference Lanford PJ, Lan Y, Jiang R, Lindsell C, Weinmaster G, Gridley T, Kelley MW. Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat. Genet. 21:289–292, 1999.PubMedCrossRef Lanford PJ, Lan Y, Jiang R, Lindsell C, Weinmaster G, Gridley T, Kelley MW. Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat. Genet. 21:289–292, 1999.PubMedCrossRef
go back to reference Lanford PJ, Shailam R, Norton CR, Gridley T, Kelley MW. Expression of Math1 and HES5 in the cochleae of wildtype and Jag2 mutant mice. J. Assoc. Res. Otolaryngol. 1:161–171, 2000.PubMedCrossRef Lanford PJ, Shailam R, Norton CR, Gridley T, Kelley MW. Expression of Math1 and HES5 in the cochleae of wildtype and Jag2 mutant mice. J. Assoc. Res. Otolaryngol. 1:161–171, 2000.PubMedCrossRef
go back to reference Lewis AK, Frantz GD, Carpenter DA, de Sauvage FJ, Gao WQ. Distinct expression patterns of notch family receptors and ligands during development of the mammalian inner ear. Mech. Dev. 78:159–163, 1998.PubMedCrossRef Lewis AK, Frantz GD, Carpenter DA, de Sauvage FJ, Gao WQ. Distinct expression patterns of notch family receptors and ligands during development of the mammalian inner ear. Mech. Dev. 78:159–163, 1998.PubMedCrossRef
go back to reference Li H, Liu H, Heller S. Pluripotent stem cells from the adult mouse inner ear. Nat. Med. 9:1293–1299, 2003.PubMedCrossRef Li H, Liu H, Heller S. Pluripotent stem cells from the adult mouse inner ear. Nat. Med. 9:1293–1299, 2003.PubMedCrossRef
go back to reference Li S, Mark S, Radde-Gallwitz K, Schlisner R, Chin MT, Chen P. Hey2 functions in parallel with Hes1 and Hes5 for mammalian auditory sensory organ development. BMC Dev. Biol. 8:20, 2008.PubMedCrossRef Li S, Mark S, Radde-Gallwitz K, Schlisner R, Chin MT, Chen P. Hey2 functions in parallel with Hes1 and Hes5 for mammalian auditory sensory organ development. BMC Dev. Biol. 8:20, 2008.PubMedCrossRef
go back to reference Lindsell CE, Boulter J, diSibio G, Gossler A, Weinmaster G. Expression patterns of Jagged, Delta1, Notch1, Notch2, and Notch3 genes identify ligand-receptor pairs that may function in neural development. Mol. Cell Neurosci. 8:14–27, 1996.PubMedCrossRef Lindsell CE, Boulter J, diSibio G, Gossler A, Weinmaster G. Expression patterns of Jagged, Delta1, Notch1, Notch2, and Notch3 genes identify ligand-receptor pairs that may function in neural development. Mol. Cell Neurosci. 8:14–27, 1996.PubMedCrossRef
go back to reference Lopez I, Honrubia V, Lee SC, Schoeman G, Beykirch K. Quantification of the process of hair cell loss and recovery in the chinchilla crista ampullaris after gentamicin treatment. Int. J. Dev. Neurosci. 15:447–461, 1997.PubMedCrossRef Lopez I, Honrubia V, Lee SC, Schoeman G, Beykirch K. Quantification of the process of hair cell loss and recovery in the chinchilla crista ampullaris after gentamicin treatment. Int. J. Dev. Neurosci. 15:447–461, 1997.PubMedCrossRef
go back to reference Lysakowski A, Goldberg JM. Morphology of the vestibular periphery. In: Salvi RJ, Popper AN, Fay RR (eds) The Vestibular System. Springer Handbook of Auditory Research. New York, Springer, 2004. Lysakowski A, Goldberg JM. Morphology of the vestibular periphery. In: Salvi RJ, Popper AN, Fay RR (eds) The Vestibular System. Springer Handbook of Auditory Research. New York, Springer, 2004.
go back to reference Ma EY, Rubel EW, Raible DW. Notch signaling regulates the extent of hair cell regeneration in the zebrafish lateral line. J. Neurosci. 28:2261–2273, 2008.PubMedCrossRef Ma EY, Rubel EW, Raible DW. Notch signaling regulates the extent of hair cell regeneration in the zebrafish lateral line. J. Neurosci. 28:2261–2273, 2008.PubMedCrossRef
go back to reference McDowell B, Davies S, Forge A. The effect of gentamicin-induced hair cell loss on the tight junctions of the reticular lamina. Hear. Res. 40:221–232, 1989.PubMedCrossRef McDowell B, Davies S, Forge A. The effect of gentamicin-induced hair cell loss on the tight junctions of the reticular lamina. Hear. Res. 40:221–232, 1989.PubMedCrossRef
go back to reference Morrison A, Hodgetts C, Gossler A, Hrabe de Angelis M, Lewis J. Expression of Delta1 and Serrate1 (Jagged1) in the mouse inner ear. Mech Dev. 84:169–172, 1999.PubMedCrossRef Morrison A, Hodgetts C, Gossler A, Hrabe de Angelis M, Lewis J. Expression of Delta1 and Serrate1 (Jagged1) in the mouse inner ear. Mech Dev. 84:169–172, 1999.PubMedCrossRef
go back to reference Morrison SJ, Perez SE, Qiao Z, Verdi JM, Hicks C, Weinmaster G, Anderson DJ. Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101:499–510, 2000.PubMedCrossRef Morrison SJ, Perez SE, Qiao Z, Verdi JM, Hicks C, Weinmaster G, Anderson DJ. Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101:499–510, 2000.PubMedCrossRef
go back to reference Murata J, Tokunaga A, Okano H, Kubo T. Mapping of notch activation during cochlear development in mice: implications for determination of prosensory domain and cell fate diversification. J. Comp. Neurol. 497:502–518, 2006.PubMedCrossRef Murata J, Tokunaga A, Okano H, Kubo T. Mapping of notch activation during cochlear development in mice: implications for determination of prosensory domain and cell fate diversification. J. Comp. Neurol. 497:502–518, 2006.PubMedCrossRef
go back to reference Nelson BR, Sadhu M, Kasemeier JC, Anderson LW, Lefcort F. Identification of genes regulating sensory neuron genesis and differentiation in the avian dorsal root ganglia. Dev. Dyn. 229:618–629, 2004.PubMedCrossRef Nelson BR, Sadhu M, Kasemeier JC, Anderson LW, Lefcort F. Identification of genes regulating sensory neuron genesis and differentiation in the avian dorsal root ganglia. Dev. Dyn. 229:618–629, 2004.PubMedCrossRef
go back to reference Nelson BR, Hartman BH, Georgi SA, Lan MS, Reh TA. Transient inactivation of Notch signaling synchronizes differentiation of neural progenitor cells. Dev. Biol. 304:479–498, 2007.PubMedCrossRef Nelson BR, Hartman BH, Georgi SA, Lan MS, Reh TA. Transient inactivation of Notch signaling synchronizes differentiation of neural progenitor cells. Dev. Biol. 304:479–498, 2007.PubMedCrossRef
go back to reference Oesterle EC, Stone JS. Hair cell regeneration: mechanisms guiding cellular proliferation and differentiation. In: Salvi RJ, Popper AN, Fay RR (eds) Hair Cell Regeneration, Repair, and Protection. Springer Handbook of Auditory Research. New York, Springer, 2008. Oesterle EC, Stone JS. Hair cell regeneration: mechanisms guiding cellular proliferation and differentiation. In: Salvi RJ, Popper AN, Fay RR (eds) Hair Cell Regeneration, Repair, and Protection. Springer Handbook of Auditory Research. New York, Springer, 2008.
go back to reference Oesterle EC, Cunningham DE, Westrum LE, Rubel EW. Ultrastructural analysis of [3H]thymidine-labeled cells in the rat utricular macula. J. Comp. Neurol. 463:177–195, 2003.PubMedCrossRef Oesterle EC, Cunningham DE, Westrum LE, Rubel EW. Ultrastructural analysis of [3H]thymidine-labeled cells in the rat utricular macula. J. Comp. Neurol. 463:177–195, 2003.PubMedCrossRef
go back to reference Oesterle EC, Campbell S, Taylor RR, Forge A, Hume CR. Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. J. Assoc. Res. Otolaryngol. 9:65–89, 2008.PubMedCrossRef Oesterle EC, Campbell S, Taylor RR, Forge A, Hume CR. Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. J. Assoc. Res. Otolaryngol. 9:65–89, 2008.PubMedCrossRef
go back to reference Ohtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, Kageyama R. Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. Embo J. 18:2196–2207, 1999.PubMedCrossRef Ohtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, Kageyama R. Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. Embo J. 18:2196–2207, 1999.PubMedCrossRef
go back to reference Okamura HO, Shibahara-Maruyama I, Sugai N, Adams JC. Innervation of supporting cells in the guinea pig cochlea detected in bloc-surface preparations. Neuroreport 13:1585–1588, 2002.PubMedCrossRef Okamura HO, Shibahara-Maruyama I, Sugai N, Adams JC. Innervation of supporting cells in the guinea pig cochlea detected in bloc-surface preparations. Neuroreport 13:1585–1588, 2002.PubMedCrossRef
go back to reference Oshima K, Grimm CM, Corrales CE, Senn P, Martinez Monedero R, Geleoc GS, Edge A, Holt JR, Heller S. Differential distribution of stem cells in the auditory and vestibular organs of the inner ear. J. Assoc. Res. Otolaryngol. 8:18–31, 2007.PubMedCrossRef Oshima K, Grimm CM, Corrales CE, Senn P, Martinez Monedero R, Geleoc GS, Edge A, Holt JR, Heller S. Differential distribution of stem cells in the auditory and vestibular organs of the inner ear. J. Assoc. Res. Otolaryngol. 8:18–31, 2007.PubMedCrossRef
go back to reference Pickles JO, van Heumen WR. Lateral interactions account for the pattern of the hair cell array in the chick basilar papilla. Hear. Res. 145:65–74, 2000.PubMedCrossRef Pickles JO, van Heumen WR. Lateral interactions account for the pattern of the hair cell array in the chick basilar papilla. Hear. Res. 145:65–74, 2000.PubMedCrossRef
go back to reference Pujol R. Morphology, synaptology and electrophysiology of the developing cochlea. Acta Otolaryngol. Suppl. 421:5–9, 1985.PubMedCrossRef Pujol R. Morphology, synaptology and electrophysiology of the developing cochlea. Acta Otolaryngol. Suppl. 421:5–9, 1985.PubMedCrossRef
go back to reference Raphael Y, Altschuler RA. Reorganization of cytoskeletal and junctional proteins during cochlear hair cell degeneration. Cell Motil. Cytoskelet. 18:215–227, 1991.CrossRef Raphael Y, Altschuler RA. Reorganization of cytoskeletal and junctional proteins during cochlear hair cell degeneration. Cell Motil. Cytoskelet. 18:215–227, 1991.CrossRef
go back to reference Roberson DW, Alosi JA, Cotanche DA. Direct transdifferentiation gives rise to the earliest new hair cells in regenerating avian auditory epithelium. J. Neurosci. Res. 78:461–471, 2004.PubMedCrossRef Roberson DW, Alosi JA, Cotanche DA. Direct transdifferentiation gives rise to the earliest new hair cells in regenerating avian auditory epithelium. J. Neurosci. Res. 78:461–471, 2004.PubMedCrossRef
go back to reference Sage C, Venteo S, Jeromin A, Roder J, Dechesne CJ. Distribution of frequenin in the mouse inner ear during development, comparison with other calcium-binding proteins and synaptophysin. Hear. Res. 150:70–82, 2000.PubMedCrossRef Sage C, Venteo S, Jeromin A, Roder J, Dechesne CJ. Distribution of frequenin in the mouse inner ear during development, comparison with other calcium-binding proteins and synaptophysin. Hear. Res. 150:70–82, 2000.PubMedCrossRef
go back to reference Sestan N, Artavanis-Tsakonas S, Rakic P. Contact-dependent inhibition of cortical neurite growth mediated by notch signaling. Science 286:741–746, 1999.PubMedCrossRef Sestan N, Artavanis-Tsakonas S, Rakic P. Contact-dependent inhibition of cortical neurite growth mediated by notch signaling. Science 286:741–746, 1999.PubMedCrossRef
go back to reference Shailam R, Lanford PJ, Dolinsky CM, Norton CR, Gridley T, Kelley MW. Expression of proneural and neurogenic genes in the embryonic mammalian vestibular system. J. Neurocytol. 28:809–819, 1999.PubMedCrossRef Shailam R, Lanford PJ, Dolinsky CM, Norton CR, Gridley T, Kelley MW. Expression of proneural and neurogenic genes in the embryonic mammalian vestibular system. J. Neurocytol. 28:809–819, 1999.PubMedCrossRef
go back to reference Simmons DD. A transient afferent innervation of outer hair cells in the postnatal cochlea. Neuroreport 5:1309–1312, 1994.PubMedCrossRef Simmons DD. A transient afferent innervation of outer hair cells in the postnatal cochlea. Neuroreport 5:1309–1312, 1994.PubMedCrossRef
go back to reference Stone JS, Cotanche DA. Hair cell regeneration in the avian auditory epithelium. Int. J. Dev. Biol. 51:633–647, 2007.PubMedCrossRef Stone JS, Cotanche DA. Hair cell regeneration in the avian auditory epithelium. Int. J. Dev. Biol. 51:633–647, 2007.PubMedCrossRef
go back to reference Stone JS, Rubel EW. Delta1 expression during avian hair cell regeneration. Development 126:961–973, 1999.PubMed Stone JS, Rubel EW. Delta1 expression during avian hair cell regeneration. Development 126:961–973, 1999.PubMed
go back to reference Stone JS, Choi YS, Woolley SM, Yamashita H, Rubel EW. Progenitor cell cycling during hair cell regeneration in the vestibular and auditory epithelia of the chick. J. Neurocytol. 28:863–876, 1999.PubMedCrossRef Stone JS, Choi YS, Woolley SM, Yamashita H, Rubel EW. Progenitor cell cycling during hair cell regeneration in the vestibular and auditory epithelia of the chick. J. Neurocytol. 28:863–876, 1999.PubMedCrossRef
go back to reference Takebayashi S, Yamamoto N, Yabe D, Fukuda H, Kojima K, Ito J, Honjo T. Multiple roles of Notch signaling in cochlear development. Dev Biol. 307:165–178, 2007.PubMedCrossRef Takebayashi S, Yamamoto N, Yabe D, Fukuda H, Kojima K, Ito J, Honjo T. Multiple roles of Notch signaling in cochlear development. Dev Biol. 307:165–178, 2007.PubMedCrossRef
go back to reference Tang LS, Alger HM, Pereira FA. COUP-TFI controls Notch regulation of hair cell and support cell differentiation. Development 133:3683–3693, 2006.PubMedCrossRef Tang LS, Alger HM, Pereira FA. COUP-TFI controls Notch regulation of hair cell and support cell differentiation. Development 133:3683–3693, 2006.PubMedCrossRef
go back to reference Tanigaki K, Nogaki F, Takahashi J, Tashiro K, Kurooka H, Honjo T. Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron 29:45–55, 2001.PubMedCrossRef Tanigaki K, Nogaki F, Takahashi J, Tashiro K, Kurooka H, Honjo T. Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron 29:45–55, 2001.PubMedCrossRef
go back to reference Tanyeri H, Lopez I, Honrubia V. Histological evidence for hair cell regeneration after ototoxic cell destruction with local application of gentamicin in the chinchilla crista ampullaris. Hear. Res. 89:194–202, 1995.PubMedCrossRef Tanyeri H, Lopez I, Honrubia V. Histological evidence for hair cell regeneration after ototoxic cell destruction with local application of gentamicin in the chinchilla crista ampullaris. Hear. Res. 89:194–202, 1995.PubMedCrossRef
go back to reference Taylor MK, Yeager K, Morrison SJ. Physiological Notch signaling promotes gliogenesis in the developing peripheral and central nervous systems. Development 134:2435–2447, 2007.PubMedCrossRef Taylor MK, Yeager K, Morrison SJ. Physiological Notch signaling promotes gliogenesis in the developing peripheral and central nervous systems. Development 134:2435–2447, 2007.PubMedCrossRef
go back to reference Taylor RR, Nevill G, Forge A. Rapid hair cell loss: a mouse model for cochlear lesions. J. Assoc. Res. Otolaryngol. 9:44–64, 2008.PubMedCrossRef Taylor RR, Nevill G, Forge A. Rapid hair cell loss: a mouse model for cochlear lesions. J. Assoc. Res. Otolaryngol. 9:44–64, 2008.PubMedCrossRef
go back to reference Tsai H, Hardisty RE, Rhodes C, Kiernan AE, Roby P, Tymowska-Lalanne Z, Mburu P, Rastan S, Hunter AJ, Brown SD, Steel KP. The mouse slalom mutant demonstrates a role for Jagged1 in neuroepithelial patterning in the organ of Corti. Hum. Mol. Genet. 10:507–512, 2001.PubMedCrossRef Tsai H, Hardisty RE, Rhodes C, Kiernan AE, Roby P, Tymowska-Lalanne Z, Mburu P, Rastan S, Hunter AJ, Brown SD, Steel KP. The mouse slalom mutant demonstrates a role for Jagged1 in neuroepithelial patterning in the organ of Corti. Hum. Mol. Genet. 10:507–512, 2001.PubMedCrossRef
go back to reference Warchol ME, Lambert PR, Goldstein BJ, Forge A, Corwin JT. Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science 259:1619–1622, 1993.PubMedCrossRef Warchol ME, Lambert PR, Goldstein BJ, Forge A, Corwin JT. Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science 259:1619–1622, 1993.PubMedCrossRef
go back to reference White PM, Doetzlhofer A, Lee YS, Groves AK, Segil N. Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature 441:984–987, 2006.PubMedCrossRef White PM, Doetzlhofer A, Lee YS, Groves AK, Segil N. Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature 441:984–987, 2006.PubMedCrossRef
go back to reference Woods C, Montcouquiol M, Kelley MW. Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nat. Neurosci. 7:1310–1318, 2004.PubMedCrossRef Woods C, Montcouquiol M, Kelley MW. Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nat. Neurosci. 7:1310–1318, 2004.PubMedCrossRef
go back to reference Wu WJ, Sha SH, McLaren JD, Kawamoto K, Raphael Y, Schacht J. Aminoglycoside ototoxicity in adult CBA, C57BL and BALB mice and the Sprague–Dawley rat. Hear. Res. 158:165–178, 2001.PubMedCrossRef Wu WJ, Sha SH, McLaren JD, Kawamoto K, Raphael Y, Schacht J. Aminoglycoside ototoxicity in adult CBA, C57BL and BALB mice and the Sprague–Dawley rat. Hear. Res. 158:165–178, 2001.PubMedCrossRef
go back to reference Yamamoto N, Tanigaki K, Tsuji M, Yabe D, Ito J, Honjo T. Inhibition of Notch/RBP-J signaling induces hair cell formation in neonate mouse cochleas. J. Mol. Med. 84:37–45, 2006.PubMedCrossRef Yamamoto N, Tanigaki K, Tsuji M, Yabe D, Ito J, Honjo T. Inhibition of Notch/RBP-J signaling induces hair cell formation in neonate mouse cochleas. J. Mol. Med. 84:37–45, 2006.PubMedCrossRef
go back to reference Yamashita H, Oesterle EC. Induction of cell proliferation in mammalian inner-ear sensory epithelia by transforming growth factor alpha and epidermal growth factor. Proc. Natl. Acad. Sci. U. S. A. 92:3152–3155, 1995.PubMedCrossRef Yamashita H, Oesterle EC. Induction of cell proliferation in mammalian inner-ear sensory epithelia by transforming growth factor alpha and epidermal growth factor. Proc. Natl. Acad. Sci. U. S. A. 92:3152–3155, 1995.PubMedCrossRef
go back to reference Zhang N, Martin GV, Kelley MW, Gridley T. A mutation in the Lunatic fringe gene suppresses the effects of a Jagged2 mutation on inner hair cell development in the cochlea. Curr. Biol. 10:659–662, 2000.PubMedCrossRef Zhang N, Martin GV, Kelley MW, Gridley T. A mutation in the Lunatic fringe gene suppresses the effects of a Jagged2 mutation on inner hair cell development in the cochlea. Curr. Biol. 10:659–662, 2000.PubMedCrossRef
go back to reference Zheng JL, Shou J, Guillemot F, Kageyama R, Gao WQ. Hes1 is a negative regulator of inner ear hair cell differentiation. Development 127:4551–4560, 2000.PubMed Zheng JL, Shou J, Guillemot F, Kageyama R, Gao WQ. Hes1 is a negative regulator of inner ear hair cell differentiation. Development 127:4551–4560, 2000.PubMed
go back to reference Zine A, Van De Water TR, de Ribaupierre F. Notch signaling regulates the pattern of auditory hair cell differentiation in mammals. Development 127:3373–3383, 2000.PubMed Zine A, Van De Water TR, de Ribaupierre F. Notch signaling regulates the pattern of auditory hair cell differentiation in mammals. Development 127:3373–3383, 2000.PubMed
go back to reference Zine A, Aubert A, Qiu J, Therianos S, Guillemot F, Kageyama R, de Ribaupierre F. Hes1 and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear. J. Neurosci. 21:4712–4720, 2001.PubMed Zine A, Aubert A, Qiu J, Therianos S, Guillemot F, Kageyama R, de Ribaupierre F. Hes1 and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear. J. Neurosci. 21:4712–4720, 2001.PubMed
Metadata
Title
Hes5 Expression in the Postnatal and Adult Mouse Inner Ear and the Drug-Damaged Cochlea
Authors
Byron H. Hartman
Onur Basak
Branden R. Nelson
Verdon Taylor
Olivia Bermingham-McDonogh
Thomas A. Reh
Publication date
01-09-2009
Publisher
Springer-Verlag
Published in
Journal of the Association for Research in Otolaryngology / Issue 3/2009
Print ISSN: 1525-3961
Electronic ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-009-0162-2

Other articles of this Issue 3/2009

Journal of the Association for Research in Otolaryngology 3/2009 Go to the issue