Skip to main content
Top
Published in: BMC Proceedings 9/2018

Open Access 01-09-2018 | Proceedings

Heritability and genetic associations of triglyceride and HDL-C levels using pedigree-based and empirical kinships

Authors: Nicholas B. Blackburn, Arthur Porto, Juan M. Peralta, John Blangero

Published in: BMC Proceedings | Special Issue 9/2018

Login to get access

Abstract

The heritability of a phenotype is an estimation of the percent of variance in that phenotype that is attributable to additive genetic factors. Heritability is optimally estimated in family-based sample populations. Traditionally, this involves use of a pedigree-based kinship coefficient generated from the collected genealogical relationships between family members. An alternative, when dense genotype data are available, is to directly measure the empirical kinship between samples. This study compares the use of pedigree and empirical kinships in the GAW20 data set. Two phenotypes were assessed: triglyceride levels and high-density lipoprotein cholesterol (HDL-C) levels pre- and postintervention with the cholesterol-reducing drug fenofibrate. Using SOLAR (Sequential Oligogenic Linkage Analysis Routines), pedigree-based kinships and empirically calculated kinships (using IBDLD and LDAK) were used to calculate phenotype heritability. In addition, a genome-wide association study was conducted using each kinship model for each phenotype to identify genetic variants significantly associated with phenotypic variation. The variant rs247617 was significantly associated with HDL-C levels both pre- and post-fenofibrate intervention. Overall, the phenotype heritabilities calculated using pedigree based kinships or either of the empirical kinships generated using IBDLD or LDAK were comparable. Phenotype heritabilities estimated from empirical kinships generated using IBDLD were closest to the pedigree-based estimations. Given that there was not an appreciable amount of unknown relatedness between the pedigrees in this data set, a large increase in heritability in using empirical kinship was not expected, and our calculations support this. Importantly, these results demonstrate that when sufficient genotypic data are available, empirical kinship estimation is a practical alternative to using pedigree-based kinships.
Literature
1.
go back to reference Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet. 1998;62(5):1198–211.CrossRef Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet. 1998;62(5):1198–211.CrossRef
2.
go back to reference Irvin MR, Zhi D, Joehanes R, Mendelson M, Aslibekyan S, Claas SA, Thibeault KS, Patel N, Day K, Jones LW, et al. Epigenome-wide association study of fasting blood lipids in the genetics of lipid-lowering drugs and diet network study. Circulation. 2014;130(7):565–72.CrossRef Irvin MR, Zhi D, Joehanes R, Mendelson M, Aslibekyan S, Claas SA, Thibeault KS, Patel N, Day K, Jones LW, et al. Epigenome-wide association study of fasting blood lipids in the genetics of lipid-lowering drugs and diet network study. Circulation. 2014;130(7):565–72.CrossRef
3.
go back to reference Speed D, Cai N, UCLEB Consortium JM, Nejentsev S, Balding D. Reevaluation of SNP heritability in complex human traits. Nat Genet. 2017;49(7):986–92.CrossRef Speed D, Cai N, UCLEB Consortium JM, Nejentsev S, Balding D. Reevaluation of SNP heritability in complex human traits. Nat Genet. 2017;49(7):986–92.CrossRef
4.
go back to reference Han L, Abney M. Identity by descent estimation with dense genome-wide genotype data. Genet Epidemiol. 2011;35(6):557–67.PubMedPubMedCentral Han L, Abney M. Identity by descent estimation with dense genome-wide genotype data. Genet Epidemiol. 2011;35(6):557–67.PubMedPubMedCentral
5.
go back to reference Sun L, Dimitromanolakis A. PREST-plus identifies pedigree errors and cryptic relatedness in the GAW18 sample using genome-wide SNP data. BMC Proc. 2014;8(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo):S23.CrossRef Sun L, Dimitromanolakis A. PREST-plus identifies pedigree errors and cryptic relatedness in the GAW18 sample using genome-wide SNP data. BMC Proc. 2014;8(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo):S23.CrossRef
6.
go back to reference Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.CrossRef Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.CrossRef
9.
go back to reference Coram MA, Duan Q, Hoffmann TJ, Thornton T, Knowles JW, Johnson NA, Ochs-Balcom HM, Donlon TA, Martin LW, Eaton CB, et al. Genome-wide characterization of shared and distinct genetic components that influence blood lipid levels in ethnically diverse human populations. Am J Hum Genet. 2013;92(6):904–16.CrossRef Coram MA, Duan Q, Hoffmann TJ, Thornton T, Knowles JW, Johnson NA, Ochs-Balcom HM, Donlon TA, Martin LW, Eaton CB, et al. Genome-wide characterization of shared and distinct genetic components that influence blood lipid levels in ethnically diverse human populations. Am J Hum Genet. 2013;92(6):904–16.CrossRef
10.
go back to reference Surakka I, Horikoshi M, Mägi R, Sarin A-P, Mahajan A, Lagou V, Marullo L, Ferreira T, Miraglio B, Timonen S, et al. The impact of low-frequency and rare variants on lipid levels. Nat Genet. 2015;47(6):589–97.CrossRef Surakka I, Horikoshi M, Mägi R, Sarin A-P, Mahajan A, Lagou V, Marullo L, Ferreira T, Miraglio B, Timonen S, et al. The impact of low-frequency and rare variants on lipid levels. Nat Genet. 2015;47(6):589–97.CrossRef
11.
go back to reference Kristiansson K, Perola M, Tikkanen E, Kettunen J, Surakka I, Havulinna AS, Stancáková A, Barnes C, Widen E, Kajantie E, et al. Genome-wide screen for metabolic syndrome susceptibility loci reveals strong lipid gene contribution but no evidence for common genetic basis for clustering of metabolic syndrome traits. Circ Cardiovasc Genet. 2012;5(2):242–9.CrossRef Kristiansson K, Perola M, Tikkanen E, Kettunen J, Surakka I, Havulinna AS, Stancáková A, Barnes C, Widen E, Kajantie E, et al. Genome-wide screen for metabolic syndrome susceptibility loci reveals strong lipid gene contribution but no evidence for common genetic basis for clustering of metabolic syndrome traits. Circ Cardiovasc Genet. 2012;5(2):242–9.CrossRef
12.
go back to reference Barter PJ. Hugh Sinclair lecture: the regulation and remodelling of HDL by plasma factors. Atheroscler Suppl. 2002;3(4):39–47.CrossRef Barter PJ. Hugh Sinclair lecture: the regulation and remodelling of HDL by plasma factors. Atheroscler Suppl. 2002;3(4):39–47.CrossRef
13.
go back to reference Calabresi L, Nilsson P, Pinotti E, Gomaraschi M, Favari E, Adorni MP, Bernini F, Sirtori CR, Calandra S, Franceschini G, et al. A novel homozygous mutation in CETP gene as a cause of CETP deficiency in a Caucasian kindred. Atherosclerosis. 2009;205(2):506–11.CrossRef Calabresi L, Nilsson P, Pinotti E, Gomaraschi M, Favari E, Adorni MP, Bernini F, Sirtori CR, Calandra S, Franceschini G, et al. A novel homozygous mutation in CETP gene as a cause of CETP deficiency in a Caucasian kindred. Atherosclerosis. 2009;205(2):506–11.CrossRef
14.
go back to reference Cefalù AB, Noto D, Magnolo L, Pinotti E, Gomaraschi M, Martini S, Vigna GB, Calabresi L, Tarugi P, Averna MR. Novel mutations of CETP gene in Italian subjects with hyperalphalipoproteinemia. Atherosclerosis. 2009;204(1):202–7.CrossRef Cefalù AB, Noto D, Magnolo L, Pinotti E, Gomaraschi M, Martini S, Vigna GB, Calabresi L, Tarugi P, Averna MR. Novel mutations of CETP gene in Italian subjects with hyperalphalipoproteinemia. Atherosclerosis. 2009;204(1):202–7.CrossRef
16.
go back to reference Blangero J, Diego VP, Dyer TD, Almeida M, Peralta J, Kent JW Jr, Williams JT, Almasy L, Göring HH. A kernel of truth: statistical advances in polygenic variance component models for complex human pedigrees. Adv Genet. 2013;81:1–31.PubMedPubMedCentral Blangero J, Diego VP, Dyer TD, Almeida M, Peralta J, Kent JW Jr, Williams JT, Almasy L, Göring HH. A kernel of truth: statistical advances in polygenic variance component models for complex human pedigrees. Adv Genet. 2013;81:1–31.PubMedPubMedCentral
Metadata
Title
Heritability and genetic associations of triglyceride and HDL-C levels using pedigree-based and empirical kinships
Authors
Nicholas B. Blackburn
Arthur Porto
Juan M. Peralta
John Blangero
Publication date
01-09-2018
Publisher
BioMed Central
Published in
BMC Proceedings / Issue Special Issue 9/2018
Electronic ISSN: 1753-6561
DOI
https://doi.org/10.1186/s12919-018-0133-x

Other articles of this Special Issue 9/2018

BMC Proceedings 9/2018 Go to the issue