Skip to main content
Top
Published in: Brain Structure and Function 2/2022

01-03-2022 | Review

Hemispheric asymmetries in visual mental imagery

Authors: Jianghao Liu, Alfredo Spagna, Paolo Bartolomeo

Published in: Brain Structure and Function | Issue 2/2022

Login to get access

Abstract

Visual mental imagery is the faculty whereby we can “visualize” objects that are not in our line of sight. Longstanding evidence dating back over thirty years has shown that unilateral brain lesions, especially in the left temporal lobe, can impair aspects of this ability. Yet, there is currently no attempt to identify analogies between these neuropsychological findings of hemispheric asymmetry and those from other neuroscientific approaches. Here, we present a critical review of the available literature on the hemispheric laterality of visual mental imagery, by looking at cross-method patterns of evidence in the domains of lesion neuropsychology, neuroimaging, and direct cortical stimulation. Results can be summarized under three main axes. First, frontoparietal networks in both hemispheres appear to be associated with visual mental imagery. Second, lateralization patterns emerge in the temporal lobes, with the left inferior temporal lobe being the most common finding in the literature for endogenously generated images, especially, but not exclusively, when orthographic material is used to ignite imagery. Third, an opposite pattern of hemispheric laterality emerges when visual mental images are induced by exogenous stimulation; direct cortical electrical stimulation tends to produce visual imagery experiences predominantly when applied to the right temporal lobe. These patterns of hemispheric asymmetry are difficult to reconcile with the dominant model of visual mental imagery, which emphasizes the implication of early sensory cortices. They suggest instead that visual mental imagery relies on large-scale brain networks, with a crucial participation of high-level visual regions in the temporal lobes.
Literature
go back to reference Allison T, Begleiter A, McCarthy G, Roessler E, Nobre AC, Spencer DD (1993) Electrophysiological studies of color processing in human visual cortex. Electroencephalogr Clin Neurophysiol/Evoked Potentials Sect 88:343–355 Allison T, Begleiter A, McCarthy G, Roessler E, Nobre AC, Spencer DD (1993) Electrophysiological studies of color processing in human visual cortex. Electroencephalogr Clin Neurophysiol/Evoked Potentials Sect 88:343–355
go back to reference Allison T, Ginter H, McCarthy G, Nobre AC, Puce A et al (1994) Face recognition in human extrastriate cortex. J Neurophysiol 71:821–825PubMed Allison T, Ginter H, McCarthy G, Nobre AC, Puce A et al (1994) Face recognition in human extrastriate cortex. J Neurophysiol 71:821–825PubMed
go back to reference Andelman-Gur MM, Gazit T, Andelman F, Kipervasser S, Kramer U et al (2019) Spatial distribution and hemispheric asymmetry of electrically evoked experiential phenomena in the human brain. J Neurosurg 1–9 Andelman-Gur MM, Gazit T, Andelman F, Kipervasser S, Kramer U et al (2019) Spatial distribution and hemispheric asymmetry of electrically evoked experiential phenomena in the human brain. J Neurosurg 1–9
go back to reference Andelman-Gur MM, Gazit T, Strauss I, Fried I, Fahoum F (2020) Stimulating the inferior fronto-occipital fasciculus elicits complex visual hallucinations. Brain Stimusl Basic Transl Clin Res Neuromodulation 13:1577–1579 Andelman-Gur MM, Gazit T, Strauss I, Fried I, Fahoum F (2020) Stimulating the inferior fronto-occipital fasciculus elicits complex visual hallucinations. Brain Stimusl Basic Transl Clin Res Neuromodulation 13:1577–1579
go back to reference Bancaud J, Brunet-Bourgin F, Chauvel P, Halgren E (1994) Anatomical origin of deja vu and vivid “memories” in human temporal lobe epilepsy. Brain 117(Pt 1):71–90PubMed Bancaud J, Brunet-Bourgin F, Chauvel P, Halgren E (1994) Anatomical origin of deja vu and vivid “memories” in human temporal lobe epilepsy. Brain 117(Pt 1):71–90PubMed
go back to reference Barnes J, Howard RJ, Senior C, Brammer M, Bullmore ET et al (2000) Cortical activity during rotational and linear transformations. Neuropsychologia 38:1148–1156PubMed Barnes J, Howard RJ, Senior C, Brammer M, Bullmore ET et al (2000) Cortical activity during rotational and linear transformations. Neuropsychologia 38:1148–1156PubMed
go back to reference Bartolomeo P (2002) The relationship between visual perception and visual mental imagery: a reappraisal of the neuropsychological evidence. Cortex 38:357–378PubMed Bartolomeo P (2002) The relationship between visual perception and visual mental imagery: a reappraisal of the neuropsychological evidence. Cortex 38:357–378PubMed
go back to reference Bartolomeo P (2008) The neural correlates of visual mental imagery: an ongoing debate. Cortex 44:107–108PubMed Bartolomeo P (2008) The neural correlates of visual mental imagery: an ongoing debate. Cortex 44:107–108PubMed
go back to reference Bartolomeo P (2011) The quest for the “critical lesion site” in cognitive deficits: problems and perspectives. Cortex 47:1010–1012PubMed Bartolomeo P (2011) The quest for the “critical lesion site” in cognitive deficits: problems and perspectives. Cortex 47:1010–1012PubMed
go back to reference Bartolomeo P (2020) Penser droit. Flammarion, Paris Bartolomeo P (2020) Penser droit. Flammarion, Paris
go back to reference Bartolomeo P, Chokron S (2002) Can we change our vantage point to explore imaginal neglect? (Commentary on Pylyshyn: Mental imagery: In search of a theory). Behav Brain Sci 25:184–185 Bartolomeo P, Chokron S (2002) Can we change our vantage point to explore imaginal neglect? (Commentary on Pylyshyn: Mental imagery: In search of a theory). Behav Brain Sci 25:184–185
go back to reference Bartolomeo P, Seidel MT (2019) Hemispheric lateralization of attention processes in the human brain. Curr Opin Psychol 29C:90–96 Bartolomeo P, Seidel MT (2019) Hemispheric lateralization of attention processes in the human brain. Curr Opin Psychol 29C:90–96
go back to reference Bartolomeo P, D’Erme P, Gainotti G (1994) The relationship between visuospatial and representational neglect. Neurology 44:1710–1714PubMed Bartolomeo P, D’Erme P, Gainotti G (1994) The relationship between visuospatial and representational neglect. Neurology 44:1710–1714PubMed
go back to reference Bartolomeo P, Bachoud-Lévi AC, de Gelder B, Denes G, Dalla Barba G et al (1998) Multiple-domain dissociation between impaired visual perception and preserved mental imagery in a patient with bilateral extrastriate lesions. Neuropsychologia 36:239–249PubMed Bartolomeo P, Bachoud-Lévi AC, de Gelder B, Denes G, Dalla Barba G et al (1998) Multiple-domain dissociation between impaired visual perception and preserved mental imagery in a patient with bilateral extrastriate lesions. Neuropsychologia 36:239–249PubMed
go back to reference Bartolomeo P, Bachoud-Lévi AC, Chokron S, Degos JD (2002) Visually- and motor-based knowledge of letters: evidence from a pure alexic patient. Neuropsychologia 40:1363–1371PubMed Bartolomeo P, Bachoud-Lévi AC, Chokron S, Degos JD (2002) Visually- and motor-based knowledge of letters: evidence from a pure alexic patient. Neuropsychologia 40:1363–1371PubMed
go back to reference Bartolomeo P, Bachoud-Lévi A-C, Azouvi P, Chokron S (2005) Time to imagine space: a chronometric exploration of representational neglect. Neuropsychologia 43:1249–1257PubMed Bartolomeo P, Bachoud-Lévi A-C, Azouvi P, Chokron S (2005) Time to imagine space: a chronometric exploration of representational neglect. Neuropsychologia 43:1249–1257PubMed
go back to reference Bartolomeo P, Seidel Malkinson T, de Vito S (2017) Botallo’s error, or the quandaries of the universality assumption. Cortex 86:176–185PubMed Bartolomeo P, Seidel Malkinson T, de Vito S (2017) Botallo’s error, or the quandaries of the universality assumption. Cortex 86:176–185PubMed
go back to reference Bartolomeo P, Hajhajate D, Liu J, Spagna A (2020) Assessing the causal role of early visual areas in visual mental imagery. Nat Rev Neurosci 21:517PubMed Bartolomeo P, Hajhajate D, Liu J, Spagna A (2020) Assessing the causal role of early visual areas in visual mental imagery. Nat Rev Neurosci 21:517PubMed
go back to reference Bassett DS, Cullen KE, Eickhoff SB, Farah MJ, Goda Y et al (2020) Reflections on the past two decades of neuroscience. Nat Rev Neurosci 1–11 Bassett DS, Cullen KE, Eickhoff SB, Farah MJ, Goda Y et al (2020) Reflections on the past two decades of neuroscience. Nat Rev Neurosci 1–11
go back to reference Belardinelli MO, Palmiero M, Sestieri C, Nardo D, Di Matteo R et al (2009) An fMRI investigation on image generation in different sensory modalities: the influence of vividness. Acta Physiol (Oxf) 132:190–200 Belardinelli MO, Palmiero M, Sestieri C, Nardo D, Di Matteo R et al (2009) An fMRI investigation on image generation in different sensory modalities: the influence of vividness. Acta Physiol (Oxf) 132:190–200
go back to reference Bien N, Sack AT (2014) Dissecting hemisphere-specific contributions to visual spatial imagery using parametric brain mapping. Neuroimage 94:231–238PubMed Bien N, Sack AT (2014) Dissecting hemisphere-specific contributions to visual spatial imagery using parametric brain mapping. Neuroimage 94:231–238PubMed
go back to reference Bisiach E, Luzzatti C (1978) Unilateral neglect of representational space. Cortex 14:129–133PubMed Bisiach E, Luzzatti C (1978) Unilateral neglect of representational space. Cortex 14:129–133PubMed
go back to reference Blanke O, Landis T, Seeck M (2000) Electrical cortical stimulation of the human prefrontal cortex evokes complex visual hallucinations. Epilepsy Behav 1:356–361PubMed Blanke O, Landis T, Seeck M (2000) Electrical cortical stimulation of the human prefrontal cortex evokes complex visual hallucinations. Epilepsy Behav 1:356–361PubMed
go back to reference Boccia M, Piccardi L, Palermo L, Nemmi F, Sulpizio V et al (2015) A penny for your thoughts! Patterns of fMRI activity reveal the content and the spatial topography of visual mental images. Hum Brain Mapp 36:945–958PubMed Boccia M, Piccardi L, Palermo L, Nemmi F, Sulpizio V et al (2015) A penny for your thoughts! Patterns of fMRI activity reveal the content and the spatial topography of visual mental images. Hum Brain Mapp 36:945–958PubMed
go back to reference Boly M, Coleman MR, Davis M, Hampshire A, Bor D et al (2007) When thoughts become action: an fMRI paradigm to study volitional brain activity in non-communicative brain injured patients. Neuroimage 36:979–992PubMed Boly M, Coleman MR, Davis M, Hampshire A, Bor D et al (2007) When thoughts become action: an fMRI paradigm to study volitional brain activity in non-communicative brain injured patients. Neuroimage 36:979–992PubMed
go back to reference Bourlon C, Pradat-Diehl P, Duret C, Azouvi P, Bartolomeo P (2008) Seeing and imagining the “same” objects in unilateral neglect. Neuropsychologia 46:2602–2606PubMed Bourlon C, Pradat-Diehl P, Duret C, Azouvi P, Bartolomeo P (2008) Seeing and imagining the “same” objects in unilateral neglect. Neuropsychologia 46:2602–2606PubMed
go back to reference Bourlon C, Duret C, Pradat-Diehl P, Azouvi P, Loeper-Jeny C et al (2011) Vocal response times to real and imagined stimuli in spatial neglect: a group study and single-case report. Cortex 47:536–546PubMed Bourlon C, Duret C, Pradat-Diehl P, Azouvi P, Loeper-Jeny C et al (2011) Vocal response times to real and imagined stimuli in spatial neglect: a group study and single-case report. Cortex 47:536–546PubMed
go back to reference Broca P (1865) Sur le siège de la faculté du langage articulé. Bulletins de la Société d’Anthropologie de Paris 6:377–393 Broca P (1865) Sur le siège de la faculté du langage articulé. Bulletins de la Société d’Anthropologie de Paris 6:377–393
go back to reference Caramazza A, McCloskey M (1988) The case for single-patient studies. Cogn Neuropsychol 5:517–527 Caramazza A, McCloskey M (1988) The case for single-patient studies. Cogn Neuropsychol 5:517–527
go back to reference Cohen L, Verstichel P, Pierrot-Deseilligny C (1992) Hallucinatory vision of a familiar face following right temporal hemorrhage. Neurology 42:2052PubMed Cohen L, Verstichel P, Pierrot-Deseilligny C (1992) Hallucinatory vision of a familiar face following right temporal hemorrhage. Neurology 42:2052PubMed
go back to reference Creem-Regehr SH, Neil JA, Yeh HJ (2007) Neural correlates of two imagined egocentric transformations. Neuroimage 35:916–927PubMed Creem-Regehr SH, Neil JA, Yeh HJ (2007) Neural correlates of two imagined egocentric transformations. Neuroimage 35:916–927PubMed
go back to reference Daselaar SM, Porat Y, Huijbers W, Pennartz CM (2010) Modality-specific and modality-independent components of the human imagery system. Neuroimage 52:677–685PubMed Daselaar SM, Porat Y, Huijbers W, Pennartz CM (2010) Modality-specific and modality-independent components of the human imagery system. Neuroimage 52:677–685PubMed
go back to reference Deacon D, Grose-Fifer J, Yang CM, Stanick V, Hewitt S, Dynowska A (2004) Evidence for a new conceptualization of semantic representation in the left and right cerebral hemispheres. Cortex 40:467–478PubMed Deacon D, Grose-Fifer J, Yang CM, Stanick V, Hewitt S, Dynowska A (2004) Evidence for a new conceptualization of semantic representation in the left and right cerebral hemispheres. Cortex 40:467–478PubMed
go back to reference D’Esposito M, Detre JA, Aguirre GK, Stallcup M, Alsop DC et al (1997) A functional MRI study of mental image generation. Neuropsychologia 35:725–730PubMed D’Esposito M, Detre JA, Aguirre GK, Stallcup M, Alsop DC et al (1997) A functional MRI study of mental image generation. Neuropsychologia 35:725–730PubMed
go back to reference Dhindsa K, Drobinin V, King J, Hall GB, Burgess N, Becker S (2014) Examining the role of the temporo-parietal network in memory, imagery, and viewpoint transformations. Front Hum Neurosci 8:709PubMedPubMedCentral Dhindsa K, Drobinin V, King J, Hall GB, Burgess N, Becker S (2014) Examining the role of the temporo-parietal network in memory, imagery, and viewpoint transformations. Front Hum Neurosci 8:709PubMedPubMedCentral
go back to reference Dobelle W, Mladejovsky M (1974) Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol 243:553–576PubMedPubMedCentral Dobelle W, Mladejovsky M (1974) Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol 243:553–576PubMedPubMedCentral
go back to reference Ehrlichman H, Barrett J (1983) Right hemispheric specialization for mental imagery: a review of the evidence. Brain Cogn 2:55–76PubMed Ehrlichman H, Barrett J (1983) Right hemispheric specialization for mental imagery: a review of the evidence. Brain Cogn 2:55–76PubMed
go back to reference Etcoff NL, Freeman R, Cave KL (1991) Can we lose memories of faces? Content specificity and awareness in a prosopagnosic. J Cogn Neurosci 3:25–41PubMed Etcoff NL, Freeman R, Cave KL (1991) Can we lose memories of faces? Content specificity and awareness in a prosopagnosic. J Cogn Neurosci 3:25–41PubMed
go back to reference Farah MJ (1984) The neurological basis of mental imagery: a componential analysis. Cognition 18:245–272PubMed Farah MJ (1984) The neurological basis of mental imagery: a componential analysis. Cognition 18:245–272PubMed
go back to reference Farah MJ (1986) The laterality of mental image generation: a test with normal subjects. Neuropsychologia 24:541–551PubMed Farah MJ (1986) The laterality of mental image generation: a test with normal subjects. Neuropsychologia 24:541–551PubMed
go back to reference Farrell DF, Leeman S, Ojemann GA (2007) Study of the human visual cortex: direct cortical evoked potentials and stimulation. J Clin Neurophysiol 24:1–10PubMed Farrell DF, Leeman S, Ojemann GA (2007) Study of the human visual cortex: direct cortical evoked potentials and stimulation. J Clin Neurophysiol 24:1–10PubMed
go back to reference Fish DR, Gloor P, Quesney FL, Olivier A (1993) Clinical responses to electrical brain stimulation of the temporal and frontal lobes in patients with epilepsy. Pathophysiol Implics Brain 116(Pt 2):397–414 Fish DR, Gloor P, Quesney FL, Olivier A (1993) Clinical responses to electrical brain stimulation of the temporal and frontal lobes in patients with epilepsy. Pathophysiol Implics Brain 116(Pt 2):397–414
go back to reference Formisano E, Linden DE, Di Salle F, Trojano L, Esposito F et al (2002) Tracking the mind’s image in the brain I: time-resolved fMRI during visuospatial mental imagery. Neuron 35:185–194PubMed Formisano E, Linden DE, Di Salle F, Trojano L, Esposito F et al (2002) Tracking the mind’s image in the brain I: time-resolved fMRI during visuospatial mental imagery. Neuron 35:185–194PubMed
go back to reference Ganis G, Schendan HE (2008) Visual mental imagery and perception produce opposite adaptation effects on early brain potentials. Neuroimage 42:1714–1727PubMed Ganis G, Schendan HE (2008) Visual mental imagery and perception produce opposite adaptation effects on early brain potentials. Neuroimage 42:1714–1727PubMed
go back to reference Ganis G, Thompson WL, Kosslyn SM (2004) Brain areas underlying visual mental imagery and visual perception: an fMRI study. Brain Res Cogn Brain Res 20:226–241PubMed Ganis G, Thompson WL, Kosslyn SM (2004) Brain areas underlying visual mental imagery and visual perception: an fMRI study. Brain Res Cogn Brain Res 20:226–241PubMed
go back to reference Gardini S, De Beni R, Cornoldi C, Bromiley A, Venneri A (2005) Different neuronal pathways support the generation of general and specific mental images. Neuroimage 27:544–552PubMed Gardini S, De Beni R, Cornoldi C, Bromiley A, Venneri A (2005) Different neuronal pathways support the generation of general and specific mental images. Neuroimage 27:544–552PubMed
go back to reference Gauthier B, Prabhu P, Kotegar KA, van Wassenhove V (2020) Hippocampal contribution to ordinal psychological time in the human brain. J Cogn Neurosci 32:2071–2086PubMed Gauthier B, Prabhu P, Kotegar KA, van Wassenhove V (2020) Hippocampal contribution to ordinal psychological time in the human brain. J Cogn Neurosci 32:2071–2086PubMed
go back to reference Gloor P, Olivier A, Quesney LF, Andermann F, Horowitz S (1982) The role of the limbic system in experiential phenomena of temporal lobe epilepsy. Ann Neurol 12:129–144PubMed Gloor P, Olivier A, Quesney LF, Andermann F, Horowitz S (1982) The role of the limbic system in experiential phenomena of temporal lobe epilepsy. Ann Neurol 12:129–144PubMed
go back to reference Goebel R, Khorram-Sefat D, Muckli L, Hacker H, Singer W (1998) The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. Eur J Neurosci 10:1563–1573PubMed Goebel R, Khorram-Sefat D, Muckli L, Hacker H, Singer W (1998) The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. Eur J Neurosci 10:1563–1573PubMed
go back to reference Grose-Fifer J, Deacon D (2004) Priming by natural category membership in the left and right cerebral hemispheres. Neuropsychologia 42:1948–1960PubMed Grose-Fifer J, Deacon D (2004) Priming by natural category membership in the left and right cerebral hemispheres. Neuropsychologia 42:1948–1960PubMed
go back to reference Guariglia C, Padovani A, Pantano P, Pizzamiglio L (1993) Unilateral neglect restricted to visual imagery. Nature 364:235–237PubMed Guariglia C, Padovani A, Pantano P, Pizzamiglio L (1993) Unilateral neglect restricted to visual imagery. Nature 364:235–237PubMed
go back to reference Guillot A, Collet C, Nguyen VA, Malouin F, Richards C, Doyon J (2009) Brain activity during visual versus kinesthetic imagery: an fMRI study. Hum Brain Mapp 30:2157–2172PubMed Guillot A, Collet C, Nguyen VA, Malouin F, Richards C, Doyon J (2009) Brain activity during visual versus kinesthetic imagery: an fMRI study. Hum Brain Mapp 30:2157–2172PubMed
go back to reference Gulyás B (2001) Neural networks for internal reading and visual imagery of reading: a PET study. Brain Res Bull 54:319–328PubMed Gulyás B (2001) Neural networks for internal reading and visual imagery of reading: a PET study. Brain Res Bull 54:319–328PubMed
go back to reference Hamamé CM, Vidal JR, Ossandón T, Jerbi K, Dalal SS et al (2012) Reading the mind’s eye: online detection of visuo-spatial working memory and visual imagery in the inferior temporal lobe. Neuroimage 59:872–879PubMed Hamamé CM, Vidal JR, Ossandón T, Jerbi K, Dalal SS et al (2012) Reading the mind’s eye: online detection of visuo-spatial working memory and visual imagery in the inferior temporal lobe. Neuroimage 59:872–879PubMed
go back to reference Handy T, Miller M, Schott B, Shroff N, Janata P et al (2004) Visual imagery and memory: do retrieval strategies affect what the mind’s eye sees? Eur J Cogn Psychol 16:631–652 Handy T, Miller M, Schott B, Shroff N, Janata P et al (2004) Visual imagery and memory: do retrieval strategies affect what the mind’s eye sees? Eur J Cogn Psychol 16:631–652
go back to reference Hawes Z, Sokolowski HM, Ononye CB, Ansari D (2019) Neural underpinnings of numerical and spatial cognition: an fMRI meta-analysis of brain regions associated with symbolic number, arithmetic, and mental rotation. Neurosci Biobehav Rev 103:316–336PubMed Hawes Z, Sokolowski HM, Ononye CB, Ansari D (2019) Neural underpinnings of numerical and spatial cognition: an fMRI meta-analysis of brain regions associated with symbolic number, arithmetic, and mental rotation. Neurosci Biobehav Rev 103:316–336PubMed
go back to reference Howard RJ, Barnes J, McKeefry D, Ha Y, Woodruff PW et al (1998) The functional anatomy of imagining and perceiving colour. NeuroReport 9:1019–1023PubMed Howard RJ, Barnes J, McKeefry D, Ha Y, Woodruff PW et al (1998) The functional anatomy of imagining and perceiving colour. NeuroReport 9:1019–1023PubMed
go back to reference Hughlings JJ (1888) On a particular variety of epilepsy (“Intellectual Aura”), one case with symptoms of organic brain disease. Brain 11:179–207 Hughlings JJ (1888) On a particular variety of epilepsy (“Intellectual Aura”), one case with symptoms of organic brain disease. Brain 11:179–207
go back to reference Hughlings JJ (1931) Selected writings. On epilepsy and epileptiform convulsions Hughlings JJ (1931) Selected writings. On epilepsy and epileptiform convulsions
go back to reference Hughlings Jackson J, Stewart P (1899) Epileptic Attacks with a Warning of a Crude Sensation of Smell and with the Intellectual Aura (Dreamy State) in a Patient Who Had Symptoms Pointing to Gross Organic Disease of the Right Temporo-Sphenoidal Lobe. Brain 22:534–549 Hughlings Jackson J, Stewart P (1899) Epileptic Attacks with a Warning of a Crude Sensation of Smell and with the Intellectual Aura (Dreamy State) in a Patient Who Had Symptoms Pointing to Gross Organic Disease of the Right Temporo-Sphenoidal Lobe. Brain 22:534–549
go back to reference Ishai A, Ungerleider LG, Haxby JV (2000) Distributed neural systems for the generation of visual images. Neuron 28:979–990PubMed Ishai A, Ungerleider LG, Haxby JV (2000) Distributed neural systems for the generation of visual images. Neuron 28:979–990PubMed
go back to reference Iturria-Medina Y, Pérez Fernández A, Morris DM, Canales-Rodríguez EJ, Haroon HA et al (2011) Brain hemispheric structural efficiency and interconnectivity rightward asymmetry in human and nonhuman primates. Cereb Cortex 21:56–67PubMed Iturria-Medina Y, Pérez Fernández A, Morris DM, Canales-Rodríguez EJ, Haroon HA et al (2011) Brain hemispheric structural efficiency and interconnectivity rightward asymmetry in human and nonhuman primates. Cereb Cortex 21:56–67PubMed
go back to reference Jasper HH, Rasmussen T (1958) Studies of clinical and electrical responses to deep temporal stimulation in man with some considerations of functional anatomy. Res Publ Assoc Res Nervous Mental Dis 36:316–334 Jasper HH, Rasmussen T (1958) Studies of clinical and electrical responses to deep temporal stimulation in man with some considerations of functional anatomy. Res Publ Assoc Res Nervous Mental Dis 36:316–334
go back to reference Jonas J, Frismand S, Vignal JP, Colnat-Coulbois S, Koessler L et al (2014) Right hemispheric dominance of visual phenomena evoked by intracerebral stimulation of the human visual cortex. Hum Brain Mapp 35:3360–3371PubMed Jonas J, Frismand S, Vignal JP, Colnat-Coulbois S, Koessler L et al (2014) Right hemispheric dominance of visual phenomena evoked by intracerebral stimulation of the human visual cortex. Hum Brain Mapp 35:3360–3371PubMed
go back to reference Jonas J, Rossion B, Brissart H, Frismand S, Jacques C et al (2015) Beyond the core face-processing network: Intracerebral stimulation of a face-selective area in the right anterior fusiform gyrus elicits transient prosopagnosia. Cortex 72:140–155PubMed Jonas J, Rossion B, Brissart H, Frismand S, Jacques C et al (2015) Beyond the core face-processing network: Intracerebral stimulation of a face-selective area in the right anterior fusiform gyrus elicits transient prosopagnosia. Cortex 72:140–155PubMed
go back to reference Jordan K, Heinze HJ, Lutz K, Kanowski M, Jäncke L (2001) Cortical activations during the mental rotation of different visual objects. Neuroimage 13:143–152PubMed Jordan K, Heinze HJ, Lutz K, Kanowski M, Jäncke L (2001) Cortical activations during the mental rotation of different visual objects. Neuroimage 13:143–152PubMed
go back to reference Kellenbach ML, Brett M, Patterson K (2001) Large, colorful, or noisy? Attribute- and modality-specific activations during retrieval of perceptual attribute knowledge. Cogn Affect Behav Neurosci 1:207–221PubMed Kellenbach ML, Brett M, Patterson K (2001) Large, colorful, or noisy? Attribute- and modality-specific activations during retrieval of perceptual attribute knowledge. Cogn Affect Behav Neurosci 1:207–221PubMed
go back to reference Kilintari M, Narayana S, Babajani-Feremi A, Rezaie R, Papanicolaou AC (2016) Brain activation profiles during kinesthetic and visual imagery: An fMRI study. Brain Res 1646:249–261PubMed Kilintari M, Narayana S, Babajani-Feremi A, Rezaie R, Papanicolaou AC (2016) Brain activation profiles during kinesthetic and visual imagery: An fMRI study. Brain Res 1646:249–261PubMed
go back to reference Kim S-E, Kim J-W, Kim J-J, Jeong BS, Choi EA et al (2007) The neural mechanism of imagining facial affective expression. Brain Res 1145:128–137PubMed Kim S-E, Kim J-W, Kim J-J, Jeong BS, Choi EA et al (2007) The neural mechanism of imagining facial affective expression. Brain Res 1145:128–137PubMed
go back to reference Kosslyn SM, Holtzman JD, Farah MJ, Gazzaniga MS (1985) A computational analysis of mental image generation: evidence from functional dissociations in split-brain patients. J Exp Psychol Gen 114:311–341PubMed Kosslyn SM, Holtzman JD, Farah MJ, Gazzaniga MS (1985) A computational analysis of mental image generation: evidence from functional dissociations in split-brain patients. J Exp Psychol Gen 114:311–341PubMed
go back to reference Kosslyn SM, Thompson WL, Ganis G (2006) The case for mental imagery. Oxford University Press. vi, New York, pp 248–vi Kosslyn SM, Thompson WL, Ganis G (2006) The case for mental imagery. Oxford University Press. vi, New York, pp 248–vi
go back to reference Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG, Mishkin M (2013) The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci 17:26–49PubMed Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG, Mishkin M (2013) The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci 17:26–49PubMed
go back to reference Kreiman G, Koch C, Fried I (2000) Imagery neurons in the human brain. Nature 408:357–61PubMed Kreiman G, Koch C, Fried I (2000) Imagery neurons in the human brain. Nature 408:357–61PubMed
go back to reference Kukolja J, Marshall JC, Fink GR (2006) Neural mechanisms underlying spatial judgements on seen and imagined visual stimuli in the left and right hemifields in men. Neuropsychologia 44:2846–60PubMed Kukolja J, Marshall JC, Fink GR (2006) Neural mechanisms underlying spatial judgements on seen and imagined visual stimuli in the left and right hemifields in men. Neuropsychologia 44:2846–60PubMed
go back to reference Lambert S, Sampaio E, Scheiber C, Mauss Y (2002) Neural substrates of animal mental imagery: calcarine sulcus and dorsal pathway involvement—an fMRI study. Brain Res 924:176–83PubMed Lambert S, Sampaio E, Scheiber C, Mauss Y (2002) Neural substrates of animal mental imagery: calcarine sulcus and dorsal pathway involvement—an fMRI study. Brain Res 924:176–83PubMed
go back to reference Lambon Ralph MA, Jefferies E, Patterson K, Rogers TT (2017) The neural and computational bases of semantic cognition. Nat Rev Neurosci 18:42 Lambon Ralph MA, Jefferies E, Patterson K, Rogers TT (2017) The neural and computational bases of semantic cognition. Nat Rev Neurosci 18:42
go back to reference Lamp G, Alexander B, Laycock R, Crewther DP, Crewther SG (2016) Mapping of the Underlying Neural Mechanisms of Maintenance and Manipulation in Visuo-Spatial Working Memory Using An n-back Mental Rotation Task: A Functional Magnetic Resonance Imaging Study. Front Behav Neurosci 10 Lamp G, Alexander B, Laycock R, Crewther DP, Crewther SG (2016) Mapping of the Underlying Neural Mechanisms of Maintenance and Manipulation in Visuo-Spatial Working Memory Using An n-back Mental Rotation Task: A Functional Magnetic Resonance Imaging Study. Front Behav Neurosci 10
go back to reference Lee HW, Hong SB, Seo DW, Tae WS, Hong SC (2000) Mapping of functional organization in human visual cortex: electrical cortical stimulation. Neurology 54:849–54PubMed Lee HW, Hong SB, Seo DW, Tae WS, Hong SC (2000) Mapping of functional organization in human visual cortex: electrical cortical stimulation. Neurology 54:849–54PubMed
go back to reference Levine DN, Warach J, Farah M (1985) Two visual systems in mental imagery: dissociation of “what” and “where” in imagery disorders due to bilateral posterior cerebral lesions. Neurology 35:1010–8PubMed Levine DN, Warach J, Farah M (1985) Two visual systems in mental imagery: dissociation of “what” and “where” in imagery disorders due to bilateral posterior cerebral lesions. Neurology 35:1010–8PubMed
go back to reference Logie RH, Pernet CR, Buonocore A, Della SS (2011) Low and high imagers activate networks differentially in mental rotation. Neuropsychologia 49:3071–7PubMed Logie RH, Pernet CR, Buonocore A, Della SS (2011) Low and high imagers activate networks differentially in mental rotation. Neuropsychologia 49:3071–7PubMed
go back to reference Mahon BZ, Caramazza A (2011) What drives the organization of object knowledge in the brain? Trends Cogn Sci 15:97–103PubMedPubMedCentral Mahon BZ, Caramazza A (2011) What drives the organization of object knowledge in the brain? Trends Cogn Sci 15:97–103PubMedPubMedCentral
go back to reference Marinkovic K, Trebon P, Chauvel P, Halgren E (2000) Localised face processing by the human prefrontal cortex: face-selective intracerebral potentials and post-lesion deficits. Cogn Neuropsychol 17:187–99PubMed Marinkovic K, Trebon P, Chauvel P, Halgren E (2000) Localised face processing by the human prefrontal cortex: face-selective intracerebral potentials and post-lesion deficits. Cogn Neuropsychol 17:187–99PubMed
go back to reference Mazard A, Laou L, Joliot M, Mellet E (2005) Neural impact of the semantic content of visual mental images and visual percepts. Cogn Brain Res 24:423–35 Mazard A, Laou L, Joliot M, Mellet E (2005) Neural impact of the semantic content of visual mental images and visual percepts. Cogn Brain Res 24:423–35
go back to reference McNorgan C (2012) A meta-analytic review of multisensory imagery identifies the neural correlates of modality-specific and modality-general imagery. Front Hum Neurosci 6:285PubMedPubMedCentral McNorgan C (2012) A meta-analytic review of multisensory imagery identifies the neural correlates of modality-specific and modality-general imagery. Front Hum Neurosci 6:285PubMedPubMedCentral
go back to reference Mégevand P, Groppe DM, Goldfinger MS, Hwang ST, Kingsley PB et al (2014) Seeing Scenes: topographic visual hallucinations evoked by direct electrical stimulation of the parahippocampal place area. J Neurosci 34:5399–405PubMedPubMedCentral Mégevand P, Groppe DM, Goldfinger MS, Hwang ST, Kingsley PB et al (2014) Seeing Scenes: topographic visual hallucinations evoked by direct electrical stimulation of the parahippocampal place area. J Neurosci 34:5399–405PubMedPubMedCentral
go back to reference Mellet E, Bricogne S, Tzourio-Mazoyer N, Ghaem O, Petit L et al (2000) Neural correlates of topographic mental exploration: the impact of route versus survey perspective learning. Neuroimage 12:588–600PubMed Mellet E, Bricogne S, Tzourio-Mazoyer N, Ghaem O, Petit L et al (2000) Neural correlates of topographic mental exploration: the impact of route versus survey perspective learning. Neuroimage 12:588–600PubMed
go back to reference Moriarity JL, Boatman D, Krauss GL, Storm PB, Lenz FA (2001) Human “memories” can be evoked by stimulation of the lateral temporal cortex after ipsilateral medial temporal lobe resection. J Neurol Neurosurg Psychiatry 71:549–51PubMedPubMedCentral Moriarity JL, Boatman D, Krauss GL, Storm PB, Lenz FA (2001) Human “memories” can be evoked by stimulation of the lateral temporal cortex after ipsilateral medial temporal lobe resection. J Neurol Neurosurg Psychiatry 71:549–51PubMedPubMedCentral
go back to reference Moro V, Berlucchi G, Lerch J, Tomaiuolo F, Aglioti SM (2008) Selective deficit of mental visual imagery with intact primary visual cortex and visual perception. Cortex 44:109–18PubMed Moro V, Berlucchi G, Lerch J, Tomaiuolo F, Aglioti SM (2008) Selective deficit of mental visual imagery with intact primary visual cortex and visual perception. Cortex 44:109–18PubMed
go back to reference Mullan S, Penfield W (1959) Illusions of comparative interpretation and emotion; production by epileptic discharge and by electrical stimulation in the temporal cortex. AMA Arch Neurol Psychiatry 81:269–84PubMed Mullan S, Penfield W (1959) Illusions of comparative interpretation and emotion; production by epileptic discharge and by electrical stimulation in the temporal cortex. AMA Arch Neurol Psychiatry 81:269–84PubMed
go back to reference Murphey DK, Yoshor D, Beauchamp MS (2008) Perception matches selectivity in the human anterior color center. Curr Biol 18(3):216–220PubMed Murphey DK, Yoshor D, Beauchamp MS (2008) Perception matches selectivity in the human anterior color center. Curr Biol 18(3):216–220PubMed
go back to reference Murphey DK, Maunsell JHR, Beauchamp MS, Yoshor D (2009) Perceiving electrical stimulation of identified human visual areas. Proc Natl Acad Sci 106:5389–93PubMedPubMedCentral Murphey DK, Maunsell JHR, Beauchamp MS, Yoshor D (2009) Perceiving electrical stimulation of identified human visual areas. Proc Natl Acad Sci 106:5389–93PubMedPubMedCentral
go back to reference Newman SD, Klatzky RL, Lederman SJ, Just MA (2005) Imagining material versus geometric properties of objects: an fMRI study. Brain Res Cogn Brain Res 23:235–46PubMed Newman SD, Klatzky RL, Lederman SJ, Just MA (2005) Imagining material versus geometric properties of objects: an fMRI study. Brain Res Cogn Brain Res 23:235–46PubMed
go back to reference O’Craven KM, Kanwisher N (2000) Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J Cogn Neurosci 12:1013–23PubMed O’Craven KM, Kanwisher N (2000) Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J Cogn Neurosci 12:1013–23PubMed
go back to reference Pearson J (2019) The human imagination: the cognitive neuroscience of visual mental imagery. Nat Rev Neurosci 20:624–34PubMed Pearson J (2019) The human imagination: the cognitive neuroscience of visual mental imagery. Nat Rev Neurosci 20:624–34PubMed
go back to reference Pearson J (2020) Reply to: assessing the causal role of early visual areas in visual mental imagery. Nat Rev Neurosci 21:517–8PubMed Pearson J (2020) Reply to: assessing the causal role of early visual areas in visual mental imagery. Nat Rev Neurosci 21:517–8PubMed
go back to reference Penfield W (1938) The cerebral cortex in man: I. The cerebral cortex and consciousness. Arch Neurol Psychiatry 40:417–42 Penfield W (1938) The cerebral cortex in man: I. The cerebral cortex and consciousness. Arch Neurol Psychiatry 40:417–42
go back to reference Penfield W, Perot P (1963) The Brain’s record of auditory and visual experience. A final summary and discussion. Brain 86:595–696PubMed Penfield W, Perot P (1963) The Brain’s record of auditory and visual experience. A final summary and discussion. Brain 86:595–696PubMed
go back to reference Puce A, Allison T, McCarthy G (1999) Electrophysiological studies of human face perception. III: effects of top-down processing on face-specific potentials. Cereb Cortex 9:445–58PubMed Puce A, Allison T, McCarthy G (1999) Electrophysiological studies of human face perception. III: effects of top-down processing on face-specific potentials. Cereb Cortex 9:445–58PubMed
go back to reference Pyke AA, Fincham JM, Anderson JR (2017) When math operations have visuospatial meanings versus purely symbolic definitions: which solving stages and brain regions are affected? Neuroimage 153:319–35PubMed Pyke AA, Fincham JM, Anderson JR (2017) When math operations have visuospatial meanings versus purely symbolic definitions: which solving stages and brain regions are affected? Neuroimage 153:319–35PubMed
go back to reference Reilly M, Machado N, Blumstein SE (2015) Hemispheric lateralization of semantic feature distinctiveness. Neuropsychologia 75:99–108PubMedPubMedCentral Reilly M, Machado N, Blumstein SE (2015) Hemispheric lateralization of semantic feature distinctiveness. Neuropsychologia 75:99–108PubMedPubMedCentral
go back to reference Rode G, Cotton F, Revol P, Jacquin-Courtois S, Rossetti Y, Bartolomeo P (2010) Representation and disconnection in imaginal neglect. Neuropsychologia 48:2903–11PubMed Rode G, Cotton F, Revol P, Jacquin-Courtois S, Rossetti Y, Bartolomeo P (2010) Representation and disconnection in imaginal neglect. Neuropsychologia 48:2903–11PubMed
go back to reference Rousseaux M, Debrock D, Cabaret M, Steinling M (1994) Visual hallucinations with written words in a case of left parietotemporal lesion. J Neurol Neurosurg Psychiatry 57:1268–71PubMedPubMedCentral Rousseaux M, Debrock D, Cabaret M, Steinling M (1994) Visual hallucinations with written words in a case of left parietotemporal lesion. J Neurol Neurosurg Psychiatry 57:1268–71PubMedPubMedCentral
go back to reference Sasaoka T, Mizuhara H, Inui T (2014) Dynamic parieto-premotor network for mental image transformation revealed by simultaneous EEG and fMRI measurement. J Cogn Neurosci 26:232–46PubMed Sasaoka T, Mizuhara H, Inui T (2014) Dynamic parieto-premotor network for mental image transformation revealed by simultaneous EEG and fMRI measurement. J Cogn Neurosci 26:232–46PubMed
go back to reference Schulz R, Woermann FG, Ebner A (2007) When written words become moving pictures: complex visual hallucinations on stimulation of the lateral occipital lobe. Epilepsy Behav 11:147–51PubMed Schulz R, Woermann FG, Ebner A (2007) When written words become moving pictures: complex visual hallucinations on stimulation of the lateral occipital lobe. Epilepsy Behav 11:147–51PubMed
go back to reference Selimbeyoglu A, Parvizi J. 2010. Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature. Front Hum Neurosci 4 Selimbeyoglu A, Parvizi J. 2010. Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature. Front Hum Neurosci 4
go back to reference Shallice T (1988) From Neuropsychology to Mental Structure. Cambridge University Press, New York Shallice T (1988) From Neuropsychology to Mental Structure. Cambridge University Press, New York
go back to reference Shepard RN, Metzler J (1971) Mental rotation of three-dimensional objects. Science 171:701–3PubMed Shepard RN, Metzler J (1971) Mental rotation of three-dimensional objects. Science 171:701–3PubMed
go back to reference Spagna A, Wu T, Kim K, Fan J (2020b) Supramodal executive control of attention: evidence from unimodal and crossmodal dual conflict effects. Cortex 133:266–76PubMed Spagna A, Wu T, Kim K, Fan J (2020b) Supramodal executive control of attention: evidence from unimodal and crossmodal dual conflict effects. Cortex 133:266–76PubMed
go back to reference Spagna A, Hajhajate D, Liu J, Bartolomeo P (2020a) Visual mental imagery engages the left fusiform gyrus, but not the early visual cortex: a meta-analysis of neuroimaging evidence. bioRxiv: 2020.02.06.937151 Spagna A, Hajhajate D, Liu J, Bartolomeo P (2020a) Visual mental imagery engages the left fusiform gyrus, but not the early visual cortex: a meta-analysis of neuroimaging evidence. bioRxiv: 2020.02.06.937151
go back to reference Spagna A, Hajhajate D, Liu J, Bartolomeo P (2021) Visual mental imagery engages the left fusiform gyrus, but not the early visual cortex: a meta-analysis of neuroimaging evidence. Neurosci Biobehav Rev 122:201–17PubMed Spagna A, Hajhajate D, Liu J, Bartolomeo P (2021) Visual mental imagery engages the left fusiform gyrus, but not the early visual cortex: a meta-analysis of neuroimaging evidence. Neurosci Biobehav Rev 122:201–17PubMed
go back to reference Steel A, Billings MM, Silson EH, Robertson CE (2020) A network linking perception and memory systems in posterior cerebral cortex. bioRxiv: 2020.05.25.115147 Steel A, Billings MM, Silson EH, Robertson CE (2020) A network linking perception and memory systems in posterior cerebral cortex. bioRxiv: 2020.05.25.115147
go back to reference Stokes M, Thompson R, Cusack R, Duncan J (2009) Top-down activation of shape-specific population codes in visual cortex during mental imagery. J Neurosci 29:1565–72PubMedPubMedCentral Stokes M, Thompson R, Cusack R, Duncan J (2009) Top-down activation of shape-specific population codes in visual cortex during mental imagery. J Neurosci 29:1565–72PubMedPubMedCentral
go back to reference Thompson-Schill S, Aguirre G, Desposito M, Farah M (1999) A neural basis for category and modality specificity of semantic knowledge. Neuropsychologia 37:671–6PubMed Thompson-Schill S, Aguirre G, Desposito M, Farah M (1999) A neural basis for category and modality specificity of semantic knowledge. Neuropsychologia 37:671–6PubMed
go back to reference Thorudottir S, Sigurdardottir HM, Rice GE, Kerry SJ, Robotham RJ et al (2020) The architect who lost the ability to imagine: the cerebral basis of visual imagery. Brain Sci 10:59PubMedCentral Thorudottir S, Sigurdardottir HM, Rice GE, Kerry SJ, Robotham RJ et al (2020) The architect who lost the ability to imagine: the cerebral basis of visual imagery. Brain Sci 10:59PubMedCentral
go back to reference Trojano L, Grossi D, Linden DEJ, Formisano E, Hacker H et al (2000) Matching two imagined clocks: the functional anatomy of spatial analysis in the absence of visual stimulation. Cereb Cortex 10:473–81PubMed Trojano L, Grossi D, Linden DEJ, Formisano E, Hacker H et al (2000) Matching two imagined clocks: the functional anatomy of spatial analysis in the absence of visual stimulation. Cereb Cortex 10:473–81PubMed
go back to reference Vallortigara G, Versace E. 2017. Laterality at the neural, cognitive, and behavioral levels. In: APA handbook of comparative psychology: Basic concepts, methods, neural substrate, and behavior, Vol 1. Washington, DC, US: American Psychological Association, pp 557–77 Vallortigara G, Versace E. 2017. Laterality at the neural, cognitive, and behavioral levels. In: APA handbook of comparative psychology: Basic concepts, methods, neural substrate, and behavior, Vol 1. Washington, DC, US: American Psychological Association, pp 557–77
go back to reference VanRullen R, Reddy L (2019) Reconstructing faces from fMRI patterns using deep generative neural networks. Commun Biol s2 VanRullen R, Reddy L (2019) Reconstructing faces from fMRI patterns using deep generative neural networks. Commun Biol s2
go back to reference Vignal J, Chauvel P, Halgren E (2000) Localised face processing by the human prefrontal cortex: stimulation-evoked hallucinations of faces. Cogn Neuropsychol 17:281–91PubMed Vignal J, Chauvel P, Halgren E (2000) Localised face processing by the human prefrontal cortex: stimulation-evoked hallucinations of faces. Cogn Neuropsychol 17:281–91PubMed
go back to reference Vignal JP, Maillard L, McGonigal A, Chauvel P (2007) The dreamy state: hallucinations of autobiographic memory evoked by temporal lobe stimulations and seizures. Brain 130:88–99PubMed Vignal JP, Maillard L, McGonigal A, Chauvel P (2007) The dreamy state: hallucinations of autobiographic memory evoked by temporal lobe stimulations and seizures. Brain 130:88–99PubMed
go back to reference Whittingstall K, Bernier M, Houde JC, Fortin D, Descoteaux M (2014) Structural network underlying visuospatial imagery in humans. Cortex 56:85–98PubMed Whittingstall K, Bernier M, Houde JC, Fortin D, Descoteaux M (2014) Structural network underlying visuospatial imagery in humans. Cortex 56:85–98PubMed
go back to reference Winlove CIP, Milton F, Ranson J, Fulford J, MacKisack M et al (2018) The neural correlates of visual imagery: a co-ordinate-based meta-analysis. Cortex 105:4–25PubMed Winlove CIP, Milton F, Ranson J, Fulford J, MacKisack M et al (2018) The neural correlates of visual imagery: a co-ordinate-based meta-analysis. Cortex 105:4–25PubMed
go back to reference Wu T, Spagna A, Chen C, Schulz KP, Hof PR, Fan J (2020) Supramodal mechanisms of the cognitive control network in uncertainty processing. Cereb Cortex 30:6336–49PubMedPubMedCentral Wu T, Spagna A, Chen C, Schulz KP, Hof PR, Fan J (2020) Supramodal mechanisms of the cognitive control network in uncertainty processing. Cereb Cortex 30:6336–49PubMedPubMedCentral
go back to reference Yomogida Y, Sugiura M, Watanabe J, Akitsuki Y, Sassa Y et al (2004) Mental visual synthesis is originated in the fronto-temporal network of the left hemisphere. Cereb Cortex 14:1376–83PubMed Yomogida Y, Sugiura M, Watanabe J, Akitsuki Y, Sassa Y et al (2004) Mental visual synthesis is originated in the fronto-temporal network of the left hemisphere. Cereb Cortex 14:1376–83PubMed
go back to reference Zeman AZ, Della Sala S, Torrens LA, Gountouna VE, McGonigle DJ, Logie RH (2010) Loss of imagery phenomenology with intact visuo-spatial task performance: a case of “blind imagination.” Neuropsychologia 48:145–55PubMed Zeman AZ, Della Sala S, Torrens LA, Gountouna VE, McGonigle DJ, Logie RH (2010) Loss of imagery phenomenology with intact visuo-spatial task performance: a case of “blind imagination.” Neuropsychologia 48:145–55PubMed
go back to reference Zvyagintsev M, Clemens B, Chechko N, Mathiak KA, Sack AT, Mathiak K (2013) Brain networks underlying mental imagery of auditory and visual information. Eur J Neurosci 37:1421–34PubMed Zvyagintsev M, Clemens B, Chechko N, Mathiak KA, Sack AT, Mathiak K (2013) Brain networks underlying mental imagery of auditory and visual information. Eur J Neurosci 37:1421–34PubMed
Metadata
Title
Hemispheric asymmetries in visual mental imagery
Authors
Jianghao Liu
Alfredo Spagna
Paolo Bartolomeo
Publication date
01-03-2022
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 2/2022
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-021-02277-w

Other articles of this Issue 2/2022

Brain Structure and Function 2/2022 Go to the issue