Skip to main content
Top
Published in: European Radiology 9/2022

29-03-2022 | Hematoma | Neuro

Non-contrast CT markers of intracerebral hematoma expansion: a reliability study

Authors: Ahmad Nehme, Célina Ducroux, Marie-Andrée Panzini, Céline Bard, Olena Bereznyakova, William Boisseau, Yan Deschaintre, Jose Danilo Bengzon Diestro, François Guilbert, Grégory Jacquin, Mohamed Taoubane Maallah, Kristoff Nelson, Igor Gomes Padilha, Alexandre Y. Poppe, Bastien Rioux, Daniel Roy, Lahoud Touma, Alain Weill, Laura C. Gioia, Laurent Létourneau-Guillon

Published in: European Radiology | Issue 9/2022

Login to get access

Abstract

Objectives

We evaluated whether clinicians agree in the detection of non-contrast CT markers of intracerebral hemorrhage (ICH) expansion.

Methods

From our local dataset, we randomly sampled 60 patients diagnosed with spontaneous ICH. Fifteen physicians and trainees (Stroke Neurology, Interventional and Diagnostic Neuroradiology) were trained to identify six density (Barras density, black hole, blend, hypodensity, fluid level, swirl) and three shape (Barras shape, island, satellite) expansion markers, using standardized definitions. Thirteen raters performed a second assessment. Inter- and intra-rater agreement were measured using Gwet’s AC1, with a coefficient > 0.60 indicating substantial to almost perfect agreement.

Results

Almost perfect inter-rater agreement was observed for the swirl (0.85, 95% CI: 0.78–0.90) and fluid level (0.84, 95% CI: 0.76–0.90) markers, while the hypodensity (0.67, 95% CI: 0.56–0.76) and blend (0.62, 95% CI: 0.51–0.71) markers showed substantial agreement. Inter-rater agreement was otherwise moderate, and comparable between density and shape markers. Inter-rater agreement was lower for the three markers that require the rater to identify one specific axial slice (Barras density, Barras shape, island: 0.46, 95% CI: 0.40–0.52 versus others: 0.60, 95% CI: 0.56–0.63). Inter-observer agreement did not differ when stratified for raters’ experience, hematoma location, volume, or anticoagulation status. Intra-rater agreement was substantial to almost perfect for all but the black hole marker.

Conclusion

In a large sample of raters with different backgrounds and expertise levels, only four of nine non-contrast CT markers of ICH expansion showed substantial to almost perfect inter-rater agreement.

Key Points

In a sample of 15 raters and 60 patients, only four of nine non-contrast CT markers of ICH expansion showed substantial to almost perfect inter-rater agreement (Gwet’s AC1> 0.60).
Intra-rater agreement was substantial to almost perfect for eight of nine hematoma expansion markers.
Only the blend, fluid level, and swirl markers achieved substantial to almost perfect agreement across all three measures of reliability (inter-rater agreement, intra-rater agreement, agreement with the results of a reference reading).
Appendix
Available only for authorised users
Literature
1.
go back to reference Al-Shahi Salman R, Frantzias J, Lee RJ et al (2018) Absolute risk and predictors of the growth of acute spontaneous intracerebral haemorrhage: a systematic review and meta-analysis of individual patient data. Lancet Neurol 17:885–894PubMedPubMedCentralCrossRef Al-Shahi Salman R, Frantzias J, Lee RJ et al (2018) Absolute risk and predictors of the growth of acute spontaneous intracerebral haemorrhage: a systematic review and meta-analysis of individual patient data. Lancet Neurol 17:885–894PubMedPubMedCentralCrossRef
2.
go back to reference Wang X, Arima H, Al-Shahi Salman R et al (2015) Clinical prediction algorithm (BRAIN) to determine risk of hematoma growth in acute intracerebral hemorrhage. Stroke 46:376–381PubMedCrossRef Wang X, Arima H, Al-Shahi Salman R et al (2015) Clinical prediction algorithm (BRAIN) to determine risk of hematoma growth in acute intracerebral hemorrhage. Stroke 46:376–381PubMedCrossRef
3.
go back to reference Qureshi AI, Palesch YY, Barsan WG et al (2016) Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. N Engl J Med 375:1033–1043PubMedPubMedCentralCrossRef Qureshi AI, Palesch YY, Barsan WG et al (2016) Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. N Engl J Med 375:1033–1043PubMedPubMedCentralCrossRef
4.
go back to reference Brott T, Broderick J, Kothari R et al (1997) Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke 28:1–5PubMedCrossRef Brott T, Broderick J, Kothari R et al (1997) Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke 28:1–5PubMedCrossRef
5.
go back to reference Dowlatshahi D, Demchuk AM, Flaherty ML, Ali M, Lyden PL, Smith EE (2011) Defining hematoma expansion in intracerebral hemorrhage: relationship with patient outcomes. Neurology 76:1238–1244PubMedPubMedCentralCrossRef Dowlatshahi D, Demchuk AM, Flaherty ML, Ali M, Lyden PL, Smith EE (2011) Defining hematoma expansion in intracerebral hemorrhage: relationship with patient outcomes. Neurology 76:1238–1244PubMedPubMedCentralCrossRef
6.
go back to reference Davis SM, Broderick J, Hennerici M et al (2006) Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology 66:1175–1181PubMedCrossRef Davis SM, Broderick J, Hennerici M et al (2006) Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology 66:1175–1181PubMedCrossRef
7.
go back to reference Wada R, Aviv RI, Fox AJ et al (2007) CT angiography “spot sign” predicts hematoma expansion in acute intracerebral hemorrhage. Stroke 38:1257–1262PubMedCrossRef Wada R, Aviv RI, Fox AJ et al (2007) CT angiography “spot sign” predicts hematoma expansion in acute intracerebral hemorrhage. Stroke 38:1257–1262PubMedCrossRef
8.
go back to reference Demchuk AM, Dowlatshahi D, Rodriguez-Luna D et al (2012) Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): a prospective observational study. Lancet Neurol 11:307–314PubMedCrossRef Demchuk AM, Dowlatshahi D, Rodriguez-Luna D et al (2012) Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): a prospective observational study. Lancet Neurol 11:307–314PubMedCrossRef
9.
go back to reference Sprigg N, Flaherty K, Appleton JP et al (2018) Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial. Lancet 391:2107–2115PubMedPubMedCentralCrossRef Sprigg N, Flaherty K, Appleton JP et al (2018) Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial. Lancet 391:2107–2115PubMedPubMedCentralCrossRef
10.
go back to reference Barras CD, Tress BM, Christensen S et al (2009) Density and shape as CT predictors of intracerebral hemorrhage growth. Stroke 40:1325–1331PubMedCrossRef Barras CD, Tress BM, Christensen S et al (2009) Density and shape as CT predictors of intracerebral hemorrhage growth. Stroke 40:1325–1331PubMedCrossRef
11.
go back to reference Li Q, Liu QJ, Yang WS et al (2017) Island sign: an imaging predictor for early hematoma expansion and poor outcome in patients with intracerebral hemorrhage. Stroke 48:3019–3025PubMedCrossRef Li Q, Liu QJ, Yang WS et al (2017) Island sign: an imaging predictor for early hematoma expansion and poor outcome in patients with intracerebral hemorrhage. Stroke 48:3019–3025PubMedCrossRef
12.
go back to reference Li Q, Zhang G, Huang YJ et al (2015) Blend sign on computed tomography: novel and reliable predictor for early hematoma growth in patients with intracerebral hemorrhage. Stroke 46:2119–2123PubMedCrossRef Li Q, Zhang G, Huang YJ et al (2015) Blend sign on computed tomography: novel and reliable predictor for early hematoma growth in patients with intracerebral hemorrhage. Stroke 46:2119–2123PubMedCrossRef
13.
go back to reference Li Q, Zhang G, Xiong X et al (2016) Black hole sign: novel imaging marker that predicts hematoma growth in patients with intracerebral hemorrhage. Stroke 47:1777–1781PubMedCrossRef Li Q, Zhang G, Xiong X et al (2016) Black hole sign: novel imaging marker that predicts hematoma growth in patients with intracerebral hemorrhage. Stroke 47:1777–1781PubMedCrossRef
14.
go back to reference Selariu E, Zia E, Brizzi M, Abul-Kasim K (2012) Swirl sign in intracerebral haemorrhage: definition, prevalence, reliability and prognostic value. BMC Neurol 12:109PubMedPubMedCentralCrossRef Selariu E, Zia E, Brizzi M, Abul-Kasim K (2012) Swirl sign in intracerebral haemorrhage: definition, prevalence, reliability and prognostic value. BMC Neurol 12:109PubMedPubMedCentralCrossRef
15.
go back to reference Yu Z, Zheng J, Ali H et al (2017) Significance of satellite sign and spot sign in predicting hematoma expansion in spontaneous intracerebral hemorrhage. Clin Neurol Neurosurg 162:67–71PubMedCrossRef Yu Z, Zheng J, Ali H et al (2017) Significance of satellite sign and spot sign in predicting hematoma expansion in spontaneous intracerebral hemorrhage. Clin Neurol Neurosurg 162:67–71PubMedCrossRef
16.
go back to reference Boulouis G, Morotti A, Brouwers HB et al (2016) Association between hypodensities detected by computed tomography and hematoma expansion in patients with intracerebral hemorrhage. JAMA Neurol 73:961–968PubMedPubMedCentralCrossRef Boulouis G, Morotti A, Brouwers HB et al (2016) Association between hypodensities detected by computed tomography and hematoma expansion in patients with intracerebral hemorrhage. JAMA Neurol 73:961–968PubMedPubMedCentralCrossRef
17.
go back to reference Blacquiere D, Demchuk AM, Al-Hazzaa M et al (2015) Intracerebral hematoma morphologic appearance on noncontrast computed tomography predicts significant hematoma expansion. Stroke 46:3111–3116PubMedCrossRef Blacquiere D, Demchuk AM, Al-Hazzaa M et al (2015) Intracerebral hematoma morphologic appearance on noncontrast computed tomography predicts significant hematoma expansion. Stroke 46:3111–3116PubMedCrossRef
18.
go back to reference Boulouis G, Morotti A, Charidimou A, Dowlatshahi D, Goldstein JN (2017) Noncontrast computed tomography markers of intracerebral hemorrhage expansion. Stroke 48:1120–1125PubMedPubMedCentralCrossRef Boulouis G, Morotti A, Charidimou A, Dowlatshahi D, Goldstein JN (2017) Noncontrast computed tomography markers of intracerebral hemorrhage expansion. Stroke 48:1120–1125PubMedPubMedCentralCrossRef
19.
go back to reference Fisher CM (1971) Pathological observations in hypertensive cerebral hemorrhage. J Neuropathol Exp Neurol 30:536–550PubMedCrossRef Fisher CM (1971) Pathological observations in hypertensive cerebral hemorrhage. J Neuropathol Exp Neurol 30:536–550PubMedCrossRef
21.
go back to reference Morotti A, Boulouis G, Dowlatshahi D et al (2019) Standards for detecting, interpreting, and reporting noncontrast computed tomographic markers of intracerebral hemorrhage expansion. Ann Neurol 86:480–492PubMedCrossRef Morotti A, Boulouis G, Dowlatshahi D et al (2019) Standards for detecting, interpreting, and reporting noncontrast computed tomographic markers of intracerebral hemorrhage expansion. Ann Neurol 86:480–492PubMedCrossRef
23.
go back to reference Dowlatshahi D, Morotti A, Al-Ajlan FS et al (2019) Interrater and intrarater measurement reliability of noncontrast computed tomography predictors of intracerebral hemorrhage expansion. Stroke 50:1260–1262PubMedCrossRef Dowlatshahi D, Morotti A, Al-Ajlan FS et al (2019) Interrater and intrarater measurement reliability of noncontrast computed tomography predictors of intracerebral hemorrhage expansion. Stroke 50:1260–1262PubMedCrossRef
24.
go back to reference Kottner J, Audigé L, Brorson S et al (2011) Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. J Clin Epidemiol 64:96–106PubMedCrossRef Kottner J, Audigé L, Brorson S et al (2011) Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. J Clin Epidemiol 64:96–106PubMedCrossRef
25.
go back to reference Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30:1323–1341PubMedPubMedCentralCrossRef Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30:1323–1341PubMedPubMedCentralCrossRef
26.
go back to reference Pasi M, Marini S, Morotti A et al (2018) Cerebellar hematoma location: implications for the underlying microangiopathy. Stroke 49:207–210PubMedCrossRef Pasi M, Marini S, Morotti A et al (2018) Cerebellar hematoma location: implications for the underlying microangiopathy. Stroke 49:207–210PubMedCrossRef
29.
go back to reference Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174PubMedCrossRef Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174PubMedCrossRef
30.
go back to reference Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG (2009) Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 42:377–381PubMedCrossRef Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG (2009) Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 42:377–381PubMedCrossRef
31.
go back to reference Harris PA, Taylor R, Minor BL et al (2019) The REDCap consortium: building an international community of software platform partners. J Biomed Inform 95:103208PubMedPubMedCentralCrossRef Harris PA, Taylor R, Minor BL et al (2019) The REDCap consortium: building an international community of software platform partners. J Biomed Inform 95:103208PubMedPubMedCentralCrossRef
32.
go back to reference R Development Core Team (2021) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing R Development Core Team (2021) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing
35.
go back to reference Feinstein AR, Cicchetti DV (1990) High agreement but low kappa: I. The problems of two paradoxes. J Clin Epidemiol 43:543–549PubMedCrossRef Feinstein AR, Cicchetti DV (1990) High agreement but low kappa: I. The problems of two paradoxes. J Clin Epidemiol 43:543–549PubMedCrossRef
36.
go back to reference Cicchetti DV, Feinstein AR (1990) High agreement but low kappa: II. Resolving the paradoxes. J Clin Epidemiol 43:551–558PubMedCrossRef Cicchetti DV, Feinstein AR (1990) High agreement but low kappa: II. Resolving the paradoxes. J Clin Epidemiol 43:551–558PubMedCrossRef
37.
go back to reference Gwet KL (2008) Computing inter-rater reliability and its variance in the presence of high agreement. Br J Math Stat Psychol 61:29–48PubMedCrossRef Gwet KL (2008) Computing inter-rater reliability and its variance in the presence of high agreement. Br J Math Stat Psychol 61:29–48PubMedCrossRef
38.
go back to reference Gwet KL (2014) Handbook of inter-rater reliability, 4th edition. Advanced Analytics, LLC, United States of America Gwet KL (2014) Handbook of inter-rater reliability, 4th edition. Advanced Analytics, LLC, United States of America
39.
go back to reference Varmdal T, Ellekjær H, Fjærtoft H, Indredavik B, Lydersen S, Bonaa KH (2015) Inter-rater reliability of a national acute stroke register. BMC Res Notes 8:584PubMedPubMedCentralCrossRef Varmdal T, Ellekjær H, Fjærtoft H, Indredavik B, Lydersen S, Bonaa KH (2015) Inter-rater reliability of a national acute stroke register. BMC Res Notes 8:584PubMedPubMedCentralCrossRef
40.
go back to reference Hemphill JC 3rd, Bonovich DC, Besmertis L, Manley GT, Johnston SC (2001) The ICH score: a simple, reliable grading scale for intracerebral hemorrhage. Stroke 32:891–897PubMedCrossRef Hemphill JC 3rd, Bonovich DC, Besmertis L, Manley GT, Johnston SC (2001) The ICH score: a simple, reliable grading scale for intracerebral hemorrhage. Stroke 32:891–897PubMedCrossRef
41.
go back to reference Morotti A, Arba F, Boulouis G, Charidimou A (2020) Noncontrast CT markers of intracerebral hemorrhage expansion and poor outcome: a meta-analysis. Neurology 95:632–643PubMedCrossRef Morotti A, Arba F, Boulouis G, Charidimou A (2020) Noncontrast CT markers of intracerebral hemorrhage expansion and poor outcome: a meta-analysis. Neurology 95:632–643PubMedCrossRef
42.
go back to reference Yang H, Luo Y, Chen S et al (2020) The predictive accuracy of satellite sign for hematoma expansion in intracerebral hemorrhage: a meta-analysis. Clin Neurol Neurosurg 197:106139PubMedCrossRef Yang H, Luo Y, Chen S et al (2020) The predictive accuracy of satellite sign for hematoma expansion in intracerebral hemorrhage: a meta-analysis. Clin Neurol Neurosurg 197:106139PubMedCrossRef
43.
go back to reference Morotti A, Dowlatshahi D, Boulouis G et al (2018) Predicting intracerebral hemorrhage expansion with noncontrast computed tomography: the BAT score. Stroke 49:1163–1169PubMedPubMedCentralCrossRef Morotti A, Dowlatshahi D, Boulouis G et al (2018) Predicting intracerebral hemorrhage expansion with noncontrast computed tomography: the BAT score. Stroke 49:1163–1169PubMedPubMedCentralCrossRef
44.
go back to reference Yogendrakumar V, Moores M, Sikora L et al (2020) Evaluating hematoma expansion scores in acute spontaneous intracerebral hemorrhage: a systematic scoping review. Stroke 51:1305–1308PubMedCrossRef Yogendrakumar V, Moores M, Sikora L et al (2020) Evaluating hematoma expansion scores in acute spontaneous intracerebral hemorrhage: a systematic scoping review. Stroke 51:1305–1308PubMedCrossRef
45.
go back to reference Morotti A, Boulouis G, Charidimou A et al (2018) Integration of computed tomographic angiography spot sign and noncontrast computed tomographic hypodensities to predict hematoma expansion. Stroke 49:2067–2073PubMedPubMedCentralCrossRef Morotti A, Boulouis G, Charidimou A et al (2018) Integration of computed tomographic angiography spot sign and noncontrast computed tomographic hypodensities to predict hematoma expansion. Stroke 49:2067–2073PubMedPubMedCentralCrossRef
46.
go back to reference Law ZK, Ali A, Krishnan K et al (2020) Noncontrast computed tomography signs as predictors of hematoma expansion, clinical outcome, and response to tranexamic acid in acute intracerebral hemorrhage. Stroke 51:121–128PubMedCrossRef Law ZK, Ali A, Krishnan K et al (2020) Noncontrast computed tomography signs as predictors of hematoma expansion, clinical outcome, and response to tranexamic acid in acute intracerebral hemorrhage. Stroke 51:121–128PubMedCrossRef
47.
go back to reference Falcone GJ, Biffi A, Brouwers HB et al (2013) Predictors of hematoma volume in deep and lobar supratentorial intracerebral hemorrhage. JAMA Neurol 70:988–994PubMedCrossRef Falcone GJ, Biffi A, Brouwers HB et al (2013) Predictors of hematoma volume in deep and lobar supratentorial intracerebral hemorrhage. JAMA Neurol 70:988–994PubMedCrossRef
49.
go back to reference Seiffge DJ, Goeldlin MB, Tatlisumak T et al (2019) Meta-analysis of haematoma volume, haematoma expansion and mortality in intracerebral haemorrhage associated with oral anticoagulant use. J Neurol 266:3126–3135PubMedPubMedCentralCrossRef Seiffge DJ, Goeldlin MB, Tatlisumak T et al (2019) Meta-analysis of haematoma volume, haematoma expansion and mortality in intracerebral haemorrhage associated with oral anticoagulant use. J Neurol 266:3126–3135PubMedPubMedCentralCrossRef
50.
51.
go back to reference Quarfoot D, Levine RA (2016) How robust are multirater interrater reliability indices to changes in frequency distribution? Am Stat 70:373–384CrossRef Quarfoot D, Levine RA (2016) How robust are multirater interrater reliability indices to changes in frequency distribution? Am Stat 70:373–384CrossRef
Metadata
Title
Non-contrast CT markers of intracerebral hematoma expansion: a reliability study
Authors
Ahmad Nehme
Célina Ducroux
Marie-Andrée Panzini
Céline Bard
Olena Bereznyakova
William Boisseau
Yan Deschaintre
Jose Danilo Bengzon Diestro
François Guilbert
Grégory Jacquin
Mohamed Taoubane Maallah
Kristoff Nelson
Igor Gomes Padilha
Alexandre Y. Poppe
Bastien Rioux
Daniel Roy
Lahoud Touma
Alain Weill
Laura C. Gioia
Laurent Létourneau-Guillon
Publication date
29-03-2022
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 9/2022
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08710-w

Other articles of this Issue 9/2022

European Radiology 9/2022 Go to the issue