Skip to main content
Top
Published in: Journal of Cardiothoracic Surgery 1/2019

Open Access 01-12-2019 | Heart Surgery | Research article

Pericardial closure with extracellular matrix scaffold following cardiac surgery associated with a reduction of postoperative complications and 30-day hospital readmissions

Authors: Alfredo Rego, Patricia C. Cheung, William J. Harris, Kevin M. Brady, Jeffrey Newman, Robert Still

Published in: Journal of Cardiothoracic Surgery | Issue 1/2019

Login to get access

Abstract

Background

A prospective, multi-center study (RECON) was conducted to evaluate the clinical outcomes of pericardial closure using a decellularized extracellular matrix (ECM) graft derived from porcine small intestinal submucosa.

Methods

Patients indicated for open cardiac surgery with pericardial closure using ECM were eligible for the RECON study cohort. Postoperative complications and readmission of the RECON patients were compared to the patient cohort in the Nationwide Readmissions Database (NRD). Inverse probability of treatment weighting was used to control the differences in patient demographics, comorbidities, and risk factors.

Results

A total of 1420 patients at 42 centers were enrolled, including 923 coronary artery bypass grafting (CABG) surgeries and 436 valve surgeries. Significantly fewer valve surgery patients in the RECON cohort experienced pleural effusion (3.1% vs. 13.0%; p < 0.05) and pericardial effusion (1.5% vs. 2.6%; p < 0.05) than in the NRD cohort. CABG patients in the RECON cohort were less likely to suffer bleeding (1.2% vs. 2.9%; p < 0.05) and pericardial effusion (0.2% vs. 2.2%, p < 0.05) than those in the NRD cohort. The 30-day all-cause hospital readmission rate was significantly lower among RECON patients than NRD patients following both valve surgery (HR: 0.34; p < 0.05) and CABG surgery (HR: 0.42; p < 0.05). In the RECON study, 14.4% of CABG patients and 27.0% of valve patients had postoperative atrial fibrillation as compared to previously reported risks, which generally ranges from 20 to 30% after CABG and from 35 to 50% after valve surgery.

Conclusions

Pericardial closure with ECM following cardiac surgery is associated with a reduction in the proportion of patients with pleural effusion, pericardial effusion, and 30-day readmission compared to a nationwide database.

Trial registration

NCT02073331, Registered on February 27, 2014.
Appendix
Available only for authorised users
Literature
3.
go back to reference Nandi P, Leung JS, Cheung KL. Closure of pericardium after open heart surgery. A way to prevent postoperative cardiac tamponade. Br Heart J. 1976;38(12):1319–23.CrossRef Nandi P, Leung JS, Cheung KL. Closure of pericardium after open heart surgery. A way to prevent postoperative cardiac tamponade. Br Heart J. 1976;38(12):1319–23.CrossRef
4.
go back to reference Cunningham JN, Spencer FC, Zeff R, Williams CD, Cukingnan R, Mullin M. Influence of primary closure of the pericardium after open-heart surgery on the frequency of tamponade, postcardiotomy syndrome, and pulmonary complications. J Thorac Cardiovasc Surg [Internet]. 1975;70(1):119–25 Available from: http://europepmc.org/abstract/MED/1152493. Cunningham JN, Spencer FC, Zeff R, Williams CD, Cukingnan R, Mullin M. Influence of primary closure of the pericardium after open-heart surgery on the frequency of tamponade, postcardiotomy syndrome, and pulmonary complications. J Thorac Cardiovasc Surg [Internet]. 1975;70(1):119–25 Available from: http://​europepmc.​org/​abstract/​MED/​1152493.
5.
go back to reference Dobell ARC, Jain AK. Catastrophic hemorrhage during redo sternotomy. Ann Thorac Surg. 1984;37(4):273–8.CrossRef Dobell ARC, Jain AK. Catastrophic hemorrhage during redo sternotomy. Ann Thorac Surg. 1984;37(4):273–8.CrossRef
6.
go back to reference Roselli EE, Pettersson GB, Blackstone EH, Brizzio ME, Houghtaling PL, Hauck R, et al. Adverse events during reoperative cardiac surgery: frequency, characterization, and rescue. J Thorac Cardiovasc Surg. 2008;135(2):316–23.CrossRef Roselli EE, Pettersson GB, Blackstone EH, Brizzio ME, Houghtaling PL, Hauck R, et al. Adverse events during reoperative cardiac surgery: frequency, characterization, and rescue. J Thorac Cardiovasc Surg. 2008;135(2):316–23.CrossRef
7.
go back to reference Gazzaniga AB, Palafox BA. Substernal thoracoscopic guidance during sternal reentry. Ann Thorac Surg. 2001;72(1):289–90.CrossRef Gazzaniga AB, Palafox BA. Substernal thoracoscopic guidance during sternal reentry. Ann Thorac Surg. 2001;72(1):289–90.CrossRef
8.
go back to reference Loop FD. Catastrophic hemorrhage during sternal reentry. Ann Thorac Surg. 1984;37(4):271–2.CrossRef Loop FD. Catastrophic hemorrhage during sternal reentry. Ann Thorac Surg. 1984;37(4):271–2.CrossRef
10.
go back to reference Rao V, Komeda M, Weisel RD, Cohen G, Borger MA, David TE. Should the pericardium be closed routinely after heart operations? Ann Thorac Surg. 1999;67(2):484–8.CrossRef Rao V, Komeda M, Weisel RD, Cohen G, Borger MA, David TE. Should the pericardium be closed routinely after heart operations? Ann Thorac Surg. 1999;67(2):484–8.CrossRef
11.
go back to reference Lahtinen J, Satta J, Lähde S, Suramo I, Nissinen J, Pokela R, et al. Computed tomographic evaluation of retrosternal adhesions after pericardial substitution. In: Annals of thoracic surgery; 1998. p. 1264–8. Lahtinen J, Satta J, Lähde S, Suramo I, Nissinen J, Pokela R, et al. Computed tomographic evaluation of retrosternal adhesions after pericardial substitution. In: Annals of thoracic surgery; 1998. p. 1264–8.
12.
go back to reference Boyd WD, Johnson WE, Sultan PK, Deering TF, Matheny RG. Pericardial reconstruction using an extracellular matrix implant correlates with reduced risk of postoperative atrial fibrillation in coronary artery bypass surgery patients. Heart Surg Forum [Internet]. 2010;13(5):E311–6 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20961831.CrossRef Boyd WD, Johnson WE, Sultan PK, Deering TF, Matheny RG. Pericardial reconstruction using an extracellular matrix implant correlates with reduced risk of postoperative atrial fibrillation in coronary artery bypass surgery patients. Heart Surg Forum [Internet]. 2010;13(5):E311–6 Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​20961831.CrossRef
13.
go back to reference Kaya M, Satilmisoglu MH, Bugra AK, Kyaruzi M, Kafa U, Utkusavas A, et al. Impact of the total pericardial closure using bilateral trap door incision and pericardial cavity intervention on outcomes following coronary artery bypass grafting: a randomized, controlled, parallel-group prospective study. Interact Cardiovasc Thorac Surg. 2015;21(6):727–33.PubMed Kaya M, Satilmisoglu MH, Bugra AK, Kyaruzi M, Kafa U, Utkusavas A, et al. Impact of the total pericardial closure using bilateral trap door incision and pericardial cavity intervention on outcomes following coronary artery bypass grafting: a randomized, controlled, parallel-group prospective study. Interact Cardiovasc Thorac Surg. 2015;21(6):727–33.PubMed
15.
go back to reference HCUP Agency for Healthcare Research and Quality, Rockville M. Introduction To The Hcup Nationwide Readmissions Database (Nrd) 2014. 2017; HCUP Agency for Healthcare Research and Quality, Rockville M. Introduction To The Hcup Nationwide Readmissions Database (Nrd) 2014. 2017;
16.
go back to reference Araas M, Joyce E, Potteiger J. Hospital-level 30-day all-cause unplanned readmission following coronary artery bypass graft surgery ( CABG ) updated measure methodology report. Centers Medicare Medicaid Serv 2014;2014. Araas M, Joyce E, Potteiger J. Hospital-level 30-day all-cause unplanned readmission following coronary artery bypass graft surgery ( CABG ) updated measure methodology report. Centers Medicare Medicaid Serv 2014;2014.
17.
go back to reference Horwitz LI, Grady JN, Cohen DB, Lin Z, Volpe M, Ngo CK, et al. Development and validation of an algorithm to identify planned readmissions from claims data. J Hosp Med. 2015;10(10):670–7.CrossRef Horwitz LI, Grady JN, Cohen DB, Lin Z, Volpe M, Ngo CK, et al. Development and validation of an algorithm to identify planned readmissions from claims data. J Hosp Med. 2015;10(10):670–7.CrossRef
19.
go back to reference Normand S-LT, Landrum MB, Guadagnoli E, Ayanian JZ, Ryan TJ, Cleary PD, et al. Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: a matched analysis using propensity scores. J Clin Epidemiol. 2001;54(4):387–98.CrossRef Normand S-LT, Landrum MB, Guadagnoli E, Ayanian JZ, Ryan TJ, Cleary PD, et al. Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: a matched analysis using propensity scores. J Clin Epidemiol. 2001;54(4):387–98.CrossRef
21.
go back to reference Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med. 2015;34(28):3661–79.CrossRef Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med. 2015;34(28):3661–79.CrossRef
22.
go back to reference Houchens R, Chu B, Steiner C. Hierarchical modeling using HCUP data HCUP methods series report # 2007–01; 2007. Houchens R, Chu B, Steiner C. Hierarchical modeling using HCUP data HCUP methods series report # 2007–01; 2007.
23.
go back to reference D’Agostino RS, Jacobson J, Clarkson M, Svensson LG, Williamson C, Shahian DM. Readmission After Cardiac Operations: Prevalence, Patterns, And Predisposing Factors. J Thorac Cardiovasc Surg. 1999;118:823–32.CrossRef D’Agostino RS, Jacobson J, Clarkson M, Svensson LG, Williamson C, Shahian DM. Readmission After Cardiac Operations: Prevalence, Patterns, And Predisposing Factors. J Thorac Cardiovasc Surg. 1999;118:823–32.CrossRef
24.
go back to reference Goodney PP, Stukel TA, Lucas FL, Finlayson EVA, Birkmeyer JD. Hospital volume, length of stay, and readmission rates in high-risk surgery. Ann Surg. 2003;238(2):161–7.PubMedPubMedCentral Goodney PP, Stukel TA, Lucas FL, Finlayson EVA, Birkmeyer JD. Hospital volume, length of stay, and readmission rates in high-risk surgery. Ann Surg. 2003;238(2):161–7.PubMedPubMedCentral
25.
go back to reference Stewart RD, Campos CT, Jennings B, Lollis SS, Levitsky S, Lahey SJ. Predictors of 30-day hospital readmission after coronary artery bypass. Ann Thorac Surg. 2000;70(1):169–74.CrossRef Stewart RD, Campos CT, Jennings B, Lollis SS, Levitsky S, Lahey SJ. Predictors of 30-day hospital readmission after coronary artery bypass. Ann Thorac Surg. 2000;70(1):169–74.CrossRef
29.
go back to reference Kaleda VI, McCormack DJ, Shipolini AR. Does posterior pericardiotomy reduce the incidence of atrial fibrillation after coronary artery bypass grafting surgery? Interact Cardiovasc Thorac Surg. 2012;14(4):384–9.CrossRef Kaleda VI, McCormack DJ, Shipolini AR. Does posterior pericardiotomy reduce the incidence of atrial fibrillation after coronary artery bypass grafting surgery? Interact Cardiovasc Thorac Surg. 2012;14(4):384–9.CrossRef
30.
go back to reference Saxena A, Dinh DT, Smith JA, Shardey GC, Reid CM, Newcomb AE. Usefulness of postoperative atrial fibrillation as an independent predictor for worse early and late outcomes after isolated coronary artery bypass grafting (multicenter australian study of 19,497 patients). Am J Cardiol [Internet]. 2012;109(2):219–25 Available from: https://doi.org/10.1016/j.amjcard.2011.08.033.CrossRef Saxena A, Dinh DT, Smith JA, Shardey GC, Reid CM, Newcomb AE. Usefulness of postoperative atrial fibrillation as an independent predictor for worse early and late outcomes after isolated coronary artery bypass grafting (multicenter australian study of 19,497 patients). Am J Cardiol [Internet]. 2012;109(2):219–25 Available from: https://​doi.​org/​10.​1016/​j.​amjcard.​2011.​08.​033.CrossRef
32.
go back to reference Filardo G, Hamilton C, Hebeler RF, Hamman B, Grayburn P. New-onset postoperative atrial fibrillation after isolated coronary artery bypass graft surgery and long-term survival. Circ Cardiovasc Qual Outcomes. 2009;2(3):164–9.CrossRef Filardo G, Hamilton C, Hebeler RF, Hamman B, Grayburn P. New-onset postoperative atrial fibrillation after isolated coronary artery bypass graft surgery and long-term survival. Circ Cardiovasc Qual Outcomes. 2009;2(3):164–9.CrossRef
35.
go back to reference El-Chami MF, Kilgo P, Thourani V, Lattouf OM, Delurgio DB, Guyton RA, et al. New-onset atrial fibrillation predicts long-term mortality after coronary artery bypass graft. J Am Coll Cardiol. 2010;55(13):1370–6.CrossRef El-Chami MF, Kilgo P, Thourani V, Lattouf OM, Delurgio DB, Guyton RA, et al. New-onset atrial fibrillation predicts long-term mortality after coronary artery bypass graft. J Am Coll Cardiol. 2010;55(13):1370–6.CrossRef
37.
go back to reference Shen J, Lall S, Zheng V, Buckley P, Damiano RJ, Schuessler RB. The persistent problem of new-onset postoperative atrial fibrillation: a single-institution experience over two decades. J Thorac Cardiovasc Surg. 2011;141(2):559–70.CrossRef Shen J, Lall S, Zheng V, Buckley P, Damiano RJ, Schuessler RB. The persistent problem of new-onset postoperative atrial fibrillation: a single-institution experience over two decades. J Thorac Cardiovasc Surg. 2011;141(2):559–70.CrossRef
39.
go back to reference Gozdek M, Pawliszak W, Hagner W, Zalewski P, Kowalewski J, Paparella D, et al. Systematic review and meta-analysis of randomized controlled trials assessing safety and efficacy of posterior pericardial drainage in patients undergoing heart surgery. J Thorac Cardiovasc Surg [Internet]. 2016;153(4):85–94 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28087110. Gozdek M, Pawliszak W, Hagner W, Zalewski P, Kowalewski J, Paparella D, et al. Systematic review and meta-analysis of randomized controlled trials assessing safety and efficacy of posterior pericardial drainage in patients undergoing heart surgery. J Thorac Cardiovasc Surg [Internet]. 2016;153(4):85–94 Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​28087110.
40.
go back to reference Light RW. Pleural Diseases - 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2013. p. 459–61. Light RW. Pleural Diseases - 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2013. p. 459–61.
44.
go back to reference Kuvin JT, Harati NA, Pandian NG, Bojar RM, Khabbaz KR. Postoperative cardiac tamponade in the modern surgical era. Ann Thorac Surg. 2002;74(4):1148–53.CrossRef Kuvin JT, Harati NA, Pandian NG, Bojar RM, Khabbaz KR. Postoperative cardiac tamponade in the modern surgical era. Ann Thorac Surg. 2002;74(4):1148–53.CrossRef
45.
go back to reference Martins EF, Heemann A, Neto P, Danielli L, Nunes LA, Vitória M, et al. Incidence And Factors Associated With Pericardial Effusion After Cardiac Valve Surgery. Clin Biomed Res. 2017:18–24. Martins EF, Heemann A, Neto P, Danielli L, Nunes LA, Vitória M, et al. Incidence And Factors Associated With Pericardial Effusion After Cardiac Valve Surgery. Clin Biomed Res. 2017:18–24.
46.
go back to reference Khan NK, Järvelä KM, Loisa EL, Sutinen JA, Laurikka JO, Khan JA. Incidence, presentation and risk factors of late postoperative pericardial effusions requiring invasive treatment after cardiac surgery. Interact Cardiovasc Thorac Surg. 2017;24(6):835–40.CrossRef Khan NK, Järvelä KM, Loisa EL, Sutinen JA, Laurikka JO, Khan JA. Incidence, presentation and risk factors of late postoperative pericardial effusions requiring invasive treatment after cardiac surgery. Interact Cardiovasc Thorac Surg. 2017;24(6):835–40.CrossRef
48.
go back to reference Meurin P, Weber H, Renaud N, Larrazet F, Tabet JY, Demolis P, et al. Evolution of the postoperative pericardial effusion after day 15: the problem of the late tamponade. Chest. 2004;125(6):2182–7.CrossRef Meurin P, Weber H, Renaud N, Larrazet F, Tabet JY, Demolis P, et al. Evolution of the postoperative pericardial effusion after day 15: the problem of the late tamponade. Chest. 2004;125(6):2182–7.CrossRef
Metadata
Title
Pericardial closure with extracellular matrix scaffold following cardiac surgery associated with a reduction of postoperative complications and 30-day hospital readmissions
Authors
Alfredo Rego
Patricia C. Cheung
William J. Harris
Kevin M. Brady
Jeffrey Newman
Robert Still
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Cardiothoracic Surgery / Issue 1/2019
Electronic ISSN: 1749-8090
DOI
https://doi.org/10.1186/s13019-019-0871-5

Other articles of this Issue 1/2019

Journal of Cardiothoracic Surgery 1/2019 Go to the issue