Skip to main content
Top
Published in: Journal of Cardiothoracic Surgery 1/2023

Open Access 01-12-2023 | Heart Surgery | Case Report

Study of the accuracy of a radial arterial pressure waveform cardiac output measurement device after cardiac surgery

Authors: Pilar Ordoñez-Rufat, Nuria Mancho-Fora, Cristian Tebe-Cordomi, Victoria Polit-Martinez, Ricardo Abellan-Lencina, Joaquin Fernandez-Alvarez, Juan Carlos Lopez-Delgado

Published in: Journal of Cardiothoracic Surgery | Issue 1/2023

Login to get access

Abstract

Background

Less invasive monitoring, such as radial arterial pulse contour analysis (ProAQT® sensor), represents an alternative when hemodynamic monitoring is necessary to guide postoperative management and invasive monitoring is not technically feasible. The aim of the study is to evaluate the accuracy of the ProAQT® sensor cardiac output measurements in comparison with Pulmonary Artery Catheter (PAC) during the postoperative course of patients who underwent cardiac surgery with cardiopulmonary bypass.

Case presentation

Prospective observational study in a Surgical Intensive Care Unit of a tertiary university hospital. Ten patients with a mean age of 73.5 years were included. The main comorbidities were hypertension, diabetes, dyslipidemia and the preoperative left ejection fraction was 43.8 ± 14.5%. Regarding the type of surgery, six patients underwent valve surgery, two underwent coronary artery bypass grafting and two underwent aortic surgery. The cardiac index measured simultaneously by the ProAQT® sensor was compared with the PAC. The parameters were evaluated at predefined time points during the early postoperative courses (6 h, 12 h, 24 h, 48 h and 72 h). The degree of agreement with the cardiac index between the PAC and the ProAQT® sensor along the time points was measured using the concordance correlation coefficient, Bland–Altman analysis, and four-quadrant plot. Sixty-three pairs of measurements were analyzed. We showed that measurements of cardiac index were slightly higher with PAC (β ̂ = − 0.146, p-value = 0.094). The concordance correlation coefficient for the additive model of cardiac index was 0.64 (95% Confidence Interval: 0.36, 0.82), indicating a high concordance between both sensors. Bland-Altmann analysis showed a mean bias of 0.45 L·min−1·m−2, limits of agreement from − 1.65 to 2.3 L·min−1·m−2, and percentage of error was 82.5%. Four-quadrant plot of changes in cardiac index showed a good concordance rate (75%), which increases after applying the exclusion zone (87%).

Conclusions

In patients undergoing cardiac surgery, the ProAQT® sensor may be useful to monitor cardiac index during the postoperative period, especially when more invasive monitoring is not possible.
Appendix
Available only for authorised users
Literature
1.
go back to reference Osawa EA, Rhodes A, Landoni G, Galas FR, Fukushima JT, Park CH, et al. Effect of perioperative goal-directed hemodynamic resuscitation therapy on outcomes following cardiac surgery: a randomized clinical trial and systematic review. Crit Care Med. 2016;44:724–33.CrossRef Osawa EA, Rhodes A, Landoni G, Galas FR, Fukushima JT, Park CH, et al. Effect of perioperative goal-directed hemodynamic resuscitation therapy on outcomes following cardiac surgery: a randomized clinical trial and systematic review. Crit Care Med. 2016;44:724–33.CrossRef
2.
go back to reference Demiselle J, AMercat A, Asfar P. Is there still a place for the Swan-Ganz catheter? Yes. Intensive Care Med. 2018;44:954–6.CrossRef Demiselle J, AMercat A, Asfar P. Is there still a place for the Swan-Ganz catheter? Yes. Intensive Care Med. 2018;44:954–6.CrossRef
3.
go back to reference Szabo C, Betances-Fernandez M, Navas-Blanco JR, Modak RK. PRO: the pulmonary artery catheter has a paramount role in current clinical practice. Ann Card Anaesth. 2021;24:4–7.CrossRef Szabo C, Betances-Fernandez M, Navas-Blanco JR, Modak RK. PRO: the pulmonary artery catheter has a paramount role in current clinical practice. Ann Card Anaesth. 2021;24:4–7.CrossRef
4.
go back to reference Biais M, Mazocky E, Stecken L, Pereira B, Sesay M, Roullet S, et al. Impact of systemic vascular resistance on the accuracy of the pulsioflex device. Anesth Analg. 2017;124:487–93.CrossRef Biais M, Mazocky E, Stecken L, Pereira B, Sesay M, Roullet S, et al. Impact of systemic vascular resistance on the accuracy of the pulsioflex device. Anesth Analg. 2017;124:487–93.CrossRef
5.
go back to reference Van Drumpt A, van Bommel J, Hoeks S, Grüne F, Wolvetang T, Bekkers J, Ter Horst M. The value of arterial pressure waveform cardiac output measurements in the radial and femoral artery in major cardiac surgery patients. BMC Anesthesiol. 2017;17:42.CrossRef Van Drumpt A, van Bommel J, Hoeks S, Grüne F, Wolvetang T, Bekkers J, Ter Horst M. The value of arterial pressure waveform cardiac output measurements in the radial and femoral artery in major cardiac surgery patients. BMC Anesthesiol. 2017;17:42.CrossRef
6.
go back to reference Smetkin AA, Hussain A, Kuzkov VV, Bjertnæs LJ, Kirov MY. Validation of cardiac output monitoring based on uncalibrated pulse contour analysis vs transpulmonary thermodilution during off-pump coronary artery bypass grafting. Br J Anaesth. 2014;112:1024–31.CrossRef Smetkin AA, Hussain A, Kuzkov VV, Bjertnæs LJ, Kirov MY. Validation of cardiac output monitoring based on uncalibrated pulse contour analysis vs transpulmonary thermodilution during off-pump coronary artery bypass grafting. Br J Anaesth. 2014;112:1024–31.CrossRef
7.
go back to reference Koc V, Delmas Benito L, de With E, Boerma EC. The effect of fluid overload on attributable morbidity after cardiac surgery: a retrospective study. Crit Care Res Pract. 2020;2020:4836862. Koc V, Delmas Benito L, de With E, Boerma EC. The effect of fluid overload on attributable morbidity after cardiac surgery: a retrospective study. Crit Care Res Pract. 2020;2020:4836862.
8.
go back to reference Lomivorotov VV, Efremov SM, Kirov MY, Fominskiy EV, Karaskov AM. Low-cardiac-output syndrome after cardiac surgery. J Cardiothorac Vasc Anesth. 2017;31:291–308.CrossRef Lomivorotov VV, Efremov SM, Kirov MY, Fominskiy EV, Karaskov AM. Low-cardiac-output syndrome after cardiac surgery. J Cardiothorac Vasc Anesth. 2017;31:291–308.CrossRef
9.
go back to reference Oliver E, Carrio ML, Rodríguez-Castro D, Javierre C, Farrero E, Torrado H, Castells E, Ventura JL. Relationships among haemoglobin level, packed red cell transfusion and clinical outcomes in patients after cardiac surgery. Intensive Care Med. 2009;35:1548–55.CrossRef Oliver E, Carrio ML, Rodríguez-Castro D, Javierre C, Farrero E, Torrado H, Castells E, Ventura JL. Relationships among haemoglobin level, packed red cell transfusion and clinical outcomes in patients after cardiac surgery. Intensive Care Med. 2009;35:1548–55.CrossRef
10.
go back to reference Carrasco JL, Phillips BR, Puig-Martinez J, King TS, Chinchilli VM. Estimation of the concordance correlation coefficient for repeated measures using SAS and R. Comput Methods Programs Biomed. 2013;109:293–304.CrossRef Carrasco JL, Phillips BR, Puig-Martinez J, King TS, Chinchilli VM. Estimation of the concordance correlation coefficient for repeated measures using SAS and R. Comput Methods Programs Biomed. 2013;109:293–304.CrossRef
11.
go back to reference Saugel B, Wagner JY. Innovative noninvasive hemodynamic monitoring: curb your enthusiasm after initial validation studies and evaluate the technologies’ clinical applicability. J Clin Monit Comput. 2016;30:509–10.CrossRef Saugel B, Wagner JY. Innovative noninvasive hemodynamic monitoring: curb your enthusiasm after initial validation studies and evaluate the technologies’ clinical applicability. J Clin Monit Comput. 2016;30:509–10.CrossRef
12.
go back to reference Critchley LA, Yang XX, Lee A. Assessment of trending ability of cardiac output monitors by polar plot methodology. J Cardiothorac Vasc Anesth. 2011;25:536–46.CrossRef Critchley LA, Yang XX, Lee A. Assessment of trending ability of cardiac output monitors by polar plot methodology. J Cardiothorac Vasc Anesth. 2011;25:536–46.CrossRef
13.
go back to reference Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795–815.CrossRef Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795–815.CrossRef
14.
go back to reference Umgelter A, Schmid RM, Huber W. Questionable design to validate the ProAQT/Pulsioflex device. Anesth Analg. 2017;125:1417–20.CrossRef Umgelter A, Schmid RM, Huber W. Questionable design to validate the ProAQT/Pulsioflex device. Anesth Analg. 2017;125:1417–20.CrossRef
15.
go back to reference Monnet X, Vaquer S, Anguel N, Jozwiak M, Cipriani F, Richard C, Teboul J-L. Comparison of pulse contour analysis by Pulsioflex and Vigileo to measure and track changes of cardiac output in critically ill patients. Br J Anaesth. 2015;114:235–43.CrossRef Monnet X, Vaquer S, Anguel N, Jozwiak M, Cipriani F, Richard C, Teboul J-L. Comparison of pulse contour analysis by Pulsioflex and Vigileo to measure and track changes of cardiac output in critically ill patients. Br J Anaesth. 2015;114:235–43.CrossRef
16.
go back to reference Sotomi Y, Iwakura K, Higuchi Y, Abe K, Yoshida J, Masai T, Fujii K. The impact of systemic vascular resistance on the accuracy of the FloTrac/Vigileo system in the perioperative period of cardiac surgery: a prospective observational comparison study. J Clin Monit Comput. 2013;27:639–46.CrossRef Sotomi Y, Iwakura K, Higuchi Y, Abe K, Yoshida J, Masai T, Fujii K. The impact of systemic vascular resistance on the accuracy of the FloTrac/Vigileo system in the perioperative period of cardiac surgery: a prospective observational comparison study. J Clin Monit Comput. 2013;27:639–46.CrossRef
17.
go back to reference Schulz K, Abel HH, Werning P. Comparison between continuous and intermittent thermodilution measurement of cardiac output during coronary artery bypass operation. Anasthesiol Intensivmed Notfallmed Schmerzther. 1997;32:226–33.CrossRef Schulz K, Abel HH, Werning P. Comparison between continuous and intermittent thermodilution measurement of cardiac output during coronary artery bypass operation. Anasthesiol Intensivmed Notfallmed Schmerzther. 1997;32:226–33.CrossRef
18.
go back to reference Boldt J, Menges T, Wollbrück M, Hammermann H, Hempelmann G. Is continuous cardiac output measurement using thermodilution reliable in the critically ill patient? Crit Care Med. 1994;22:1913–8.CrossRef Boldt J, Menges T, Wollbrück M, Hammermann H, Hempelmann G. Is continuous cardiac output measurement using thermodilution reliable in the critically ill patient? Crit Care Med. 1994;22:1913–8.CrossRef
19.
go back to reference Medin DL, Brown DT, Wesley R, Cunnion RE, Ognibene FP. Validation of continuous thermodilution cardiac output in critically ill patients with analysis of systematic errors. J Crit Care. 1998;13:184–9.CrossRef Medin DL, Brown DT, Wesley R, Cunnion RE, Ognibene FP. Validation of continuous thermodilution cardiac output in critically ill patients with analysis of systematic errors. J Crit Care. 1998;13:184–9.CrossRef
20.
go back to reference Reuter DA, Huang C, Edrich T, Shernan SK, Eltzschig HK. Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives. Anesth Analg. 2010;110:799–811.CrossRef Reuter DA, Huang C, Edrich T, Shernan SK, Eltzschig HK. Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives. Anesth Analg. 2010;110:799–811.CrossRef
Metadata
Title
Study of the accuracy of a radial arterial pressure waveform cardiac output measurement device after cardiac surgery
Authors
Pilar Ordoñez-Rufat
Nuria Mancho-Fora
Cristian Tebe-Cordomi
Victoria Polit-Martinez
Ricardo Abellan-Lencina
Joaquin Fernandez-Alvarez
Juan Carlos Lopez-Delgado
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Cardiothoracic Surgery / Issue 1/2023
Electronic ISSN: 1749-8090
DOI
https://doi.org/10.1186/s13019-023-02128-1

Other articles of this Issue 1/2023

Journal of Cardiothoracic Surgery 1/2023 Go to the issue