Skip to main content
Top
Published in: Journal of Clinical Monitoring and Computing 5/2013

01-10-2013 | Original Research

Heart rate variability indices for very short-term (30 beat) analysis. Part 2: validation

Authors: Anne-Louise Smith, Harry Owen, Karen J. Reynolds

Published in: Journal of Clinical Monitoring and Computing | Issue 5/2013

Login to get access

Abstract

Heart rate variability (HRV) analysis over shorter periods may be useful for monitoring dynamic changes in autonomic nervous system activity where steady-state conditions are not maintained (e.g. during drug administration, or the start or end of exercise). This study undertakes a validation of 70 HRV indices that have previously been identified as possible for short-term use. The indices were validated over 10 × 30 beat windows using PhysioNet databases with physiological states of rest, active, exercising, sleeping, and meditating (N from 12 to 20). Baseline 95 % confidence intervals of the median were established with bootstrap resampling (10,000x). Statistical significance was assessed using the overlap of 95 % confidence intervals. Thirty-one indices could differentiate between resting and at least one physiological state using 30 beat windows. All respiratory sinus arrhythmia indices and Poincaré plot indices were strongly correlated to time domain measures (SDNN or RMSSD). Spectral indices using the Lomb-Scargle algorithm were able to correctly identify paradoxical shifts in power with meditation and reduced power in exercise. Some less-known indices gave interesting results: PolVar20 identified the higher sympathetic activity of exercise with the largest positive magnitude. These indices should now be considered for rigorous gold standard tests with pharmacological blockade.
Appendix
Available only for authorised users
Footnotes
1
Bootstrapping is a statistical method for estimating the sampling distribution of an estimator by repeated sampling with replacement from the original sample.
 
2
The jackknife is a similar estimation method to bootstrapping but systematically recalculates the statistic estimate leaving out one observation at a time from the sample set.
 
Literature
1.
go back to reference Smith AL, Reynolds KJ, Owen H (2013) Heart rate variability indices for very short-term (30 beat) analysis. Part 1: survey and toolbox. J Clin Monit Comput submitted for publication. Smith AL, Reynolds KJ, Owen H (2013) Heart rate variability indices for very short-term (30 beat) analysis. Part 1: survey and toolbox. J Clin Monit Comput submitted for publication.
2.
go back to reference Gaitan-Gonzalez MJ, Carrasco-Sosa S, Gonzalez-Camarena R, Yanez-Suarez O Non-linear relationship between heart period and root mean square of successive differences during ramp exercise and early recovery. Paper presented at the Computers in Cardiology 2005, Lyon; (2005), 25–28. Gaitan-Gonzalez MJ, Carrasco-Sosa S, Gonzalez-Camarena R, Yanez-Suarez O Non-linear relationship between heart period and root mean square of successive differences during ramp exercise and early recovery. Paper presented at the Computers in Cardiology 2005, Lyon; (2005), 25–28.
3.
go back to reference Thong T, Li K, McNames J, Aboy M, Goldstein B Accuracy of ultra-short heart rate variability measures. Paper presented at the 25th annual international conference. IEEE engineering in medicine and biology society, Cancun, Mexico; (2003), 17–21. Thong T, Li K, McNames J, Aboy M, Goldstein B Accuracy of ultra-short heart rate variability measures. Paper presented at the 25th annual international conference. IEEE engineering in medicine and biology society, Cancun, Mexico; (2003), 17–21.
4.
go back to reference Balocchi R, Cantini F, Varanini M, Raimondi G, Legramante JM, Macerata A. Revisiting the potential of time-domain indexes in short-term HRV analysis. Biomed Tech (Berl). 2006;51(4):190–3.CrossRef Balocchi R, Cantini F, Varanini M, Raimondi G, Legramante JM, Macerata A. Revisiting the potential of time-domain indexes in short-term HRV analysis. Biomed Tech (Berl). 2006;51(4):190–3.CrossRef
5.
go back to reference Salahuddin L, Cho J, Jeong MG, Kim D Ultra short term analysis of heart rate variability for monitoring mental stress in mobile settings. Paper presented at the 29th annual international conference IEEE engineering in medicine and biology society, Lyon; (2007), 23–26. Salahuddin L, Cho J, Jeong MG, Kim D Ultra short term analysis of heart rate variability for monitoring mental stress in mobile settings. Paper presented at the 29th annual international conference IEEE engineering in medicine and biology society, Lyon; (2007), 23–26.
7.
go back to reference Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):E215–20.PubMedCrossRef Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):E215–20.PubMedCrossRef
8.
go back to reference Yum MK, Kim JT, Kim HS. Increased non-stationarity of heart rate during general anaesthesia with sevoflurane or desflurane in children. Br J Anaesth. 2008;100(6):772–9.PubMedCrossRef Yum MK, Kim JT, Kim HS. Increased non-stationarity of heart rate during general anaesthesia with sevoflurane or desflurane in children. Br J Anaesth. 2008;100(6):772–9.PubMedCrossRef
9.
go back to reference Pinna GD, Maestri R, Di Cesare A. Application of time series spectral analysis theory: analysis of cardiovascular variability signals. Med Biol Eng Comput. 1996;34(2):142–8.PubMedCrossRef Pinna GD, Maestri R, Di Cesare A. Application of time series spectral analysis theory: analysis of cardiovascular variability signals. Med Biol Eng Comput. 1996;34(2):142–8.PubMedCrossRef
14.
go back to reference Efron B, Tibshirani R. An Introduction to the bootstrap. Monographs on statistics and applied probability, vol. 57. New York: Chapman and Hall; 1993. Efron B, Tibshirani R. An Introduction to the bootstrap. Monographs on statistics and applied probability, vol. 57. New York: Chapman and Hall; 1993.
19.
go back to reference Wolfe R, Cumming G. Communicating the uncertainty in research findings: confidence intervals. J Sci Med Sport. 2004;7(2):138–43.PubMedCrossRef Wolfe R, Cumming G. Communicating the uncertainty in research findings: confidence intervals. J Sci Med Sport. 2004;7(2):138–43.PubMedCrossRef
20.
go back to reference Keselman HJ, Cribbie R, Holland B. Controlling the rate of Type I error over a large set of statistical tests. Br J Math Stat Psychol. 2002;55(1):27–39.PubMedCrossRef Keselman HJ, Cribbie R, Holland B. Controlling the rate of Type I error over a large set of statistical tests. Br J Math Stat Psychol. 2002;55(1):27–39.PubMedCrossRef
21.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B. 1995;57(1):289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B. 1995;57(1):289–300.
22.
go back to reference Smith AL, Reynolds KJ, Owen H. Correlated Poincaré indices for measuring heart rate variability. Australas Phys Eng Sci Med. 2007;30(4):336–41.PubMed Smith AL, Reynolds KJ, Owen H. Correlated Poincaré indices for measuring heart rate variability. Australas Phys Eng Sci Med. 2007;30(4):336–41.PubMed
23.
go back to reference Hayano J, Sakakibara Y, Yamada A, Yamada M, Mukai S, Fujinami T, Yokoyama K, Watanabe Y, Takata K. Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. Am J Cardiol. 1991;67(2):199–204.PubMedCrossRef Hayano J, Sakakibara Y, Yamada A, Yamada M, Mukai S, Fujinami T, Yokoyama K, Watanabe Y, Takata K. Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. Am J Cardiol. 1991;67(2):199–204.PubMedCrossRef
24.
go back to reference Huikuri HV, Makikallio T, Airaksinen KE, Mitrani R, Castellanos A, Myerburg RJ. Measurement of heart rate variability: a clinical tool or a research toy? J Am Coll Cardiol. 1999;34(7):1878–83.PubMedCrossRef Huikuri HV, Makikallio T, Airaksinen KE, Mitrani R, Castellanos A, Myerburg RJ. Measurement of heart rate variability: a clinical tool or a research toy? J Am Coll Cardiol. 1999;34(7):1878–83.PubMedCrossRef
25.
go back to reference Task Force of European Society of Cardiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J. 1996;17(3):354–81.CrossRef Task Force of European Society of Cardiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J. 1996;17(3):354–81.CrossRef
26.
go back to reference Carrasco S, Gaitán MJ, González R, Yánez O. Correlation among Poincaré plot indexes and time and frequency domain measures of heart rate variability. J Med Eng Technol. 2001;25(6):240–8.PubMedCrossRef Carrasco S, Gaitán MJ, González R, Yánez O. Correlation among Poincaré plot indexes and time and frequency domain measures of heart rate variability. J Med Eng Technol. 2001;25(6):240–8.PubMedCrossRef
27.
go back to reference Malik M, Camm AJ. Heart rate variability. Armonk: Futura; 1995. Malik M, Camm AJ. Heart rate variability. Armonk: Futura; 1995.
28.
go back to reference Kleiger RE, Bigger JT, Bosner MS, Chung MK, Cook JR, Rolnitzky LM, Steinman R, Fleiss JL. Stability over time of variables measuring heart rate variability in normal subjects. Am J Cardiol. 1991;68(6):626–30.PubMedCrossRef Kleiger RE, Bigger JT, Bosner MS, Chung MK, Cook JR, Rolnitzky LM, Steinman R, Fleiss JL. Stability over time of variables measuring heart rate variability in normal subjects. Am J Cardiol. 1991;68(6):626–30.PubMedCrossRef
29.
go back to reference Katona PG, Jih F. Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J Appl Physiol. 1975;39(5):801–5.PubMed Katona PG, Jih F. Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J Appl Physiol. 1975;39(5):801–5.PubMed
31.
go back to reference Brennan M, Palaniswami M, Kamen P. Do existing measures of poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng. 2001;48(11):1342–7.PubMedCrossRef Brennan M, Palaniswami M, Kamen P. Do existing measures of poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng. 2001;48(11):1342–7.PubMedCrossRef
32.
go back to reference Bloomfield DM, Kaufman ES, Bigger JT Jr, Fleiss J, Rolnitzky L, Steinman R. Passive head-up tilt and actively standing up produce similar overall changes in autonomic balance. Am Heart J. 1997;134(2 Pt 1):316–20.PubMedCrossRef Bloomfield DM, Kaufman ES, Bigger JT Jr, Fleiss J, Rolnitzky L, Steinman R. Passive head-up tilt and actively standing up produce similar overall changes in autonomic balance. Am Heart J. 1997;134(2 Pt 1):316–20.PubMedCrossRef
33.
go back to reference Pomeranz B, Macaulay RJ, Caudill MA, Kutz I, Adam D, Gordon D, Kilborn KM, Barger AC, Shannon DC, Cohen RJ, et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol. 1985;248(1 Pt 2):H151–3.PubMed Pomeranz B, Macaulay RJ, Caudill MA, Kutz I, Adam D, Gordon D, Kilborn KM, Barger AC, Shannon DC, Cohen RJ, et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol. 1985;248(1 Pt 2):H151–3.PubMed
35.
go back to reference Sandercock GR, Shelton C, Bromley P, Brodie DA. Agreement between three commercially available instruments for measuring short-term heart rate variability. Physiol Meas. 2004;25(5):1115–24.PubMedCrossRef Sandercock GR, Shelton C, Bromley P, Brodie DA. Agreement between three commercially available instruments for measuring short-term heart rate variability. Physiol Meas. 2004;25(5):1115–24.PubMedCrossRef
36.
go back to reference Tsuchimochi H, Matsukawa K, Komine H, Murata J. Direct measurement of cardiac sympathetic efferent nerve activity during dynamic exercise. Am J Physiol Heart Circ Physiol. 2002;283(5):H1896–906.PubMed Tsuchimochi H, Matsukawa K, Komine H, Murata J. Direct measurement of cardiac sympathetic efferent nerve activity during dynamic exercise. Am J Physiol Heart Circ Physiol. 2002;283(5):H1896–906.PubMed
37.
go back to reference Tulppo MP, Makikallio TH, Takala TE, Seppanen T, Huikuri HV. Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol. 1996;271(1 Pt 2):H244–52.PubMed Tulppo MP, Makikallio TH, Takala TE, Seppanen T, Huikuri HV. Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol. 1996;271(1 Pt 2):H244–52.PubMed
38.
go back to reference Casadei B, Cochrane S, Johnston J, Conway J, Sleight P. Pitfalls in the interpretation of spectral analysis of the heart rate variability during exercise in humans. Acta Physiol Scand. 1995;153(2):125–31.PubMedCrossRef Casadei B, Cochrane S, Johnston J, Conway J, Sleight P. Pitfalls in the interpretation of spectral analysis of the heart rate variability during exercise in humans. Acta Physiol Scand. 1995;153(2):125–31.PubMedCrossRef
41.
go back to reference Cysarz D, von Bonin D, Brachmann P, Buetler S, Edelhauser F, Laederach-Hofmann K, Heusser P. Day-to-night time differences in the relationship between cardiorespiratory coordination and heart rate variability. Physiol Meas. 2008;29(11):1281–91. doi:10.1088/0967-3334/29/11/004.PubMedCrossRef Cysarz D, von Bonin D, Brachmann P, Buetler S, Edelhauser F, Laederach-Hofmann K, Heusser P. Day-to-night time differences in the relationship between cardiorespiratory coordination and heart rate variability. Physiol Meas. 2008;29(11):1281–91. doi:10.​1088/​0967-3334/​29/​11/​004.PubMedCrossRef
42.
go back to reference Lombardi F, Sandrone G, Mortara A, La Rovere MT, Colombo E, Guzzetti S, Malliani A. Circadian variation of spectral indices of heart rate variability after myocardial infarction. Am Heart J. 1992;123(6):1521–9.PubMedCrossRef Lombardi F, Sandrone G, Mortara A, La Rovere MT, Colombo E, Guzzetti S, Malliani A. Circadian variation of spectral indices of heart rate variability after myocardial infarction. Am Heart J. 1992;123(6):1521–9.PubMedCrossRef
43.
go back to reference Mietus JE, Peng CK, Henry I, Goldsmith RL, Goldberger AL. The pNNx files: re-examining a widely used heart rate variability measure. Heart. 2002;88(4):378–80.PubMedCrossRef Mietus JE, Peng CK, Henry I, Goldsmith RL, Goldberger AL. The pNNx files: re-examining a widely used heart rate variability measure. Heart. 2002;88(4):378–80.PubMedCrossRef
44.
go back to reference Otzenberger H, Gronfier C, Simon C, Charloux A, Ehrhart J, Piquard F, Brandenberger G. Dynamic heart rate variability: a tool for exploring sympathovagal balance continuously during sleep in men. Am J Physiol. 1998;275(3 Pt 2):H946–50.PubMed Otzenberger H, Gronfier C, Simon C, Charloux A, Ehrhart J, Piquard F, Brandenberger G. Dynamic heart rate variability: a tool for exploring sympathovagal balance continuously during sleep in men. Am J Physiol. 1998;275(3 Pt 2):H946–50.PubMed
45.
go back to reference Narkiewicz K, Montano N, Cogliati C, van de Borne PJ, Dyken ME, Somers VK. Altered cardiovascular variability in obstructive sleep apnea. Circulation. 1998;98(11):1071–7.PubMedCrossRef Narkiewicz K, Montano N, Cogliati C, van de Borne PJ, Dyken ME, Somers VK. Altered cardiovascular variability in obstructive sleep apnea. Circulation. 1998;98(11):1071–7.PubMedCrossRef
46.
go back to reference Brandenberger G, Viola AU, Ehrhart J, Charloux A, Geny B, Piquard F, Simon C. Age-related changes in cardiac autonomic control during sleep. J Sleep Res. 2003;12(3):173–80.PubMedCrossRef Brandenberger G, Viola AU, Ehrhart J, Charloux A, Geny B, Piquard F, Simon C. Age-related changes in cardiac autonomic control during sleep. J Sleep Res. 2003;12(3):173–80.PubMedCrossRef
47.
go back to reference Buchheit M, Simon C, Piquard F, Ehrhart J, Brandenberger G. Effects of increased training load on vagal-related indexes of heart rate variability: a novel sleep approach. Am J Physiol Heart Circ Physiol. 2004;287(6):H2813–8.PubMedCrossRef Buchheit M, Simon C, Piquard F, Ehrhart J, Brandenberger G. Effects of increased training load on vagal-related indexes of heart rate variability: a novel sleep approach. Am J Physiol Heart Circ Physiol. 2004;287(6):H2813–8.PubMedCrossRef
49.
go back to reference Peng CK, Henry IC, Mietus JE, Hausdorff JM, Khalsa G, Benson H, Goldberger AL. Heart rate dynamics during three forms of meditation. Int J Cardiol. 2004;95(1):19–27.PubMedCrossRef Peng CK, Henry IC, Mietus JE, Hausdorff JM, Khalsa G, Benson H, Goldberger AL. Heart rate dynamics during three forms of meditation. Int J Cardiol. 2004;95(1):19–27.PubMedCrossRef
52.
go back to reference Katona PG, McLean M, Dighton DH, Guz A. Sympathetic and parasympathetic cardiac control in athletes and nonathletes at rest. J Appl Physiol. 1982;52(6):1652–7.PubMed Katona PG, McLean M, Dighton DH, Guz A. Sympathetic and parasympathetic cardiac control in athletes and nonathletes at rest. J Appl Physiol. 1982;52(6):1652–7.PubMed
53.
go back to reference Zhong Y, Jan KM, Ju KH, Chon KH. Quantifying cardiac sympathetic and parasympathetic nervous activities using principal dynamic modes analysis of heart rate variability. Am J Physiol Heart Circ Physiol. 2006;291(3):H1475–83.PubMedCrossRef Zhong Y, Jan KM, Ju KH, Chon KH. Quantifying cardiac sympathetic and parasympathetic nervous activities using principal dynamic modes analysis of heart rate variability. Am J Physiol Heart Circ Physiol. 2006;291(3):H1475–83.PubMedCrossRef
54.
go back to reference Iyengar N, Peng CK, Morin R, Goldberger AL, Lipsitz LA. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am J Physiol. 1996;271(4 Pt 2):R1078–84.PubMed Iyengar N, Peng CK, Morin R, Goldberger AL, Lipsitz LA. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am J Physiol. 1996;271(4 Pt 2):R1078–84.PubMed
55.
go back to reference Albrecht P S-T segment characterization for long-term automated ECG analysis. M.S. thesis, MIT, Massachusetts; (1983). Albrecht P S-T segment characterization for long-term automated ECG analysis. M.S. thesis, MIT, Massachusetts; (1983).
56.
go back to reference Peng CK, Mietus JE, Liu Y, Khalsa G, Douglas PS, Benson H, Goldberger AL. Exaggerated heart rate oscillations during two meditation techniques. Int J Cardiol. 1999;70(2):101–7.PubMedCrossRef Peng CK, Mietus JE, Liu Y, Khalsa G, Douglas PS, Benson H, Goldberger AL. Exaggerated heart rate oscillations during two meditation techniques. Int J Cardiol. 1999;70(2):101–7.PubMedCrossRef
Metadata
Title
Heart rate variability indices for very short-term (30 beat) analysis. Part 2: validation
Authors
Anne-Louise Smith
Harry Owen
Karen J. Reynolds
Publication date
01-10-2013
Publisher
Springer Netherlands
Published in
Journal of Clinical Monitoring and Computing / Issue 5/2013
Print ISSN: 1387-1307
Electronic ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-013-9473-2

Other articles of this Issue 5/2013

Journal of Clinical Monitoring and Computing 5/2013 Go to the issue