Skip to main content
Top
Published in: Cellular Oncology 4/2015

01-08-2015 | Original Paper

HAUSP regulates c-MYC expression via de-ubiquitination of TRRAP

Authors: Seemana Bhattacharya, Mrinal K. Ghosh

Published in: Cellular Oncology | Issue 4/2015

Login to get access

Abstract

Purpose

The de-ubiquitinase HAUSP has been reported to exhibit various biological roles implicated in the development of cancer and other pathologies. The dual nature of HAUSP (i.e., oncogenic and tumor suppressive) makes the protein even more versatile. The major aims of this study were to reveal the effect of HAUSP over-expression on the overall proteome and to identify bona fide substrates of HAUSP. In addition, we aimed to unravel the functionality and physiological relevance of the de-ubiquitinating activity of HAUSP on one of its newly identified substrates, TRRAP.

Methods

An overall proteome analysis was performed after exogenous HAUSP over-expression in HEK293 cells, followed by 2-dimensional gel electrophoresis (2-DE). Interacting proteins were subsequently isolated using immunoprecipitation and 1-dimensional gel electrophoresis (1-DE). Both were followed by tandem MALDI-TOF/TOF mass spectrometry and gene ontology-based analyses. To validate the functionality of one of the identified substrates (TRRAP), Western blotting, immunocytochemistry, immunoprecipitation, in vivo de-ubiquitination, quantitative real-time PCR and luciferase assays were performed.

Results

The substrate screening indicated that HAUSP may be involved in tumorigenesis, cytoskeletal organization and transport, and chaperone systems. One candidate substrate, TRRAP, was found to physically interact and co-localize with HAUSP. As TRRAP regulates c-MYC expression, and in order to validate the effect of HAUSP on TRRAP, c-MYC protein and mRNA expression levels were analyzed after exogenous HAUSP over-expression. Both were found to be up-regulated. We also found that c-MYC transactivation increased upon exogenous HAUSP over-expression. By using a luciferase reporter assay, we found that a c-MYC responsive promoter exhibited increased activity, which was subsequently abrogated upon TRRAP knockdown.

Conclusions

From our results we conclude that HAUSP may act as an oncogenic protein that can modulate c-MYC expression via TRRAP. Our results provide a new context in which HAUSP may play a role in cancer cell signalling.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference I. Paul, M.K. Ghosh, A CHIPotle in physiology and disease. Int. J. Biochem. Cell Biol. 58, 37–52 (2015)PubMedCrossRef I. Paul, M.K. Ghosh, A CHIPotle in physiology and disease. Int. J. Biochem. Cell Biol. 58, 37–52 (2015)PubMedCrossRef
3.
go back to reference J. Yang, Emerging roles of deubiquitinating enzymes in human cancer. Acta Pharmacol. Sin. 28, 1325–1330 (2007)PubMedCrossRef J. Yang, Emerging roles of deubiquitinating enzymes in human cancer. Acta Pharmacol. Sin. 28, 1325–1330 (2007)PubMedCrossRef
5.
go back to reference S. Hussain, Y. Zhang, P.J. Galardy, DUBs and cancer: the role of deubiquitinating enzymes as oncogenes, non-oncogenes and tumor suppressors. Cell Cycle. Georget. Tex. 8, 1688–1697 (2009)CrossRef S. Hussain, Y. Zhang, P.J. Galardy, DUBs and cancer: the role of deubiquitinating enzymes as oncogenes, non-oncogenes and tumor suppressors. Cell Cycle. Georget. Tex. 8, 1688–1697 (2009)CrossRef
6.
go back to reference G. Nalepa, M. Rolfe, J.W. Harper, Drug discovery in the ubiquitin-proteasome system. Nat. Rev. Drug Discov. 5, 596–613 (2006)PubMedCrossRef G. Nalepa, M. Rolfe, J.W. Harper, Drug discovery in the ubiquitin-proteasome system. Nat. Rev. Drug Discov. 5, 596–613 (2006)PubMedCrossRef
7.
go back to reference A. Rawat, G. Gopal, G. Selvaluxmy, T. Rajkumar, Inhibition of ubiquitin conjugating enzyme UBE2C reduces prolilferation and sensitizes breast cancer cells to radiation, doxorubicin, tamoxifen and letrozole. Cell. Oncol. 36, 459–467 (2013)CrossRef A. Rawat, G. Gopal, G. Selvaluxmy, T. Rajkumar, Inhibition of ubiquitin conjugating enzyme UBE2C reduces prolilferation and sensitizes breast cancer cells to radiation, doxorubicin, tamoxifen and letrozole. Cell. Oncol. 36, 459–467 (2013)CrossRef
8.
go back to reference R.D. Everett, M. Meredith, A. Orr, A. Cross, M. Kathoria, J. Parkinson, A novel uiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. EMBO J. 16, 566–577 (1997)PubMedCentralPubMedCrossRef R.D. Everett, M. Meredith, A. Orr, A. Cross, M. Kathoria, J. Parkinson, A novel uiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. EMBO J. 16, 566–577 (1997)PubMedCentralPubMedCrossRef
9.
go back to reference M. Li, D. Chen, A. Shiloh, J. Luo, A.Y. Nikolaev, J. Qin, W. Gu, Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416, 648–653 (2002)PubMedCrossRef M. Li, D. Chen, A. Shiloh, J. Luo, A.Y. Nikolaev, J. Qin, W. Gu, Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416, 648–653 (2002)PubMedCrossRef
10.
go back to reference J.M. Cummins, B. Vogelstein, HAUSP is required for p53 destabilization. Cell Cycle. Georget. Tex. 3, 689–692 (2004) J.M. Cummins, B. Vogelstein, HAUSP is required for p53 destabilization. Cell Cycle. Georget. Tex. 3, 689–692 (2004)
11.
go back to reference B.M. Kessler, E. Fortunati, M. Melis, C.E.G.M. Pals, H. Clevers, M.M. Maurice, Proteome changes induced by Knock-down of the deubiquitylating enzyme HAUSP/USP7. J. Proteome Res. 6, 4163–4172 (2007)PubMedCrossRef B.M. Kessler, E. Fortunati, M. Melis, C.E.G.M. Pals, H. Clevers, M.M. Maurice, Proteome changes induced by Knock-down of the deubiquitylating enzyme HAUSP/USP7. J. Proteome Res. 6, 4163–4172 (2007)PubMedCrossRef
12.
go back to reference B. Nicholson, K.G. Suresh Kumar, The multifaceted roles of USP7: New therapeutic opportunities. Cell Biochem. Biophys. 60, 61–68 (2011)PubMedCrossRef B. Nicholson, K.G. Suresh Kumar, The multifaceted roles of USP7: New therapeutic opportunities. Cell Biochem. Biophys. 60, 61–68 (2011)PubMedCrossRef
13.
go back to reference S. Daubeuf, D. Singh, Y. Tan, H. Liu, H.J. Federoff, W.J. Bowers, K. Tolba, HSV ICP0 recruits USP7 to modulate TLR-mediated innate response. Blood 113, 3264–3275 (2009)PubMedCentralPubMedCrossRef S. Daubeuf, D. Singh, Y. Tan, H. Liu, H.J. Federoff, W.J. Bowers, K. Tolba, HSV ICP0 recruits USP7 to modulate TLR-mediated innate response. Blood 113, 3264–3275 (2009)PubMedCentralPubMedCrossRef
14.
go back to reference M. Kalamvoki, H. Gu, B. Roizman, Overexpression of the ubiquitin-specific protease 7 resulting from transfection or mutations in the ICP0 binding site accelerates rather than depresses herpes simplex virus 1 gene expression. J. Virol. 86, 12871–12878 (2012)PubMedCentralPubMedCrossRef M. Kalamvoki, H. Gu, B. Roizman, Overexpression of the ubiquitin-specific protease 7 resulting from transfection or mutations in the ICP0 binding site accelerates rather than depresses herpes simplex virus 1 gene expression. J. Virol. 86, 12871–12878 (2012)PubMedCentralPubMedCrossRef
15.
go back to reference M.N. Holowaty, L. Frappier, HAUSP/USP7 as an Epstein-Barr virus target. Biochem. Soc. Trans. 32, 731–732 (2004)PubMedCrossRef M.N. Holowaty, L. Frappier, HAUSP/USP7 as an Epstein-Barr virus target. Biochem. Soc. Trans. 32, 731–732 (2004)PubMedCrossRef
16.
go back to reference F. Sarkari, X. Wang, T. Nguyen, L. Frappier, The herpesvirus associated ubiquitin specific protease, USP7, is a negative regulator of PML proteins and PML nuclear bodies. PLoS One 6, e16598 (2011)PubMedCentralPubMedCrossRef F. Sarkari, X. Wang, T. Nguyen, L. Frappier, The herpesvirus associated ubiquitin specific protease, USP7, is a negative regulator of PML proteins and PML nuclear bodies. PLoS One 6, e16598 (2011)PubMedCentralPubMedCrossRef
17.
go back to reference M.T. Epping, L.A.T. Meijer, O. Krijgsman, J.L. Bos, P.P. Pandolfi, R. Bernards, TSPYL5 suppresses p53 levels and function by physical interaction with USP7. Nat. Cell Biol. 13, 102–108 (2010)PubMedCrossRef M.T. Epping, L.A.T. Meijer, O. Krijgsman, J.L. Bos, P.P. Pandolfi, R. Bernards, TSPYL5 suppresses p53 levels and function by physical interaction with USP7. Nat. Cell Biol. 13, 102–108 (2010)PubMedCrossRef
18.
go back to reference K. Becker, N.D. Marchenko, G. Palacios, U.M. Moll, A role of HAUSP in tumor suppression in a human colon carcinoma xenograft model. Cell Cycle 7, 1205–1213 (2008)PubMedCentralPubMedCrossRef K. Becker, N.D. Marchenko, G. Palacios, U.M. Moll, A role of HAUSP in tumor suppression in a human colon carcinoma xenograft model. Cell Cycle 7, 1205–1213 (2008)PubMedCentralPubMedCrossRef
19.
go back to reference A. van der Horst, A.M.M. de Vries-Smits, A.B... Brenkman, M.H. van Triest, N. van den Broek, F. Colland, M.M. Maurice, B.M.T. Burgering, FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat. Cell Biol. 8, 1064–1073 (2006) A. van der Horst, A.M.M. de Vries-Smits, A.B... Brenkman, M.H. van Triest, N. van den Broek, F. Colland, M.M. Maurice, B.M.T. Burgering, FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat. Cell Biol. 8, 1064–1073 (2006)
20.
go back to reference M.S. Song, L. Salmena, A. Carracedo, A. Egia, F. Lo-Coco, J. Teruya-Feldstein, P.P. Pandolfi, The deubiquitylation and localization of PTEN are regulated by a HAUSP-PML network. Nature 455, 813–817 (2008)PubMedCentralPubMedCrossRef M.S. Song, L. Salmena, A. Carracedo, A. Egia, F. Lo-Coco, J. Teruya-Feldstein, P.P. Pandolfi, The deubiquitylation and localization of PTEN are regulated by a HAUSP-PML network. Nature 455, 813–817 (2008)PubMedCentralPubMedCrossRef
21.
go back to reference S.V. Khoronenkova, I.I. Dianova, J.L. Parsons, G.L. Dianov, USP7/HAUSP stimulates repair of oxidative DNA lesions. Nucl. Acids Res. 39, 2604–2609 (2010)PubMedCentralPubMedCrossRef S.V. Khoronenkova, I.I. Dianova, J.L. Parsons, G.L. Dianov, USP7/HAUSP stimulates repair of oxidative DNA lesions. Nucl. Acids Res. 39, 2604–2609 (2010)PubMedCentralPubMedCrossRef
23.
go back to reference R.E. Kingston, C.A. Chen, H. Okayama, J.K. Rose, Transfection of DNA into eukaryotic cells. Curr. Protoc. Mol. Biol. N. Y. Greene Publ. Wiley Intersci. 9, 1–9 (1987) R.E. Kingston, C.A. Chen, H. Okayama, J.K. Rose, Transfection of DNA into eukaryotic cells. Curr. Protoc. Mol. Biol. N. Y. Greene Publ. Wiley Intersci. 9, 1–9 (1987)
24.
go back to reference S.F. Ahmed, S. Deb, I. Paul, A. Chatterjee, T. Mandal, U. Chatterjee, M.K. Ghosh, The chaperone-assisted E3 ligase C terminus of Hsc 70-interacting protein (CHIP) targets PTEN for Proteasomal degradation. J. Biol. Chem. 287, 15996–16006 (2012)PubMedCentralPubMedCrossRef S.F. Ahmed, S. Deb, I. Paul, A. Chatterjee, T. Mandal, U. Chatterjee, M.K. Ghosh, The chaperone-assisted E3 ligase C terminus of Hsc 70-interacting protein (CHIP) targets PTEN for Proteasomal degradation. J. Biol. Chem. 287, 15996–16006 (2012)PubMedCentralPubMedCrossRef
25.
go back to reference A.-L. Mahul-Mellier, E. Pazarentzos, C. Datler, R. Iwasawa, G. AbuAli, B. Lin, S. Grimm, Deubiquiintating protease USP2a targets RIP1 and TRAf2 to mediate cell death by TNF. Cell Death Differ. 19, 891–899 (2012)PubMedCentralPubMedCrossRef A.-L. Mahul-Mellier, E. Pazarentzos, C. Datler, R. Iwasawa, G. AbuAli, B. Lin, S. Grimm, Deubiquiintating protease USP2a targets RIP1 and TRAf2 to mediate cell death by TNF. Cell Death Differ. 19, 891–899 (2012)PubMedCentralPubMedCrossRef
26.
go back to reference S.F. Ahmed, N. Das, M. Sarkar, U. Chatterjee, S. Chatterjee, M.K. Ghosh, Exosome-mediated delivery of the intrinsic C-terminus domain of PTEN protects it from proteasomal degradation and ablates tumorigenesis. Mol. Ther. 23, 255–269 (2015)PubMedCrossRef S.F. Ahmed, N. Das, M. Sarkar, U. Chatterjee, S. Chatterjee, M.K. Ghosh, Exosome-mediated delivery of the intrinsic C-terminus domain of PTEN protects it from proteasomal degradation and ablates tumorigenesis. Mol. Ther. 23, 255–269 (2015)PubMedCrossRef
27.
go back to reference I. Paul, S.F. Ahmed, A. Bhowmik, S. Deb, M.K. Ghosh, The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity. Oncogene 32, 1284–1295 (2013)PubMedCrossRef I. Paul, S.F. Ahmed, A. Bhowmik, S. Deb, M.K. Ghosh, The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity. Oncogene 32, 1284–1295 (2013)PubMedCrossRef
28.
go back to reference S.B. McMahon, H.A. Van Buskirk, K.A. Dugan, T.D. Copeland, M.D. Cole, The novel ATM-related protein TRRAP is essential cofactor for the c-Myc and E2F oncoproteins. Cell 94, 363–374 (1998)PubMedCrossRef S.B. McMahon, H.A. Van Buskirk, K.A. Dugan, T.D. Copeland, M.D. Cole, The novel ATM-related protein TRRAP is essential cofactor for the c-Myc and E2F oncoproteins. Cell 94, 363–374 (1998)PubMedCrossRef
29.
go back to reference X. Liu, J. Tesfai, Y.A. Evrard, S.Y.R. Dent, E. Martinez, c-Myc transformation domain recruits the human STAGA complex and requires TRRAP and GCN5 acetylase activity for transcriotion activation. J. Biol. Chem. 278, 20405–20412 (2003)PubMedCentralPubMedCrossRef X. Liu, J. Tesfai, Y.A. Evrard, S.Y.R. Dent, E. Martinez, c-Myc transformation domain recruits the human STAGA complex and requires TRRAP and GCN5 acetylase activity for transcriotion activation. J. Biol. Chem. 278, 20405–20412 (2003)PubMedCentralPubMedCrossRef
30.
go back to reference N.S. Kenneth, B.A. Ramsbottom, N. Gomez-Roman, L. Marshall, P.A. Cole, R.J. White, TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III trabscriotion. Proc. Natl. Acad. Sci. 104, 14917–14922 (2007)PubMedCentralPubMedCrossRef N.S. Kenneth, B.A. Ramsbottom, N. Gomez-Roman, L. Marshall, P.A. Cole, R.J. White, TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III trabscriotion. Proc. Natl. Acad. Sci. 104, 14917–14922 (2007)PubMedCentralPubMedCrossRef
31.
go back to reference J.A. Royds, W.R. Timperley, C.B. Taylor, Levels of enolase and other enzymes in the cerebrospinal fluid as indices of pathological change. J. Neurol. Neurosurg. Psychiatry 44, 1129–1135 (1981)PubMedCentralPubMedCrossRef J.A. Royds, W.R. Timperley, C.B. Taylor, Levels of enolase and other enzymes in the cerebrospinal fluid as indices of pathological change. J. Neurol. Neurosurg. Psychiatry 44, 1129–1135 (1981)PubMedCentralPubMedCrossRef
32.
go back to reference R.O. Roine, H. Somer, M. Kaste, L. Viinikka, S.L. Karonen, Neurological outcome after out-of-hospital cardiac arrest. Prediction by cerebrospinal fluid enzyme analysis. Arch. Neurol. 46, 753–756 (1989)PubMedCrossRef R.O. Roine, H. Somer, M. Kaste, L. Viinikka, S.L. Karonen, Neurological outcome after out-of-hospital cardiac arrest. Prediction by cerebrospinal fluid enzyme analysis. Arch. Neurol. 46, 753–756 (1989)PubMedCrossRef
33.
go back to reference A. Fujii, M. Yoneda, T. Ito, O. Yamamura, S. Satomi, H. Higa, A. Kimura, M. Suzuki, M. Yamashita, T. Yuasa, H. Suzuki, M. Kuriyama, Autoantibodies against the amino terminal of alpha-enolase are a useful diagnostic marker of Hashimoto’s encephalopathy. J. Neuroimmunol. 162, 130–136 (2005)PubMedCrossRef A. Fujii, M. Yoneda, T. Ito, O. Yamamura, S. Satomi, H. Higa, A. Kimura, M. Suzuki, M. Yamashita, T. Yuasa, H. Suzuki, M. Kuriyama, Autoantibodies against the amino terminal of alpha-enolase are a useful diagnostic marker of Hashimoto’s encephalopathy. J. Neuroimmunol. 162, 130–136 (2005)PubMedCrossRef
34.
go back to reference T. Sato, H. Saito, J. Swensen, A. Olifant, C. Wood, D. Danner, T. Sakamoto, K. Takita, F. Kasumi, Y. Miki, The human prohibitin gene located on chromosome 17q21 is mutataed in sporadic breast cancer. Cancer Res. 52, 1643–1646 (1992)PubMed T. Sato, H. Saito, J. Swensen, A. Olifant, C. Wood, D. Danner, T. Sakamoto, K. Takita, F. Kasumi, Y. Miki, The human prohibitin gene located on chromosome 17q21 is mutataed in sporadic breast cancer. Cancer Res. 52, 1643–1646 (1992)PubMed
35.
go back to reference G. Fusaro, P. Dasgupta, S. Rastogi, B. Joshi, S. Chellappan, Prohibitin induces the transcriotional activity of p53 and is exported from the nucleus upon apoptotic signaling. J. Biol. Chem. 278, 47853–47861 (2003)PubMedCrossRef G. Fusaro, P. Dasgupta, S. Rastogi, B. Joshi, S. Chellappan, Prohibitin induces the transcriotional activity of p53 and is exported from the nucleus upon apoptotic signaling. J. Biol. Chem. 278, 47853–47861 (2003)PubMedCrossRef
36.
go back to reference S. Wang, G. Fusaro, J. Padmanabhan, S.P. Chellappan, Prohibitin-co-localizes with Rb in the nucleus and recruits N-CoR and HDAC1 for transcriptional repression. Oncogene 21, 8388–8396 (2002)PubMedCrossRef S. Wang, G. Fusaro, J. Padmanabhan, S.P. Chellappan, Prohibitin-co-localizes with Rb in the nucleus and recruits N-CoR and HDAC1 for transcriptional repression. Oncogene 21, 8388–8396 (2002)PubMedCrossRef
37.
38.
go back to reference N.N. Chuang, C.C. Huang, Interaction of integrin beta 1 with cytokeratin 1 in neuroblastoma NMB7 cells. Biochem. Soc. Trans. 35, 1292–1294 (2006) N.N. Chuang, C.C. Huang, Interaction of integrin beta 1 with cytokeratin 1 in neuroblastoma NMB7 cells. Biochem. Soc. Trans. 35, 1292–1294 (2006)
39.
go back to reference F. Mahdi, Z. Shariat-Madar, R.F. Todd, C.D. Figueroa, A.H. Schmaier, Expression and colocalization of cytokeratin 1 and urokinase plasminogen activator receptor on endothelial cells. Blood 97, 2342–2350 (2001)PubMedCrossRef F. Mahdi, Z. Shariat-Madar, R.F. Todd, C.D. Figueroa, A.H. Schmaier, Expression and colocalization of cytokeratin 1 and urokinase plasminogen activator receptor on endothelial cells. Blood 97, 2342–2350 (2001)PubMedCrossRef
40.
go back to reference C.D. Collard, M.C. Montalto, W.R. Reenstra, J.A. Buras, G.L. Stahl, Endothelial oxidative stress activates the lectin complement pathway: role of cytokeratin 1. Am. J. Pathol. 159, 1045–1054 (2001)PubMedCentralPubMedCrossRef C.D. Collard, M.C. Montalto, W.R. Reenstra, J.A. Buras, G.L. Stahl, Endothelial oxidative stress activates the lectin complement pathway: role of cytokeratin 1. Am. J. Pathol. 159, 1045–1054 (2001)PubMedCentralPubMedCrossRef
41.
go back to reference M. Sugimoto, A. Inoko, T. Shiromizu, M. Nakayama, P. Zou, S. Yonemura, Y. Hayashi, I. Izawa, M. Sasoh, Y. Uji, K. Kaibuchi, T. Kiyono, M. Inagaki, The keratin-binding protein albatross regulates polarization of epithelial cells. J. Cell Biol. 183, 19–28 (2007)CrossRef M. Sugimoto, A. Inoko, T. Shiromizu, M. Nakayama, P. Zou, S. Yonemura, Y. Hayashi, I. Izawa, M. Sasoh, Y. Uji, K. Kaibuchi, T. Kiyono, M. Inagaki, The keratin-binding protein albatross regulates polarization of epithelial cells. J. Cell Biol. 183, 19–28 (2007)CrossRef
42.
go back to reference R. Murr, T. Vaissière, C. Sawan, V. Shukla, Z. Herceg, Orchestration of chromatin-based process: mind the TRRAP. Oncogene 26, 5358–5372 (2007)PubMedCrossRef R. Murr, T. Vaissière, C. Sawan, V. Shukla, Z. Herceg, Orchestration of chromatin-based process: mind the TRRAP. Oncogene 26, 5358–5372 (2007)PubMedCrossRef
Metadata
Title
HAUSP regulates c-MYC expression via de-ubiquitination of TRRAP
Authors
Seemana Bhattacharya
Mrinal K. Ghosh
Publication date
01-08-2015
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 4/2015
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-015-0228-6

Other articles of this Issue 4/2015

Cellular Oncology 4/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine