Skip to main content
Top
Published in: BMC Pediatrics 1/2018

Open Access 01-12-2018 | Research article

Hand grip strength and maximum peak expiratory flow: determinants of bone mineral density of adolescent students

Authors: Marco Cossio-Bolaños, Cynthia Lee-Andruske, Miguel de Arruda, Cristian Luarte-Rocha, Alejandro Almonacid-Fierro, Rossana Gómez-Campos

Published in: BMC Pediatrics | Issue 1/2018

Login to get access

Abstract

Background

Maintaining and building healthy bones during the lifetime requires a complicated interaction between a number of physiological and lifestyle factors. Our goal of this study was to analyze the association between hand grip strength and the maximum peak expiratory flow with bone mineral density and content in adolescent students.

Methods

The research team studied 1427 adolescent students of both sexes (750 males and 677 females) between the ages of 11.0 and 18.9 years in the Maule Region of Talca (Chile). Weight, standing height, sitting height, hand grip strength (HGS), and maximum peak expiratory flow (PEF) were measured. Furthermore, bone mineral density (BMD) and total body bone mineral content (BMC) were determined by using the Dual-Energy X-Ray Absorptiometry (DXA). Hand grip strength and PEF were categorized in tertiles (lowest, middle, and highest). Linear regression was performed in steps to analyze the relationship between the variables. Differences between categories were determined through ANOVA.

Results

In males, the hand grip strength explained 18–19% of the BMD and 20–23% of the BMC. For the females, the percentage of variation occurred between 12 and 13% of the BMD and 17–18% of the BMC. The variation of PEF for the males was observed as 33% of the BMD and 36% of the BMC. For the females, both the BMD and BMC showed a variation of 19%. The HGS and PEF were divided into three categories (lowest, middle, and highest). In both cases, significant differences occurred in bone density health between the three categories.

Conclusions

In conclusion, the HGS and the PEF related positively to the bone density health of both sexes of adolescent students. The adolescents with poor values for hand grip strength and expiratory flow showed reduced values of BMD and BMC for the total body. Furthermore, the PEF had a greater influence on bone density health with respect to the HGS of the adolescents of both sexes.
Literature
1.
go back to reference Rizzoli R, Bianchi ML, Garabedian M, McKay HA, Moreno LA. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone. 2010;46:294–305.CrossRefPubMed Rizzoli R, Bianchi ML, Garabedian M, McKay HA, Moreno LA. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone. 2010;46:294–305.CrossRefPubMed
2.
go back to reference Lehtonen-Veromaa M, Mottonen T, Nuotio I, Heinonen OJ, Viikari J. Influence of physical activity on ultrasound an dual-energy x-ray absorptiometry bone measurements in peripubertal girls: a crosssectional study. Calcif Tissue Int. 2000;66:248–54.CrossRefPubMed Lehtonen-Veromaa M, Mottonen T, Nuotio I, Heinonen OJ, Viikari J. Influence of physical activity on ultrasound an dual-energy x-ray absorptiometry bone measurements in peripubertal girls: a crosssectional study. Calcif Tissue Int. 2000;66:248–54.CrossRefPubMed
3.
go back to reference Buntain HM, Greer RM, Schluter PJ, Wong JCH, Batch JA, Potter JM, Lewindon PJ, Powell E, Wainwright E, Bel SC. Bone mineral density in Australian children, adolescents and adults with cystic fibrosis: a controlled cross sectional study. Thorax. 2004;59:149–55.CrossRefPubMedPubMedCentral Buntain HM, Greer RM, Schluter PJ, Wong JCH, Batch JA, Potter JM, Lewindon PJ, Powell E, Wainwright E, Bel SC. Bone mineral density in Australian children, adolescents and adults with cystic fibrosis: a controlled cross sectional study. Thorax. 2004;59:149–55.CrossRefPubMedPubMedCentral
4.
go back to reference Gordon CM. Evaluation of bone density in children. Current opinion in endocrinology, diabetes and Obesity. 2005;12(6):444–51.CrossRef Gordon CM. Evaluation of bone density in children. Current opinion in endocrinology, diabetes and Obesity. 2005;12(6):444–51.CrossRef
5.
go back to reference Chan DCC, Lee WTL, Lo DHS, Leung JC, Kwok AWL, Leung PC. Relationship between grip strength and bone mineral density in healthy Hong Kong adolescents. Osteoporos Int. 2008;19:1485–95.CrossRefPubMed Chan DCC, Lee WTL, Lo DHS, Leung JC, Kwok AWL, Leung PC. Relationship between grip strength and bone mineral density in healthy Hong Kong adolescents. Osteoporos Int. 2008;19:1485–95.CrossRefPubMed
6.
go back to reference Legroux-Gérot I, Leroy S, Prudhomme C, Perez T, Flipo RM, Wallaert B, et al. Bone loss in adults with cystic fibrosis: prevalence, associated factors, and usefulness of biological markers. Joint Bone Spine. 2012;79:73–7.CrossRefPubMed Legroux-Gérot I, Leroy S, Prudhomme C, Perez T, Flipo RM, Wallaert B, et al. Bone loss in adults with cystic fibrosis: prevalence, associated factors, and usefulness of biological markers. Joint Bone Spine. 2012;79:73–7.CrossRefPubMed
7.
8.
go back to reference Emslander HC, Sinaki M, Muhs JM, Chao EY, Wahner HW, Bryant SC, Riggs BL, Eastell R. Bone mass and muscle strength in female college athletes (runner and swimmers). Mayo Clin Proc. 1998;73:1151–60.CrossRefPubMed Emslander HC, Sinaki M, Muhs JM, Chao EY, Wahner HW, Bryant SC, Riggs BL, Eastell R. Bone mass and muscle strength in female college athletes (runner and swimmers). Mayo Clin Proc. 1998;73:1151–60.CrossRefPubMed
9.
go back to reference Petterson U, Nordstrom P, Lorentzon R. A comparison of bone mineral density and muscle strength in young male adults with different exercise level. Calcif Tissue Int. 1999;64:490–8.CrossRef Petterson U, Nordstrom P, Lorentzon R. A comparison of bone mineral density and muscle strength in young male adults with different exercise level. Calcif Tissue Int. 1999;64:490–8.CrossRef
10.
go back to reference Lekamwasam S, Trivedi DP, Khaw KT. An association between respiratory function and bone mineral density in women from the general community: a cross sectional study. Osteoporos Int. 2002;13:710–5.CrossRefPubMed Lekamwasam S, Trivedi DP, Khaw KT. An association between respiratory function and bone mineral density in women from the general community: a cross sectional study. Osteoporos Int. 2002;13:710–5.CrossRefPubMed
11.
go back to reference Lekamwasam S, Trivedi DP, Khaw KT. An association between respiratory function and hip bone mineral density in older men: a cross-sectional study. Osteoporos Int. 2005;16:204–7.CrossRefPubMed Lekamwasam S, Trivedi DP, Khaw KT. An association between respiratory function and hip bone mineral density in older men: a cross-sectional study. Osteoporos Int. 2005;16:204–7.CrossRefPubMed
12.
go back to reference Minghelli B, Nunes C, Oliveira R. Prevalence of overweight and obesity in portuguese adolescents: comparison of different anthropometric methods. North Am J Med Sci. 2013;5:653–9.CrossRef Minghelli B, Nunes C, Oliveira R. Prevalence of overweight and obesity in portuguese adolescents: comparison of different anthropometric methods. North Am J Med Sci. 2013;5:653–9.CrossRef
13.
go back to reference Moayyeri A. The association between physical activity and osteoporotic fractures: a review of the evidence and implications for future research. Ann Epidemiol. 2008;18(11):827–35.CrossRefPubMed Moayyeri A. The association between physical activity and osteoporotic fractures: a review of the evidence and implications for future research. Ann Epidemiol. 2008;18(11):827–35.CrossRefPubMed
14.
go back to reference Karlsson MK, Rosengren BE. Training and bone V from health to injury. Scand J Med Sci Sports. 2012;22:15–23.CrossRef Karlsson MK, Rosengren BE. Training and bone V from health to injury. Scand J Med Sci Sports. 2012;22:15–23.CrossRef
15.
go back to reference Liphardt AM, Schipilow JD, Macdonald HM, Kan M, Zieger A, Boyd SK. Bone micro-architecture of elite alpine skiers is not reflected by bone mineral density. Osteoporos Int. 2015;26:2309–17.CrossRefPubMed Liphardt AM, Schipilow JD, Macdonald HM, Kan M, Zieger A, Boyd SK. Bone micro-architecture of elite alpine skiers is not reflected by bone mineral density. Osteoporos Int. 2015;26:2309–17.CrossRefPubMed
17.
go back to reference Kelly TL, Berger N, Richardson TL. DXA Body composition: theory and practice. Appl Radiat Isot. 1998;49:511–3.CrossRefPubMed Kelly TL, Berger N, Richardson TL. DXA Body composition: theory and practice. Appl Radiat Isot. 1998;49:511–3.CrossRefPubMed
18.
go back to reference Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):689–94.PubMed Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):689–94.PubMed
19.
go back to reference Douma WR, van der Mark TW, Folgering HT. Mini-Wright peak flow meters are reliable after 5 years use. Eur Respir J. 1997;10:457–9.CrossRefPubMed Douma WR, van der Mark TW, Folgering HT. Mini-Wright peak flow meters are reliable after 5 years use. Eur Respir J. 1997;10:457–9.CrossRefPubMed
20.
go back to reference Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilator flows; 1993 Update. Report working party "standardization of lung function tests", European coal and steel community, and European Respiratory Society. Eur Respir J 1993. 6(Suppl. 16):5–40. Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilator flows; 1993 Update. Report working party "standardization of lung function tests", European coal and steel community, and European Respiratory Society. Eur Respir J 1993. 6(Suppl. 16):5–40.
21.
go back to reference Richards LG, Olson B, Palmiter-Thomas P. How forearm position affects grip strength. Am J Occup Ther. 1996;50(Suppl 2):133–8.CrossRefPubMed Richards LG, Olson B, Palmiter-Thomas P. How forearm position affects grip strength. Am J Occup Ther. 1996;50(Suppl 2):133–8.CrossRefPubMed
22.
go back to reference Tsuji S, Tsunoda N, Yata H, Katsukawa F, Onishi S, Yamazaki H. Relation between grip strength and radial bone mineral density in young athletes. Arch Phys Med Rehabil. 1995;76:234–8.CrossRefPubMed Tsuji S, Tsunoda N, Yata H, Katsukawa F, Onishi S, Yamazaki H. Relation between grip strength and radial bone mineral density in young athletes. Arch Phys Med Rehabil. 1995;76:234–8.CrossRefPubMed
23.
go back to reference Ducher G, Jaffré C, Arlettaz A, Benhamou CL, Courteix D. Effects of long-term tennis playing on the muscle-bone relationship in the dominant and nondominant forearms. Can J Appl Physiol. 2005;30(1):3–17.CrossRefPubMed Ducher G, Jaffré C, Arlettaz A, Benhamou CL, Courteix D. Effects of long-term tennis playing on the muscle-bone relationship in the dominant and nondominant forearms. Can J Appl Physiol. 2005;30(1):3–17.CrossRefPubMed
24.
go back to reference Baptista F, Barrigas C, Vieira F, Santa-Clara H, Homens PM, Fragoso I, Sardinha LB. The role of lean body mass and physical activity in bone health in children. J Bone Miner Metab. 2012;30(1):100–8.CrossRefPubMed Baptista F, Barrigas C, Vieira F, Santa-Clara H, Homens PM, Fragoso I, Sardinha LB. The role of lean body mass and physical activity in bone health in children. J Bone Miner Metab. 2012;30(1):100–8.CrossRefPubMed
26.
go back to reference Beverly MC, Rider TA, Evans MJ, Smith R. Local bone mineral response to brief exercise that stresses the skeleton. Br Med J. 1989;299:233–5.CrossRef Beverly MC, Rider TA, Evans MJ, Smith R. Local bone mineral response to brief exercise that stresses the skeleton. Br Med J. 1989;299:233–5.CrossRef
27.
go back to reference Sandler RB, Cauley JA, Sashin D, Scialabba MA, Kriska AM. The effect of grip strength on radial bone in postmenopausal women. J Orthop Res. 1989;7:440–4.CrossRefPubMed Sandler RB, Cauley JA, Sashin D, Scialabba MA, Kriska AM. The effect of grip strength on radial bone in postmenopausal women. J Orthop Res. 1989;7:440–4.CrossRefPubMed
28.
go back to reference Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA. Cardiovascular Health Study Collaborative Research Group. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–56.CrossRefPubMed Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA. Cardiovascular Health Study Collaborative Research Group. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–56.CrossRefPubMed
29.
go back to reference Norman K, Stobäus N, Gonzalez MC, Schulzke JD, Pirlich M. Hand grip strength: outcome predictor and marker of nutritional status. Clin Nutr. 2011;30(2):135–42.CrossRefPubMed Norman K, Stobäus N, Gonzalez MC, Schulzke JD, Pirlich M. Hand grip strength: outcome predictor and marker of nutritional status. Clin Nutr. 2011;30(2):135–42.CrossRefPubMed
30.
go back to reference Frost HM. Bone's mechanostat: a 2003 update. Anatomical Record Part A Discoveries in Molecular, Cellular and Evolutionary Biology. 2003;275:1081–101.CrossRef Frost HM. Bone's mechanostat: a 2003 update. Anatomical Record Part A Discoveries in Molecular, Cellular and Evolutionary Biology. 2003;275:1081–101.CrossRef
31.
go back to reference Trost SG, Rosencrantz RR, Dzewaltowski D. Physical activity levels among children attending after school programs. Med Sci Sports Exerc. 2008;40:622–9.CrossRefPubMed Trost SG, Rosencrantz RR, Dzewaltowski D. Physical activity levels among children attending after school programs. Med Sci Sports Exerc. 2008;40:622–9.CrossRefPubMed
32.
go back to reference Campion JM, Maricic MJ. Osteoporosis in men. Am Fam Physician. 2003;67(7):1521–6.PubMed Campion JM, Maricic MJ. Osteoporosis in men. Am Fam Physician. 2003;67(7):1521–6.PubMed
33.
go back to reference Conway SP, Oldroyd B, Brownlee KG, Wolfe SP, Truscott JG. A cross-sectional study of bone mineral density in children and adolescents attending a cystic fibrosis Centre. J Cyst Fibros. 2008;7:469–76.CrossRefPubMed Conway SP, Oldroyd B, Brownlee KG, Wolfe SP, Truscott JG. A cross-sectional study of bone mineral density in children and adolescents attending a cystic fibrosis Centre. J Cyst Fibros. 2008;7:469–76.CrossRefPubMed
34.
go back to reference Donadio M, Souza G, Tiecher G, Heinzmann-Filho JP, Paim TF, Hommerding PX, Marosti PJC. Bone mineral density, pulmonary function, chronological age, and age at diagnosis in children and adolescents with cystic fibrosis. J Pediatr. 2013;89(2):151–7.CrossRef Donadio M, Souza G, Tiecher G, Heinzmann-Filho JP, Paim TF, Hommerding PX, Marosti PJC. Bone mineral density, pulmonary function, chronological age, and age at diagnosis in children and adolescents with cystic fibrosis. J Pediatr. 2013;89(2):151–7.CrossRef
35.
go back to reference Morin S, Leslie WD. Manitoba Bone Density Program. High bone mineral density is associated with high body mass index. Osteoporos Int. 2009;20(7):1267–71.CrossRefPubMed Morin S, Leslie WD. Manitoba Bone Density Program. High bone mineral density is associated with high body mass index. Osteoporos Int. 2009;20(7):1267–71.CrossRefPubMed
36.
go back to reference Detter F, Nilsson JÅ, Karlsson C, Dencker M, Rosengren BE, Karlsson MK. A 3-year school-based exercise intervention improves muscle strength - a prospective controlled population-based study in 223 children. BMC Musculoskelet Disord. 2014;15(1):353.CrossRefPubMedPubMedCentral Detter F, Nilsson JÅ, Karlsson C, Dencker M, Rosengren BE, Karlsson MK. A 3-year school-based exercise intervention improves muscle strength - a prospective controlled population-based study in 223 children. BMC Musculoskelet Disord. 2014;15(1):353.CrossRefPubMedPubMedCentral
37.
go back to reference Ischander M, Zaldivar F Jr, Eliakim A, Nussbaum E, Dunton G, Leu SY, et al. Physical activity, growth, and inflammatory mediators in BMI-matched female adolescents. Med Sci Sports Exerc. 2007;39:1131–8.CrossRefPubMed Ischander M, Zaldivar F Jr, Eliakim A, Nussbaum E, Dunton G, Leu SY, et al. Physical activity, growth, and inflammatory mediators in BMI-matched female adolescents. Med Sci Sports Exerc. 2007;39:1131–8.CrossRefPubMed
38.
go back to reference Gracia-Marco L, Vicente-Rodriguez G, Casajus JA, Molnar D, Castillo MJ, Moreno LA. Effect of fitness and physical activity on bone mass in adolescents: the HELENA study. Eur J Appl Physiol. 2011;111:2671–80.CrossRefPubMed Gracia-Marco L, Vicente-Rodriguez G, Casajus JA, Molnar D, Castillo MJ, Moreno LA. Effect of fitness and physical activity on bone mass in adolescents: the HELENA study. Eur J Appl Physiol. 2011;111:2671–80.CrossRefPubMed
39.
go back to reference Fragoso CA, Gahbauer EA, Van Ness PH, Concato J, Gill TM. Peak expiratory flow as a predictor of subsequent disability and death in community-living older persons. J Am Geriatr Soc. 2008;56:1014–20.CrossRefPubMed Fragoso CA, Gahbauer EA, Van Ness PH, Concato J, Gill TM. Peak expiratory flow as a predictor of subsequent disability and death in community-living older persons. J Am Geriatr Soc. 2008;56:1014–20.CrossRefPubMed
40.
go back to reference Starr JM, Deary IJ, Whalley LJ. All-cause mortality in the Aberdeen 1921 birth cohort: effects of socio-demographic, physical and cognitive factors. BMC Public Health. 2008;8:307.CrossRefPubMedPubMedCentral Starr JM, Deary IJ, Whalley LJ. All-cause mortality in the Aberdeen 1921 birth cohort: effects of socio-demographic, physical and cognitive factors. BMC Public Health. 2008;8:307.CrossRefPubMedPubMedCentral
41.
go back to reference Sim Y, Lee JH, Kim Y, Chang JH. Association of Bone Mineral Density with airway obstruction and emphysema. Tuberc Respir Dis. 2012;72:310–7.CrossRef Sim Y, Lee JH, Kim Y, Chang JH. Association of Bone Mineral Density with airway obstruction and emphysema. Tuberc Respir Dis. 2012;72:310–7.CrossRef
42.
go back to reference Vicente-Rodriguez G. How does exercise affect bone development during growth? Sports Med. 2006;36:561–9.CrossRefPubMed Vicente-Rodriguez G. How does exercise affect bone development during growth? Sports Med. 2006;36:561–9.CrossRefPubMed
43.
go back to reference Sardinha LB, Baptista F, Ekelund U. Objectively measured physical activity and bone strength in 9-year-old boys and girls. Pediatrics. 2008;122:e728–36.CrossRefPubMed Sardinha LB, Baptista F, Ekelund U. Objectively measured physical activity and bone strength in 9-year-old boys and girls. Pediatrics. 2008;122:e728–36.CrossRefPubMed
44.
go back to reference Bandyopadhyay A, Basak AK, Tripathy S, Bandyopadhyay P. Peak expiratory flow rates in female brick-field workers of West Bengal. India Ergonomics SA. 2006;18(1):22–7. Bandyopadhyay A, Basak AK, Tripathy S, Bandyopadhyay P. Peak expiratory flow rates in female brick-field workers of West Bengal. India Ergonomics SA. 2006;18(1):22–7.
Metadata
Title
Hand grip strength and maximum peak expiratory flow: determinants of bone mineral density of adolescent students
Authors
Marco Cossio-Bolaños
Cynthia Lee-Andruske
Miguel de Arruda
Cristian Luarte-Rocha
Alejandro Almonacid-Fierro
Rossana Gómez-Campos
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2018
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-018-1015-0

Other articles of this Issue 1/2018

BMC Pediatrics 1/2018 Go to the issue