Skip to main content
Top
Published in: Brain Structure and Function 3/2019

01-04-2019 | Haloperidol | Original Article

The lateral preoptic area and ventral pallidum embolden behavior

Authors: Rhett A. Reichard, Kenneth P. Parsley, Suriya Subramanian, Hunter S. Stevenson, Zachary M. Schwartz, Tej Sura, Daniel S. Zahm

Published in: Brain Structure and Function | Issue 3/2019

Login to get access

Abstract

While recently completing a study of the effects of stimulating the lateral preoptic area (LPO) and ventral pallidum (VP) on locomotion and other movements, we also noticed LPO and VP effects on motivational drive and threat tolerance. Here, we have investigated these latter effects by testing conditioned place preference (CPP), behavior on the elevated plus maze (EPM) and the willingness of sated rats to occupy a harshly lit open field center to acquire sweet pellets, a measure of threat tolerance, following infusions of vehicle or bicuculline (bic) into the LPO and VP. LPO-bic infusions robustly increased total locomotion, and, in direct proportion, occupancy of both the harshly lit field center and open arms of the EPM. LPO bic also generated CPP, but did not increase sweet pellet ingestion. These effects were attenuated by dopamine D1 and D2 receptor antagonists, whether given individually or as a cocktail and systemically or infused bilaterally into the nucleus accumbens. VP-bic infusions did not increase total locomotion, but preferentially increased field center occupancy. VP-bic-infused rats compulsively ingested sweet pellets and did so even under the spotlight, whereas harsh illumination suppressed pellet ingestion in the control groups. VP bic produced CPP and increased open arm occupancy on the EPM. These effects were attenuated by pretreatment with dopamine receptor antagonists given systemically or as bilateral infusions into the VP, except for % distance in the field center (by D1 or D2 antagonists) and pellet ingestion (by D1 antagonist). Thus, boldness generated in association with LPO activation is tightly tied to locomotor activation and, as is locomotion itself, strongly DA dependent, whereas that accompanying stimulation of the VP is independent of locomotor activation and, at least in part, DA signaling. Furthermore, respective emboldened behaviors elicited from neither LPO nor VP could clearly be attributed to goal pursuit. Rather, emboldening of behavior seems more to be a fixed action response not fundamentally different than previously for reported locomotion, pivoting, backing, gnawing, and eating elicited by basal forebrain stimulation.
Literature
go back to reference Abercrombie ED, Keefe KA, DiFrischia DS, Zigmond MJ (1989) Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J Neurochem 52:1655–1658CrossRefPubMed Abercrombie ED, Keefe KA, DiFrischia DS, Zigmond MJ (1989) Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J Neurochem 52:1655–1658CrossRefPubMed
go back to reference Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid and corticopetal components of substantia innominata. Neuroscience 27:1–39CrossRefPubMed Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid and corticopetal components of substantia innominata. Neuroscience 27:1–39CrossRefPubMed
go back to reference Alonso A, Kohler C (1984) A study of the reciprocal connections between the septum and the entorhinal area using anterograde and retrograde axonal transport methods in the rat brain. J Comp Neurol 225:327–343CrossRefPubMed Alonso A, Kohler C (1984) A study of the reciprocal connections between the septum and the entorhinal area using anterograde and retrograde axonal transport methods in the rat brain. J Comp Neurol 225:327–343CrossRefPubMed
go back to reference Bard P (1928) A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Am J Physiol 84:490–515CrossRef Bard P (1928) A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Am J Physiol 84:490–515CrossRef
go back to reference Bard P (1934a) On emotional expression after decortication with some remarks on certain theoretical views: Part I. Psychol Rev 41:309–329CrossRef Bard P (1934a) On emotional expression after decortication with some remarks on certain theoretical views: Part I. Psychol Rev 41:309–329CrossRef
go back to reference Bard P (1934b) On emotional expression after decortication with some remarks on certain theoretical views: Part II. Psychol Rev 41:424–449CrossRef Bard P (1934b) On emotional expression after decortication with some remarks on certain theoretical views: Part II. Psychol Rev 41:424–449CrossRef
go back to reference Barker DJ, Miranda-Barrientos J, Zhang S, Root DH, Wang HL, Liu B, Calipari ES, Morales M (2017) Lateral Preoptic Control of the Lateral Habenula through Convergent Glutamate and GABA Transmission. Cell reports 21:1757–1769CrossRefPubMedPubMedCentral Barker DJ, Miranda-Barrientos J, Zhang S, Root DH, Wang HL, Liu B, Calipari ES, Morales M (2017) Lateral Preoptic Control of the Lateral Habenula through Convergent Glutamate and GABA Transmission. Cell reports 21:1757–1769CrossRefPubMedPubMedCentral
go back to reference Barrett LF (2017) The theory of constructed emotion: an active inference account of interoception and categorization. Soc Cogn Affect Neurosci 12:1–23PubMed Barrett LF (2017) The theory of constructed emotion: an active inference account of interoception and categorization. Soc Cogn Affect Neurosci 12:1–23PubMed
go back to reference Beckstead RM (1979) An autoradiographic examination of corticocortical and subcortical projections of the mediodorsal-projection (prefrontal) cortex in the rat. J Comp Neurol 184:43–62CrossRefPubMed Beckstead RM (1979) An autoradiographic examination of corticocortical and subcortical projections of the mediodorsal-projection (prefrontal) cortex in the rat. J Comp Neurol 184:43–62CrossRefPubMed
go back to reference Belujon P, Grace AA (2015) Regulation of dopamine system responsivity and its adaptive and pathological response to stress. Proc R Soc B 282:20142516CrossRefPubMed Belujon P, Grace AA (2015) Regulation of dopamine system responsivity and its adaptive and pathological response to stress. Proc R Soc B 282:20142516CrossRefPubMed
go back to reference Bourne JA (2001) SCH 23390: the first selective dopamine D1-like receptor antagonist. CNS Drug Rev 7:399–414CrossRefPubMed Bourne JA (2001) SCH 23390: the first selective dopamine D1-like receptor antagonist. CNS Drug Rev 7:399–414CrossRefPubMed
go back to reference Brown TG (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond Ser B 84:308–319CrossRef Brown TG (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond Ser B 84:308–319CrossRef
go back to reference Buchanan SL, Thompson RH, Maxwell BL, Powell DA (1994) Efferent connections of the medial prefrontal cortex in the rabbit. Exp Brain Res 100:469–483CrossRefPubMed Buchanan SL, Thompson RH, Maxwell BL, Powell DA (1994) Efferent connections of the medial prefrontal cortex in the rabbit. Exp Brain Res 100:469–483CrossRefPubMed
go back to reference Caffe AR, van Leeuwen FW, Luiten PG (1987) Vasopressin cells in the medial amygdala of the rat project to the lateral septum and ventral hippocampus. J Comp Neurol 261:237–252CrossRefPubMed Caffe AR, van Leeuwen FW, Luiten PG (1987) Vasopressin cells in the medial amygdala of the rat project to the lateral septum and ventral hippocampus. J Comp Neurol 261:237–252CrossRefPubMed
go back to reference Canteras NS, Simerly RB, Swanson LW (1995) Organization of projections from the medial nucleus of the amygdala: a PHAL study in the rat. J Comp Neurol 360:213–224CrossRefPubMed Canteras NS, Simerly RB, Swanson LW (1995) Organization of projections from the medial nucleus of the amygdala: a PHAL study in the rat. J Comp Neurol 360:213–224CrossRefPubMed
go back to reference Chaurand JP, Vergnes M, Karli P (1974) Elicitation of aggressive behavior by electrical stimulation of ventral mesencephalic tegmentum in the rat (author’s transl). Physiol Behav 12:771–778CrossRefPubMed Chaurand JP, Vergnes M, Karli P (1974) Elicitation of aggressive behavior by electrical stimulation of ventral mesencephalic tegmentum in the rat (author’s transl). Physiol Behav 12:771–778CrossRefPubMed
go back to reference Chiba T, Kayahara T, Nakano K (2001) Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res 888:83–101CrossRefPubMed Chiba T, Kayahara T, Nakano K (2001) Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res 888:83–101CrossRefPubMed
go back to reference Chikama M, McFarland NR, Amaral DG, Haber SN (1997) Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J Neurosci 17:9686–9705CrossRefPubMed Chikama M, McFarland NR, Amaral DG, Haber SN (1997) Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J Neurosci 17:9686–9705CrossRefPubMed
go back to reference Christensen AV, Arnt J, Hyttel J, Larsen JJ, Svendsen O (1984) Pharmacological effects of a specific dopamine D-1 antagonist SCH 23390 in comparison with neuroleptics. Life sciences 34:1529–1540CrossRefPubMed Christensen AV, Arnt J, Hyttel J, Larsen JJ, Svendsen O (1984) Pharmacological effects of a specific dopamine D-1 antagonist SCH 23390 in comparison with neuroleptics. Life sciences 34:1529–1540CrossRefPubMed
go back to reference Covelo IR, Patel ZI, Luviano JA, Stratford TR, Wirtshafter D (2014) Manipulation of GABA in the ventral pallidum, but not the nucleus accumbens, induces intense, preferential, fat consumption in rats. Behav Brain Res 270:316–325CrossRefPubMed Covelo IR, Patel ZI, Luviano JA, Stratford TR, Wirtshafter D (2014) Manipulation of GABA in the ventral pallidum, but not the nucleus accumbens, induces intense, preferential, fat consumption in rats. Behav Brain Res 270:316–325CrossRefPubMed
go back to reference Cromwell HC, Berridge KC (1993) Where does damage lead to enhanced food aversion: the ventral pallidum/substantia innominata or lateral hypothalamus? Brain Res 624:1–10CrossRefPubMed Cromwell HC, Berridge KC (1993) Where does damage lead to enhanced food aversion: the ventral pallidum/substantia innominata or lateral hypothalamus? Brain Res 624:1–10CrossRefPubMed
go back to reference Everitt BJ (1990) Sexual motivation:a neural and behavioral analysis of the mechanisms underlying appetitive copulatory responses of malerats. Neurosci Biobehav Rev 14:217–232CrossRefPubMed Everitt BJ (1990) Sexual motivation:a neural and behavioral analysis of the mechanisms underlying appetitive copulatory responses of malerats. Neurosci Biobehav Rev 14:217–232CrossRefPubMed
go back to reference Ferry AT, Öngür D, An X, Price JL (2000) Prefrontal cortical projections to the striatum in Macaque monkeys: Evidence for an organization related to prefrontal networks. J Comp Neurol 425:447–470CrossRefPubMed Ferry AT, Öngür D, An X, Price JL (2000) Prefrontal cortical projections to the striatum in Macaque monkeys: Evidence for an organization related to prefrontal networks. J Comp Neurol 425:447–470CrossRefPubMed
go back to reference Fletcher PJ, Korth KM, Sabijan MS, DeSousa NJ (1998) Injections of D-amphetamine into the ventral pallidum increase locomotor activity and responding for conditioned reward: a comparison with injections into the nucleus accumbens. Brain Res 805(1–2):29–40CrossRefPubMed Fletcher PJ, Korth KM, Sabijan MS, DeSousa NJ (1998) Injections of D-amphetamine into the ventral pallidum increase locomotor activity and responding for conditioned reward: a comparison with injections into the nucleus accumbens. Brain Res 805(1–2):29–40CrossRefPubMed
go back to reference Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6(9):968–973CrossRefPubMed Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6(9):968–973CrossRefPubMed
go back to reference Geisler S, Zahm DS (2005) Afferents of the ventral tegmental area in the rat-anatomical substratum for integrative functions. J Comp Neurol 490:270–294CrossRefPubMed Geisler S, Zahm DS (2005) Afferents of the ventral tegmental area in the rat-anatomical substratum for integrative functions. J Comp Neurol 490:270–294CrossRefPubMed
go back to reference Geisler S, Zahm DS (2006) Neurotensin afferents of the ventral tegmental area in the rat: [1] re-examination of their origins and [2] responses to acute psychostimulant and antipsychotic drug administration. Eur J Neurosci 24:116–134CrossRefPubMed Geisler S, Zahm DS (2006) Neurotensin afferents of the ventral tegmental area in the rat: [1] re-examination of their origins and [2] responses to acute psychostimulant and antipsychotic drug administration. Eur J Neurosci 24:116–134CrossRefPubMed
go back to reference Gong W, Justice JB Jr, Neill D (1997) Dissociation of locomotor and conditioned place preference responses following manipulation of GABA-A and AMPA receptors in ventral pallidum. Prog Neuropsychopharmacol Biol Psychiatry 21(5):839–852CrossRefPubMed Gong W, Justice JB Jr, Neill D (1997) Dissociation of locomotor and conditioned place preference responses following manipulation of GABA-A and AMPA receptors in ventral pallidum. Prog Neuropsychopharmacol Biol Psychiatry 21(5):839–852CrossRefPubMed
go back to reference Gong W, Neill DB, Justice JB Jr (1996) Conditioned place preference and locomotor activation produced by injection of psychostimulants into ventral pallidum. Brain Res 707:64–74CrossRefPubMed Gong W, Neill DB, Justice JB Jr (1996) Conditioned place preference and locomotor activation produced by injection of psychostimulants into ventral pallidum. Brain Res 707:64–74CrossRefPubMed
go back to reference Gong W, Neill DB, Justice JB Jr (1998) GABAergic modulation of ventral pallidal dopamine release studied by in vivo microdialysis in the freely moving rat. Synapse 29(4):406–412CrossRefPubMed Gong W, Neill DB, Justice JB Jr (1998) GABAergic modulation of ventral pallidal dopamine release studied by in vivo microdialysis in the freely moving rat. Synapse 29(4):406–412CrossRefPubMed
go back to reference Groenewegen HJ, Room P, Witter MP, Lohman AHM (1982) Cortical afferents of the nucleus accumbens in the cat, studies with anterograde and retrograde transport techniques. Neuroscience 7:977–995CrossRefPubMed Groenewegen HJ, Room P, Witter MP, Lohman AHM (1982) Cortical afferents of the nucleus accumbens in the cat, studies with anterograde and retrograde transport techniques. Neuroscience 7:977–995CrossRefPubMed
go back to reference Groenewegen HJ, Berendse HW, Wolters JG, Lohman AHM (1991) The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. In: Uylings HBM, Van Eden CG, De Bruin JPC, Corner MA, Feenstra MGP (eds) Progress in brain research, 85. Elsevier, Amsterdam, pp 95–118 Groenewegen HJ, Berendse HW, Wolters JG, Lohman AHM (1991) The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. In: Uylings HBM, Van Eden CG, De Bruin JPC, Corner MA, Feenstra MGP (eds) Progress in brain research, 85. Elsevier, Amsterdam, pp 95–118
go back to reference Groenewegen HJ, Berendse HW, Haber SN (1993) Organization of the output of the ventral striatopallidal system in the rat: ventral pallidal efferents. Neuroscience 57:113–142CrossRefPubMed Groenewegen HJ, Berendse HW, Haber SN (1993) Organization of the output of the ventral striatopallidal system in the rat: ventral pallidal efferents. Neuroscience 57:113–142CrossRefPubMed
go back to reference Haber SN, Groenewegen HJ, Grove EA, Nauta WJ (1985) Efferent connections of the ventral pallidum: evidence of a dual striato pallidofugal pathway. J Comp Neurol 235:322–335CrossRefPubMed Haber SN, Groenewegen HJ, Grove EA, Nauta WJ (1985) Efferent connections of the ventral pallidum: evidence of a dual striato pallidofugal pathway. J Comp Neurol 235:322–335CrossRefPubMed
go back to reference Haber SN, Kunishio K, Mizobuchi M, Lynd-Balta E (1995) The orbital and medial prefrontal circuit through the primate basal ganglia. J Neurosci 15:4851–4867CrossRefPubMed Haber SN, Kunishio K, Mizobuchi M, Lynd-Balta E (1995) The orbital and medial prefrontal circuit through the primate basal ganglia. J Neurosci 15:4851–4867CrossRefPubMed
go back to reference Hall H, Kohler C, Gawell L (1985) Some in vitro receptor binding properties of [3H]eticlopride, a novel substituted benzamide, selective for dopamine-D2 receptors in the rat brain. European journal of pharmacology 111:191–199CrossRefPubMed Hall H, Kohler C, Gawell L (1985) Some in vitro receptor binding properties of [3H]eticlopride, a novel substituted benzamide, selective for dopamine-D2 receptors in the rat brain. European journal of pharmacology 111:191–199CrossRefPubMed
go back to reference Heimer L (1972) The olfactory connections of the diencephalon in the rat: an experimental light- and electron-microscopic study with special emphasis on the problem of terminal degeneration. Brain Behav Evol 6:484–523CrossRefPubMed Heimer L (1972) The olfactory connections of the diencephalon in the rat: an experimental light- and electron-microscopic study with special emphasis on the problem of terminal degeneration. Brain Behav Evol 6:484–523CrossRefPubMed
go back to reference Heimer L (1978) The Olfactory Cortex and the Ventral Striatum. In: Livingston KE, Hornkiewicz O (eds) Limbic Mechanism. Plenum Press, New York, pp 95–187CrossRef Heimer L (1978) The Olfactory Cortex and the Ventral Striatum. In: Livingston KE, Hornkiewicz O (eds) Limbic Mechanism. Plenum Press, New York, pp 95–187CrossRef
go back to reference Heimer L, Alheid GF (1991) Piecing together the puzzle of basal forebrain anatomy. Adv Exp Med Biol 295:1–42CrossRefPubMed Heimer L, Alheid GF (1991) Piecing together the puzzle of basal forebrain anatomy. Adv Exp Med Biol 295:1–42CrossRefPubMed
go back to reference Heimer L, Van Hoesen GW (2006) The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neurosci Biobehav Rev 30:126–147CrossRefPubMed Heimer L, Van Hoesen GW (2006) The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neurosci Biobehav Rev 30:126–147CrossRefPubMed
go back to reference Heimer L, Wilson RD (1975) The subcortical projections of allocortex. Similarities in the neural associations of the hippocampus, the piriform cortex and the neocortex. In: Golgi centennial symposium proceedings. Edited by Santini M: 177–196. Raven Press, New York Heimer L, Wilson RD (1975) The subcortical projections of allocortex. Similarities in the neural associations of the hippocampus, the piriform cortex and the neocortex. In: Golgi centennial symposium proceedings. Edited by Santini M: 177–196. Raven Press, New York
go back to reference Heimer L, de Olmos J, Alheid GF, Zaborszky L (1991) “Perestroika” in the basal forebrain: opening the border between neurology and psychiatry. Progress Brain Res 87:109–165CrossRef Heimer L, de Olmos J, Alheid GF, Zaborszky L (1991) “Perestroika” in the basal forebrain: opening the border between neurology and psychiatry. Progress Brain Res 87:109–165CrossRef
go back to reference Heimer L, Van Hoesen GW, Trimble M, Zahm DS (2008) Anatomy of neuropsychiatry: The new anatomy of the basal forebrain and its implications for neuropsychiatric illness. Academic Press/Elsevier, Amsterdam Heimer L, Van Hoesen GW, Trimble M, Zahm DS (2008) Anatomy of neuropsychiatry: The new anatomy of the basal forebrain and its implications for neuropsychiatric illness. Academic Press/Elsevier, Amsterdam
go back to reference Hiroi N, White NM (1991) The amphetamine conditioned place preference: differential involvement of dopamine receptor subtypes and two dopaminergic terminals. Brain Res 552:141–152CrossRefPubMed Hiroi N, White NM (1991) The amphetamine conditioned place preference: differential involvement of dopamine receptor subtypes and two dopaminergic terminals. Brain Res 552:141–152CrossRefPubMed
go back to reference Hjelmstad GO, Xia Y, Margolis EB, Fields HL (2013) Opioid modulation of ventral pallidal afferents to ventral tegmental area neurons. J Neurosci 33(15):6454–6459CrossRefPubMedPubMedCentral Hjelmstad GO, Xia Y, Margolis EB, Fields HL (2013) Opioid modulation of ventral pallidal afferents to ventral tegmental area neurons. J Neurosci 33(15):6454–6459CrossRefPubMedPubMedCentral
go back to reference Hubner CB, Koob GF (1990) The ventral pallidum plays a role in mediating cocaine and heroin self-administration in the rat. Brain Res 508(1):20–29CrossRefPubMed Hubner CB, Koob GF (1990) The ventral pallidum plays a role in mediating cocaine and heroin self-administration in the rat. Brain Res 508(1):20–29CrossRefPubMed
go back to reference Jakab RL, Leranth C (1990) Catecholaminergic, GABAergic, and hippocamposeptal innervation of GABAergic ‘‘somatospiny’’ neurons in the rat lateral septal area. J Comp Neurol 302:305–321CrossRefPubMed Jakab RL, Leranth C (1990) Catecholaminergic, GABAergic, and hippocamposeptal innervation of GABAergic ‘‘somatospiny’’ neurons in the rat lateral septal area. J Comp Neurol 302:305–321CrossRefPubMed
go back to reference Kalivas PW, Churchill L, Klitenick MA (1993) GABA and enkephalin projection from the nucleus accumbens and ventral pallidum to the ventral tegmental area. Neuroscience 57:1047–1060CrossRefPubMed Kalivas PW, Churchill L, Klitenick MA (1993) GABA and enkephalin projection from the nucleus accumbens and ventral pallidum to the ventral tegmental area. Neuroscience 57:1047–1060CrossRefPubMed
go back to reference Kelley AE, Domesick VB (1982) The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde- and retrograde-horseradish peroxidase study. Neuroscience 7:2321–2335CrossRefPubMed Kelley AE, Domesick VB (1982) The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde- and retrograde-horseradish peroxidase study. Neuroscience 7:2321–2335CrossRefPubMed
go back to reference Kelley AE, Domesick VB, Nauta WJ (1982) The amygdalostriatal projection in the rat–an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7:615–630CrossRef Kelley AE, Domesick VB, Nauta WJ (1982) The amygdalostriatal projection in the rat–an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7:615–630CrossRef
go back to reference Kelly PH, Seviour PW, Iversen SD (1975) Amphetamine and apomorphine responses in the rat following 6-OHDA lesion of the nucleus accumbens septi and corpus striatum. Brain Res 94:507–522CrossRefPubMed Kelly PH, Seviour PW, Iversen SD (1975) Amphetamine and apomorphine responses in the rat following 6-OHDA lesion of the nucleus accumbens septi and corpus striatum. Brain Res 94:507–522CrossRefPubMed
go back to reference King BM, Cook JT, Rossiter KN, Rollins BL (2003) Obesity-inducing amygdala lesions: examination of anterograde degeneration and retrograde transport. Am J Physiol Regul Integr Comp Physiol 284:965–982CrossRef King BM, Cook JT, Rossiter KN, Rollins BL (2003) Obesity-inducing amygdala lesions: examination of anterograde degeneration and retrograde transport. Am J Physiol Regul Integr Comp Physiol 284:965–982CrossRef
go back to reference Köhler C, Hall H, Gawell L (1986) Regional in vivo binding of the substituted benzamide [3H]eticlopride in the rat brain: evidence for selective labelling of dopamine receptors. Eur J Pharmacol 120:217–226CrossRefPubMed Köhler C, Hall H, Gawell L (1986) Regional in vivo binding of the substituted benzamide [3H]eticlopride in the rat brain: evidence for selective labelling of dopamine receptors. Eur J Pharmacol 120:217–226CrossRefPubMed
go back to reference Leranth C, Carpi D, Buzsaki G, Kiss J (1999) The entorhino-septosupramammillary nucleus connection in the rat: morphological basis of a feedback mechanism regulating hippocampal theta rhythm. Neuroscience 88:701–718CrossRefPubMed Leranth C, Carpi D, Buzsaki G, Kiss J (1999) The entorhino-septosupramammillary nucleus connection in the rat: morphological basis of a feedback mechanism regulating hippocampal theta rhythm. Neuroscience 88:701–718CrossRefPubMed
go back to reference Leslie CA, Bennett JP Jr (1987a) Striatal D1- and D2-dopamine receptor sites are separately detectable in vivo. Brain Res 415:90–97CrossRefPubMed Leslie CA, Bennett JP Jr (1987a) Striatal D1- and D2-dopamine receptor sites are separately detectable in vivo. Brain Res 415:90–97CrossRefPubMed
go back to reference Leslie CA, Bennett JP Jr (1987b) [3H]spiperone binds selectively to rat striatal D2 dopamine receptors in vivo: a kinetic and pharmacological analysis. Brain Res 407:253–262CrossRefPubMed Leslie CA, Bennett JP Jr (1987b) [3H]spiperone binds selectively to rat striatal D2 dopamine receptors in vivo: a kinetic and pharmacological analysis. Brain Res 407:253–262CrossRefPubMed
go back to reference Lyness WH, Friedle NM, More KE (1979) Destruction of dopaminergic nerve terminals in nucleus accumbens: effect on d-amphetamine self-administration. Pharmacol Biochem Behav 11:663–666CrossRef Lyness WH, Friedle NM, More KE (1979) Destruction of dopaminergic nerve terminals in nucleus accumbens: effect on d-amphetamine self-administration. Pharmacol Biochem Behav 11:663–666CrossRef
go back to reference Mahler SV, Vazey EM, Beckley JT, Keistler CR, McGlinchey EM, Kaufling J, Wilson SP, Deisseroth K, Woodward JJ, Aston-Jones G (2014) Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nat Neurosci 17:577–587CrossRefPubMedPubMedCentral Mahler SV, Vazey EM, Beckley JT, Keistler CR, McGlinchey EM, Kaufling J, Wilson SP, Deisseroth K, Woodward JJ, Aston-Jones G (2014) Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nat Neurosci 17:577–587CrossRefPubMedPubMedCentral
go back to reference McDonald AJ (1991) Topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens, and related striatal-like areas of the rat brain. Neuroscience 44:15–33CrossRefPubMed McDonald AJ (1991) Topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens, and related striatal-like areas of the rat brain. Neuroscience 44:15–33CrossRefPubMed
go back to reference McDonald AJ, Mascagni F, Guo L (1996) Projections of the medial and lateral prefrontal cortices to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 71:55–75CrossRefPubMed McDonald AJ, Mascagni F, Guo L (1996) Projections of the medial and lateral prefrontal cortices to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 71:55–75CrossRefPubMed
go back to reference McDonald AJ, Shammah-Lagnado SJ, Shi C, Davis M (1999) Cortical afferents to the extended amygdala. Ann NY Acad Sci 877:309–338CrossRefPubMed McDonald AJ, Shammah-Lagnado SJ, Shi C, Davis M (1999) Cortical afferents to the extended amygdala. Ann NY Acad Sci 877:309–338CrossRefPubMed
go back to reference McGeorge AJ, Faull RLM (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29:503–537CrossRefPubMed McGeorge AJ, Faull RLM (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29:503–537CrossRefPubMed
go back to reference Micco DJ (1974) Complex behaviors elicited by stimulation of the dorsal pontine tegmentum in rats. Brain Res 75:172–176CrossRefPubMed Micco DJ (1974) Complex behaviors elicited by stimulation of the dorsal pontine tegmentum in rats. Brain Res 75:172–176CrossRefPubMed
go back to reference Mitchell JB, Gratton A (1996) Involvement of mesolimbic dopamine neurons in sexual behaviors: implications for the neurobiology of motivation. Rev Neurosci 5:317–329 Mitchell JB, Gratton A (1996) Involvement of mesolimbic dopamine neurons in sexual behaviors: implications for the neurobiology of motivation. Rev Neurosci 5:317–329
go back to reference Morgane PJ, Galler JR, Mokler DJ (2005) A review of systems and networks of the limbic forebrain/limbic midbrain. Prog Neurobiol 75(2):143–160CrossRefPubMed Morgane PJ, Galler JR, Mokler DJ (2005) A review of systems and networks of the limbic forebrain/limbic midbrain. Prog Neurobiol 75(2):143–160CrossRefPubMed
go back to reference Nauta WJH (1986) Ciruitous connections linking cerebral cortex, limbic system and corpus striatum. In: Doane BK, Livingston KE (eds) Limbic system: functional organization and clinical disorders. Raven Press, New York, pp 43–54 Nauta WJH (1986) Ciruitous connections linking cerebral cortex, limbic system and corpus striatum. In: Doane BK, Livingston KE (eds) Limbic system: functional organization and clinical disorders. Raven Press, New York, pp 43–54
go back to reference Nieuwenhuys R (1996) The greater limbic system, the emotional motor system and the brain. Prog Brain Res 107:551–580CrossRefPubMed Nieuwenhuys R (1996) The greater limbic system, the emotional motor system and the brain. Prog Brain Res 107:551–580CrossRefPubMed
go back to reference Pessoa L (2017) A network model of the Emotional Brain. Trends Cogn Sci 5:337–357 Pessoa L (2017) A network model of the Emotional Brain. Trends Cogn Sci 5:337–357
go back to reference Phillipson OT (1979) Afferent projections to the ventral tegmental area of tsai and interfascicular nucleus: a horseradish peroxidase study in the rat. J Comp Neurol 187:117–144CrossRefPubMed Phillipson OT (1979) Afferent projections to the ventral tegmental area of tsai and interfascicular nucleus: a horseradish peroxidase study in the rat. J Comp Neurol 187:117–144CrossRefPubMed
go back to reference Phillipson OT, Griffiths AC (1985) The topographical order of inputs to nucleus accumbens in the rat. Neuroscience 16:175–196CrossRef Phillipson OT, Griffiths AC (1985) The topographical order of inputs to nucleus accumbens in the rat. Neuroscience 16:175–196CrossRef
go back to reference Pinker S (2003) The blank slate. The modern denial of human nature. Penguin Books, New York Pinker S (2003) The blank slate. The modern denial of human nature. Penguin Books, New York
go back to reference Reichard RA, Parsley KP, Zahm DS (2016) Comparison of stimulations of the lateral preoptic area and ventral pallidum using measures of reward, anxiety and ingestion. Soc Neurosci Abstr 453.23 Reichard RA, Parsley KP, Zahm DS (2016) Comparison of stimulations of the lateral preoptic area and ventral pallidum using measures of reward, anxiety and ingestion. Soc Neurosci Abstr 453.23
go back to reference Reichard RA, Subramanian S, Desta MT, Sura T, Becker ML, Ghobadi CW, Parsley KP, Zahm DS (2017) Abundant collateralization of temporal lobe projections to the accumbens, bed nucleus of stria terminalis, central amygdala and lateral septum. Brain Struct Funct 222:1971–1988CrossRefPubMed Reichard RA, Subramanian S, Desta MT, Sura T, Becker ML, Ghobadi CW, Parsley KP, Zahm DS (2017) Abundant collateralization of temporal lobe projections to the accumbens, bed nucleus of stria terminalis, central amygdala and lateral septum. Brain Struct Funct 222:1971–1988CrossRefPubMed
go back to reference Reynolds SM, Zahm DS (2005) Specificity in the projections of prefrontal and insular cortex to ventral striatopallidum and the extended amygdala. J Neurosci 25:11757–11767CrossRefPubMed Reynolds SM, Zahm DS (2005) Specificity in the projections of prefrontal and insular cortex to ventral striatopallidum and the extended amygdala. J Neurosci 25:11757–11767CrossRefPubMed
go back to reference Reynolds SM, Geisler S, Berod A, Zahm DS (2006) Neurotensin antagonist acutely and robustly attenuates locomotion that accompanies stimulation of a neurotensin-containing pathway from rostrobasal forebrain to the ventral tegmental area. Eur J Neurosci 24:188–196CrossRefPubMed Reynolds SM, Geisler S, Berod A, Zahm DS (2006) Neurotensin antagonist acutely and robustly attenuates locomotion that accompanies stimulation of a neurotensin-containing pathway from rostrobasal forebrain to the ventral tegmental area. Eur J Neurosci 24:188–196CrossRefPubMed
go back to reference Risold PY, Swanson LW (1997) Connections of the rat lateral septal complex. Brain Res Rev 24:115–195CrossRefPubMed Risold PY, Swanson LW (1997) Connections of the rat lateral septal complex. Brain Res Rev 24:115–195CrossRefPubMed
go back to reference Roberts DCS, Koob GF, Klonoff P, Fibiger HC (1980) Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens. J Pharmacol Exp Ther 224:662–673 Roberts DCS, Koob GF, Klonoff P, Fibiger HC (1980) Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens. J Pharmacol Exp Ther 224:662–673
go back to reference Root DH, Melendez RI, Zaborszky L, Napier TC (2015) The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol 130:29–70CrossRefPubMedPubMedCentral Root DH, Melendez RI, Zaborszky L, Napier TC (2015) The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol 130:29–70CrossRefPubMedPubMedCentral
go back to reference Russchen FT, Price JL (1984) Amygdalostriatal projections in the rat. Topographical organization and fiber morphology shown using the lectin PHA-L as an anterograde tracer. Neurosci Lett 47:15–22CrossRefPubMed Russchen FT, Price JL (1984) Amygdalostriatal projections in the rat. Topographical organization and fiber morphology shown using the lectin PHA-L as an anterograde tracer. Neurosci Lett 47:15–22CrossRefPubMed
go back to reference Rye DB, Saper CB, Lee HJ, Wainer BH (1987) Pedunculopontine tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J Comp Neurol 259:483–528CrossRefPubMed Rye DB, Saper CB, Lee HJ, Wainer BH (1987) Pedunculopontine tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J Comp Neurol 259:483–528CrossRefPubMed
go back to reference Sesack S, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290:213–242CrossRefPubMed Sesack S, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290:213–242CrossRefPubMed
go back to reference Shammah-Lagnado SJ, Santiago AC (1999) Projections of the amygdalopiriform transition area (APir). A PHA-L study in the rat. Ann NY Acad Sci 877:655–660CrossRefPubMed Shammah-Lagnado SJ, Santiago AC (1999) Projections of the amygdalopiriform transition area (APir). A PHA-L study in the rat. Ann NY Acad Sci 877:655–660CrossRefPubMed
go back to reference Shi CJ, Cassell MD (1998) Cortical, thalamic, and amygdaloid connections of the anterior and posterior insular cortices. J Comp Neurol 399:440–468CrossRefPubMed Shi CJ, Cassell MD (1998) Cortical, thalamic, and amygdaloid connections of the anterior and posterior insular cortices. J Comp Neurol 399:440–468CrossRefPubMed
go back to reference Shimura T, Imaoka H, Yamamoto T (2006) Neurochemical modulation of ingestive behavior in the ventral pallidum. Eur J Neurosci 23:1596–1604CrossRefPubMed Shimura T, Imaoka H, Yamamoto T (2006) Neurochemical modulation of ingestive behavior in the ventral pallidum. Eur J Neurosci 23:1596–1604CrossRefPubMed
go back to reference Sizemore GM, Co C, Hemby S, Koves TR, Smith JE (1998) The effects of 6-OHDA lesions of the ventral pallidum on cocaine self administration. College on Problems of Drug Dependence Abstracts, 134 Sizemore GM, Co C, Hemby S, Koves TR, Smith JE (1998) The effects of 6-OHDA lesions of the ventral pallidum on cocaine self administration. College on Problems of Drug Dependence Abstracts, 134
go back to reference Smith KS, Berridge KC (2007) Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J Neurosci 27:1594–1605CrossRefPubMed Smith KS, Berridge KC (2007) Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J Neurosci 27:1594–1605CrossRefPubMed
go back to reference Smith KS, Tindell AJ, Aldridge JW, Berridge KC (2009) Ventral pallidum roles in reward and motivation. Behav Brain Res 196:155–167CrossRefPubMed Smith KS, Tindell AJ, Aldridge JW, Berridge KC (2009) Ventral pallidum roles in reward and motivation. Behav Brain Res 196:155–167CrossRefPubMed
go back to reference Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151CrossRefPubMed Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151CrossRefPubMed
go back to reference Spooren WP, Lynd-Balta E, Mitchell S, Haber SN (1996) Ventral pallidostriatal pathway in the monkey: evidence for modulation of basal ganglia circuits. J Comp Neurol 370:295–312CrossRefPubMed Spooren WP, Lynd-Balta E, Mitchell S, Haber SN (1996) Ventral pallidostriatal pathway in the monkey: evidence for modulation of basal ganglia circuits. J Comp Neurol 370:295–312CrossRefPubMed
go back to reference Steininger TL, Rye DB, Wainer BH (1992) Afferent projections to the cholinergic pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the albino rat. I. Retrograde tracing studies. J Comp Neurol 321:515–543CrossRefPubMed Steininger TL, Rye DB, Wainer BH (1992) Afferent projections to the cholinergic pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the albino rat. I. Retrograde tracing studies. J Comp Neurol 321:515–543CrossRefPubMed
go back to reference Stratford TR, Wirtshafter D (2012) Evidence that the nucleus accumbens shell, ventral pallidum, and lateral hypothalamus are components of a lateralized feeding circuit. Behav Brain Res 226:548–554CrossRefPubMed Stratford TR, Wirtshafter D (2012) Evidence that the nucleus accumbens shell, ventral pallidum, and lateral hypothalamus are components of a lateralized feeding circuit. Behav Brain Res 226:548–554CrossRefPubMed
go back to reference Stratford TR, Wirtshafter D (2013) Lateral hypothalamic involvement in feeding elicited from the ventral pallidum. Eur J Neurosci 37:648–653CrossRefPubMed Stratford TR, Wirtshafter D (2013) Lateral hypothalamic involvement in feeding elicited from the ventral pallidum. Eur J Neurosci 37:648–653CrossRefPubMed
go back to reference Stratford TR, Kelley AE, Simansky KJ (1999) Blockade of GABAA receptors in the medial ventral pallidum elicits feeding in satiated rats. Brain Res 825:199–203CrossRefPubMed Stratford TR, Kelley AE, Simansky KJ (1999) Blockade of GABAA receptors in the medial ventral pallidum elicits feeding in satiated rats. Brain Res 825:199–203CrossRefPubMed
go back to reference Subramanian S, Reichard RA, Stevenson HS, Schwartz ZM, Parsley KP, Zahm DS (2018) Lateral preoptic and ventral pallidal roles in locomotion and other movements. Brain Struct Funct 223:2907–2924CrossRefPubMedPubMedCentral Subramanian S, Reichard RA, Stevenson HS, Schwartz ZM, Parsley KP, Zahm DS (2018) Lateral preoptic and ventral pallidal roles in locomotion and other movements. Brain Struct Funct 223:2907–2924CrossRefPubMedPubMedCentral
go back to reference Sutherland RJ (1982) The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex. Neurosci Biobehav Rev 6:1–13CrossRefPubMed Sutherland RJ (1982) The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex. Neurosci Biobehav Rev 6:1–13CrossRefPubMed
go back to reference Swanson LW (1976) An autoradiographic study of the efferent connections of the preoptic region in the rat. J Comp Neurol 167:227–256CrossRefPubMed Swanson LW (1976) An autoradiographic study of the efferent connections of the preoptic region in the rat. J Comp Neurol 167:227–256CrossRefPubMed
go back to reference Swanson LW (1987) Limbic system. In: Adelman G, Smith BH (eds) Encyclopedia of Neuroscience, vol 2, 2nd edn. Elsevier, Amsterdam, pp 1053–1055 Swanson LW (1987) Limbic system. In: Adelman G, Smith BH (eds) Encyclopedia of Neuroscience, vol 2, 2nd edn. Elsevier, Amsterdam, pp 1053–1055
go back to reference Swanson LW, Kohler C, Bjorkland A (1987a) The limbic region. I. The septohippocampal system. In: Bjorkland A, Hokfelt T, Swanson LW (eds) Integrated systems of the CNS, Part I. Hypothalamus, hippocampus, amygdala, retina handbook of chemical neuroanatomy, vol 5. Elsevier, Amsterdam, pp 125–277 Swanson LW, Kohler C, Bjorkland A (1987a) The limbic region. I. The septohippocampal system. In: Bjorkland A, Hokfelt T, Swanson LW (eds) Integrated systems of the CNS, Part I. Hypothalamus, hippocampus, amygdala, retina handbook of chemical neuroanatomy, vol 5. Elsevier, Amsterdam, pp 125–277
go back to reference Swanson LW, Mogenson GJ, Simerly RB, Wu M (1987b) Anatomical and electrophysiological evidence for a projection from the medial preoptic area to the ‘mesencephalic and subthalamic locomotor regions’ in the rat. Brain Res 405:108–122CrossRefPubMed Swanson LW, Mogenson GJ, Simerly RB, Wu M (1987b) Anatomical and electrophysiological evidence for a projection from the medial preoptic area to the ‘mesencephalic and subthalamic locomotor regions’ in the rat. Brain Res 405:108–122CrossRefPubMed
go back to reference Swerdlow NR, Swanson LW, Koob GF (1983) Electrolytic lesions of the substantia innominate and lateral preoptic area attenuate the ‘supersensitive’ locomotor response to apomorphine resulting from denervation of the nucleus accumbens. Brain Res 306:141–148CrossRef Swerdlow NR, Swanson LW, Koob GF (1983) Electrolytic lesions of the substantia innominate and lateral preoptic area attenuate the ‘supersensitive’ locomotor response to apomorphine resulting from denervation of the nucleus accumbens. Brain Res 306:141–148CrossRef
go back to reference Uddin LQ, Kinnison J, Pessoa L, Anderson ML (2014) Beyond the tripartite cognition-emotion-interoception model of the human insular cortex. J Cogn Neurosci 26:16–27CrossRefPubMed Uddin LQ, Kinnison J, Pessoa L, Anderson ML (2014) Beyond the tripartite cognition-emotion-interoception model of the human insular cortex. J Cogn Neurosci 26:16–27CrossRefPubMed
go back to reference Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58CrossRefPubMed Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58CrossRefPubMed
go back to reference Waldbillig RJ (1975) Attack, eating, drinking, and gnawing elicited by electrical stimulation of rat mesencephalon and pons. J Comp Physiol Psychol 89:200–212CrossRefPubMed Waldbillig RJ (1975) Attack, eating, drinking, and gnawing elicited by electrical stimulation of rat mesencephalon and pons. J Comp Physiol Psychol 89:200–212CrossRefPubMed
go back to reference Wayner MJ, Barone FC, Scharoun SL, Guevara-Aguilar R, Aguilar-Baturoni HU (1983) Limbic connections to the lateral preoptic area: A horseradish peroxidase study in the rat. Neurosci Biobehav Rev 7:375–384CrossRefPubMed Wayner MJ, Barone FC, Scharoun SL, Guevara-Aguilar R, Aguilar-Baturoni HU (1983) Limbic connections to the lateral preoptic area: A horseradish peroxidase study in the rat. Neurosci Biobehav Rev 7:375–384CrossRefPubMed
go back to reference Wise RA (1984) Neural mechanisms of the reinforcing action of cocaine. NIDA Res Monogr 50:15–33PubMed Wise RA (1984) Neural mechanisms of the reinforcing action of cocaine. NIDA Res Monogr 50:15–33PubMed
go back to reference Wolfle TL, Mayer DJ, Carder B, Liebeskind JC (1971) Motivational effects of electrical stimulation in dorsal tegmentum of the rat. Physiol Behav 7:569–574CrossRefPubMed Wolfle TL, Mayer DJ, Carder B, Liebeskind JC (1971) Motivational effects of electrical stimulation in dorsal tegmentum of the rat. Physiol Behav 7:569–574CrossRefPubMed
go back to reference Wu M, Hrycyshyn AW, Brudzynski SW (1996) Subpallidal outputs to the nucleus accumbens and the ventral tegmental area: anatomical and electrophysiological studies. Brain Res 740:151–161CrossRefPubMed Wu M, Hrycyshyn AW, Brudzynski SW (1996) Subpallidal outputs to the nucleus accumbens and the ventral tegmental area: anatomical and electrophysiological studies. Brain Res 740:151–161CrossRefPubMed
go back to reference Yetnikoff L, Cheng AY, Lavezzi HN, Parsley KP, Zahm DS (2015) Sources of input to the rostromedial tegmental nucleus, ventral tegmental area, and lateral habenula compared: a study in rat. J Comp Neurol 523:2426–2456CrossRefPubMedPubMedCentral Yetnikoff L, Cheng AY, Lavezzi HN, Parsley KP, Zahm DS (2015) Sources of input to the rostromedial tegmental nucleus, ventral tegmental area, and lateral habenula compared: a study in rat. J Comp Neurol 523:2426–2456CrossRefPubMedPubMedCentral
go back to reference Yokel RA, Wise RW (1975) Increased lever pressing for amphetamine after pimozide in rats: implications for a dopamine theory of reward. Science 187:547–549CrossRefPubMed Yokel RA, Wise RW (1975) Increased lever pressing for amphetamine after pimozide in rats: implications for a dopamine theory of reward. Science 187:547–549CrossRefPubMed
go back to reference Zahm DS (1989) The ventral striatopallidal parts of the basal ganglia in the rat–II. Compartmentation of ventral pallidal efferents. Neuroscience 30:33–50CrossRefPubMed Zahm DS (1989) The ventral striatopallidal parts of the basal ganglia in the rat–II. Compartmentation of ventral pallidal efferents. Neuroscience 30:33–50CrossRefPubMed
go back to reference Zahm DS (1999) Functional-anatomical implications of the nucleus accumbens core and shell subterritories. Ann NY Acad Sci 877:13–128CrossRef Zahm DS (1999) Functional-anatomical implications of the nucleus accumbens core and shell subterritories. Ann NY Acad Sci 877:13–128CrossRef
go back to reference Zahm DS (2000) An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev 24:85–105CrossRefPubMed Zahm DS (2000) An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev 24:85–105CrossRefPubMed
go back to reference Zahm DS (2006) The evolving theory of basal forebrain functional-anatomical “macrosystems”. Neurosci Biobehav Rev 30(2):148–172CrossRefPubMed Zahm DS (2006) The evolving theory of basal forebrain functional-anatomical “macrosystems”. Neurosci Biobehav Rev 30(2):148–172CrossRefPubMed
go back to reference Zahm DS, Heimer L (1990) Two transpallidal pathways originating in the rat nucleus accumbens. J Comp Neurol 302:437–446CrossRefPubMed Zahm DS, Heimer L (1990) Two transpallidal pathways originating in the rat nucleus accumbens. J Comp Neurol 302:437–446CrossRefPubMed
go back to reference Zahm DS, Root DH (2017) Review of the cytology and connections of the lateral habenula, an avatar of adaptive behaving. Pharmacol Biochem Behav 162:3–21CrossRefPubMedPubMedCentral Zahm DS, Root DH (2017) Review of the cytology and connections of the lateral habenula, an avatar of adaptive behaving. Pharmacol Biochem Behav 162:3–21CrossRefPubMedPubMedCentral
go back to reference Zahm DS, Williams E, Wohltmann C (1996) Ventral striatopallidothalamic projection: IV. Relative involvements of neurochemically distinct subterritories in the ventral pallidum and adjacent parts of the rostroventral forebrain. J Comp Neurol 364:340–362CrossRefPubMed Zahm DS, Williams E, Wohltmann C (1996) Ventral striatopallidothalamic projection: IV. Relative involvements of neurochemically distinct subterritories in the ventral pallidum and adjacent parts of the rostroventral forebrain. J Comp Neurol 364:340–362CrossRefPubMed
go back to reference Zahm DS, Grosu S, Williams EA, Qin S, Berod A (2001) Neurons of origin of the neurotensinergic plexus enmeshing the ventral tegmental area in rat: retrograde labeling and in situ hybridization combined. Neuroscience 104:841–851CrossRefPubMed Zahm DS, Grosu S, Williams EA, Qin S, Berod A (2001) Neurons of origin of the neurotensinergic plexus enmeshing the ventral tegmental area in rat: retrograde labeling and in situ hybridization combined. Neuroscience 104:841–851CrossRefPubMed
go back to reference Zahm DS, Parsley KP, Schwartz ZM, Cheng AY (2013a) On lateral septum-Like characteristics of outputs from the accumbal hedonic “hotspot” of Peciña and Berridge with commentary on the transitional nature of basal forebrain “boundaries”. J Comp Neurol 521(1):50–68CrossRefPubMedPubMedCentral Zahm DS, Parsley KP, Schwartz ZM, Cheng AY (2013a) On lateral septum-Like characteristics of outputs from the accumbal hedonic “hotspot” of Peciña and Berridge with commentary on the transitional nature of basal forebrain “boundaries”. J Comp Neurol 521(1):50–68CrossRefPubMedPubMedCentral
go back to reference Zahm DS, Schwartz ZM, Parsley KP (2013b) Anxiolytic effects of lateral preoptic area (LPO) activation. Soc Neurosci Abstr 393.16 Zahm DS, Schwartz ZM, Parsley KP (2013b) Anxiolytic effects of lateral preoptic area (LPO) activation. Soc Neurosci Abstr 393.16
go back to reference Zahm DS, Schwartz ZM, Lavezzi HN, Yetinkoff L, Parsley KP (2014a) Comparison of the locomotor-activating effects of bicuculline infusions into the preoptic area and ventral pallidum. Brain Struct Funct 219:511–526CrossRefPubMed Zahm DS, Schwartz ZM, Lavezzi HN, Yetinkoff L, Parsley KP (2014a) Comparison of the locomotor-activating effects of bicuculline infusions into the preoptic area and ventral pallidum. Brain Struct Funct 219:511–526CrossRefPubMed
go back to reference Zahm DS, Stevenson HS, Schwartz ZM, Parsley KP (2014b) Activation of ventral pallidum versus lateral preoptic area: double dissociation by threat discounting and locomotion. Soc Neurosci Abstr 267.11 Zahm DS, Stevenson HS, Schwartz ZM, Parsley KP (2014b) Activation of ventral pallidum versus lateral preoptic area: double dissociation by threat discounting and locomotion. Soc Neurosci Abstr 267.11
Metadata
Title
The lateral preoptic area and ventral pallidum embolden behavior
Authors
Rhett A. Reichard
Kenneth P. Parsley
Suriya Subramanian
Hunter S. Stevenson
Zachary M. Schwartz
Tej Sura
Daniel S. Zahm
Publication date
01-04-2019
Publisher
Springer Berlin Heidelberg
Keyword
Haloperidol
Published in
Brain Structure and Function / Issue 3/2019
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-018-01826-0

Other articles of this Issue 3/2019

Brain Structure and Function 3/2019 Go to the issue