Skip to main content
Top
Published in: BMC Medicine 1/2017

Open Access 01-12-2017 | Research article

Habitual coffee consumption and genetic predisposition to obesity: gene-diet interaction analyses in three US prospective studies

Authors: Tiange Wang, Tao Huang, Jae H. Kang, Yan Zheng, Majken K. Jensen, Janey L. Wiggs, Louis R. Pasquale, Charles S. Fuchs, Hannia Campos, Eric B. Rimm, Walter C. Willett, Frank B. Hu, Lu Qi

Published in: BMC Medicine | Issue 1/2017

Login to get access

Abstract

Background

Whether habitual coffee consumption interacts with the genetic predisposition to obesity in relation to body mass index (BMI) and obesity is unknown.

Methods

We analyzed the interactions between genetic predisposition and habitual coffee consumption in relation to BMI and obesity risk in 5116 men from the Health Professionals Follow-up Study (HPFS), in 9841 women from the Nurses’ Health Study (NHS), and in 5648 women from the Women’s Health Initiative (WHI). The genetic risk score was calculated based on 77 BMI-associated loci. Coffee consumption was examined prospectively in relation to BMI.

Results

The genetic association with BMI was attenuated among participants with higher consumption of coffee than among those with lower consumption in the HPFS (P interaction  = 0.023) and NHS (P interaction  = 0.039); similar results were replicated in the WHI (P interaction  = 0.044). In the combined data of all cohorts, differences in BMI per increment of 10-risk allele were 1.38 (standard error (SE), 0.28), 1.02 (SE, 0.10), and 0.95 (SE, 0.12) kg/m2 for coffee consumption of < 1, 1–3 and > 3 cup(s)/day, respectively (P interaction  < 0.001). Such interaction was partly due to slightly higher BMI with higher coffee consumption among participants at lower genetic risk and slightly lower BMI with higher coffee consumption among those at higher genetic risk. Each increment of 10-risk allele was associated with 78% (95% confidence interval (CI), 59–99%), 48% (95% CI, 36–62%), and 43% (95% CI, 28–59%) increased risk for obesity across these subgroups of coffee consumption (P interaction  = 0.008). From another perspective, differences in BMI per increment of 1 cup/day coffee consumption were 0.02 (SE, 0.09), –0.02 (SE, 0.04), and –0.14 (SE, 0.04) kg/m2 across tertiles of the genetic risk score.

Conclusions

Higher coffee consumption might attenuate the genetic associations with BMI and obesity risk, and individuals with greater genetic predisposition to obesity appeared to have lower BMI associated with higher coffee consumption.
Appendix
Available only for authorised users
Literature
2.
go back to reference Qi Q, Chu AY, Kang JH, et al. Fried food consumption, genetic risk, and body mass index: gene-diet interaction analysis in three US cohort studies. BMJ. 2014;348:g1610.CrossRefPubMedPubMedCentral Qi Q, Chu AY, Kang JH, et al. Fried food consumption, genetic risk, and body mass index: gene-diet interaction analysis in three US cohort studies. BMJ. 2014;348:g1610.CrossRefPubMedPubMedCentral
3.
go back to reference Greenberg JA, Axen KV, Schnoll R, Boozer CN. Coffee, tea and diabetes: the role of weight loss and caffeine. Int J Obes (Lond). 2005;29:1121–9.CrossRef Greenberg JA, Axen KV, Schnoll R, Boozer CN. Coffee, tea and diabetes: the role of weight loss and caffeine. Int J Obes (Lond). 2005;29:1121–9.CrossRef
4.
go back to reference Lopez-Garcia E, van Dam RM, Rajpathak S, Willett WC, Manson JE, Hu FB. Changes in caffeine intake and long-term weight change in men and women. Am J Clin Nutr. 2006;83:674–80.PubMed Lopez-Garcia E, van Dam RM, Rajpathak S, Willett WC, Manson JE, Hu FB. Changes in caffeine intake and long-term weight change in men and women. Am J Clin Nutr. 2006;83:674–80.PubMed
5.
go back to reference Nordestgaard AT, Thomsen M, Nordestgaard BG. Coffee intake and risk of obesity, metabolic syndrome and type 2 diabetes: a Mendelian randomization study. Int J Epidemiol. 2015;44:551–65.CrossRefPubMed Nordestgaard AT, Thomsen M, Nordestgaard BG. Coffee intake and risk of obesity, metabolic syndrome and type 2 diabetes: a Mendelian randomization study. Int J Epidemiol. 2015;44:551–65.CrossRefPubMed
6.
go back to reference Tuomilehto J, Hu G, Bidel S, Lindstrom J, Jousilahti P. Coffee consumption and risk of type 2 diabetes mellitus among middle-aged Finnish men and women. JAMA. 2004;291:1213–9.CrossRefPubMed Tuomilehto J, Hu G, Bidel S, Lindstrom J, Jousilahti P. Coffee consumption and risk of type 2 diabetes mellitus among middle-aged Finnish men and women. JAMA. 2004;291:1213–9.CrossRefPubMed
7.
go back to reference Rosengren A, Dotevall A, Wilhelmsen L, Thelle D, Johansson S. Coffee and incidence of diabetes in Swedish women: a prospective 18-year follow-up study. J Intern Med. 2004;255:89–95.CrossRefPubMed Rosengren A, Dotevall A, Wilhelmsen L, Thelle D, Johansson S. Coffee and incidence of diabetes in Swedish women: a prospective 18-year follow-up study. J Intern Med. 2004;255:89–95.CrossRefPubMed
8.
go back to reference Hamza TH, Chen H, Hill-Burns EM, et al. Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson's disease modifier gene via interaction with coffee. PLoS Genet. 2011;7, e1002237.CrossRefPubMedPubMedCentral Hamza TH, Chen H, Hill-Burns EM, et al. Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson's disease modifier gene via interaction with coffee. PLoS Genet. 2011;7, e1002237.CrossRefPubMedPubMedCentral
9.
go back to reference Cornelis MC, El-Sohemy A, Kabagambe EK, Campos H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA. 2006;295:1135–41.CrossRefPubMed Cornelis MC, El-Sohemy A, Kabagambe EK, Campos H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA. 2006;295:1135–41.CrossRefPubMed
10.
go back to reference Rimm EB, Giovannucci EL, Willett WC, et al. Prospective study of alcohol consumption and risk of coronary disease in men. Lancet. 1991;338:464–8.CrossRefPubMed Rimm EB, Giovannucci EL, Willett WC, et al. Prospective study of alcohol consumption and risk of coronary disease in men. Lancet. 1991;338:464–8.CrossRefPubMed
11.
go back to reference Colditz GA, Manson JE, Hankinson SE. The Nurses’ Health Study: 20-year contribution to the understanding of health among women. J Womens Health. 1997;6:49–62.CrossRefPubMed Colditz GA, Manson JE, Hankinson SE. The Nurses’ Health Study: 20-year contribution to the understanding of health among women. J Womens Health. 1997;6:49–62.CrossRefPubMed
12.
go back to reference Hunter DJ, Kraft P, Jacobs KB, et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet. 2007;39:870–4.CrossRefPubMedPubMedCentral Hunter DJ, Kraft P, Jacobs KB, et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet. 2007;39:870–4.CrossRefPubMedPubMedCentral
13.
14.
go back to reference Cornelis MC, Monda KL, Yu K, et al. Genome-wide meta-analysis identifies regions on 7p21 (AHR) and 15q24 (CYP1A2) as determinants of habitual caffeine consumption. PLoS Genet. 2011;7, e1002033.CrossRefPubMedPubMedCentral Cornelis MC, Monda KL, Yu K, et al. Genome-wide meta-analysis identifies regions on 7p21 (AHR) and 15q24 (CYP1A2) as determinants of habitual caffeine consumption. PLoS Genet. 2011;7, e1002033.CrossRefPubMedPubMedCentral
15.
go back to reference Jensen MK, Pers TH, Dworzynski P, Girman CJ, Brunak S, Rimm EB. Protein interaction-based genome-wide analysis of incident coronary heart disease. Circ Cardiovasc Genet. 2011;4:549–56.CrossRefPubMedPubMedCentral Jensen MK, Pers TH, Dworzynski P, Girman CJ, Brunak S, Rimm EB. Protein interaction-based genome-wide analysis of incident coronary heart disease. Circ Cardiovasc Genet. 2011;4:549–56.CrossRefPubMedPubMedCentral
16.
go back to reference The Women's Health Initiative Study Group. Design of the Women's Health Initiative clinical trial and observational study. Control Clin Trials. 1998;19:61–109.CrossRef The Women's Health Initiative Study Group. Design of the Women's Health Initiative clinical trial and observational study. Control Clin Trials. 1998;19:61–109.CrossRef
17.
go back to reference Anderson GL, Manson J, Wallace R, et al. Implementation of the Women’s Health Initiative study design. Ann Epidemiol. 2003;13:S5–17.CrossRefPubMed Anderson GL, Manson J, Wallace R, et al. Implementation of the Women’s Health Initiative study design. Ann Epidemiol. 2003;13:S5–17.CrossRefPubMed
18.
go back to reference Feskanich D, Rimm EB, Giovannucci EL, et al. Reproducibility and validity of food intake measurements from a semiquantitative food frequency questionnaire. J Am Diet Assoc. 1993;93:790–6.CrossRefPubMed Feskanich D, Rimm EB, Giovannucci EL, et al. Reproducibility and validity of food intake measurements from a semiquantitative food frequency questionnaire. J Am Diet Assoc. 1993;93:790–6.CrossRefPubMed
19.
go back to reference Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol. 1992;135:1114–26.CrossRefPubMed Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol. 1992;135:1114–26.CrossRefPubMed
20.
go back to reference Salvini S, Hunter DJ, Sampson L, et al. Food-based validation of a dietary questionnaire: the effects of week-to-week variation in food consumption. Int J Epidemiol. 1989;18:858–67.CrossRefPubMed Salvini S, Hunter DJ, Sampson L, et al. Food-based validation of a dietary questionnaire: the effects of week-to-week variation in food consumption. Int J Epidemiol. 1989;18:858–67.CrossRefPubMed
21.
go back to reference Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T. Measurement characteristics of the Women's Health Initiative food frequency questionnaire. Ann Epidemiol. 1999;9:178–87.CrossRefPubMed Patterson RE, Kristal AR, Tinker LF, Carter RA, Bolton MP, Agurs-Collins T. Measurement characteristics of the Women's Health Initiative food frequency questionnaire. Ann Epidemiol. 1999;9:178–87.CrossRefPubMed
22.
go back to reference Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women. Epidemiology. 1990;1:466–73.CrossRefPubMed Rimm EB, Stampfer MJ, Colditz GA, Chute CG, Litin LB, Willett WC. Validity of self-reported waist and hip circumferences in men and women. Epidemiology. 1990;1:466–73.CrossRefPubMed
23.
go back to reference Wolf AM, Hunter DJ, Colditz GA, et al. Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol. 1994;23:991–9.CrossRefPubMed Wolf AM, Hunter DJ, Colditz GA, et al. Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol. 1994;23:991–9.CrossRefPubMed
24.
go back to reference McCullough ML, Feskanich D, Stampfer MJ, et al. Diet quality and major chronic disease risk in men and women: moving toward improved dietary guidance. Am J Clin Nutr. 2002;76:1261–71.PubMed McCullough ML, Feskanich D, Stampfer MJ, et al. Diet quality and major chronic disease risk in men and women: moving toward improved dietary guidance. Am J Clin Nutr. 2002;76:1261–71.PubMed
25.
27.
go back to reference Greenberg JA, Boozer CN, Geliebter A. Coffee, diabetes, and weight control. Am J Clin Nutr. 2006;84:682–93.PubMed Greenberg JA, Boozer CN, Geliebter A. Coffee, diabetes, and weight control. Am J Clin Nutr. 2006;84:682–93.PubMed
28.
go back to reference Nordenvall C, Oskarsson V, Wolk A. Inverse association between coffee consumption and risk of cholecystectomy in women but not in men. Clin Gastroenterol Hepatol. 2015;13:1096–102.CrossRefPubMed Nordenvall C, Oskarsson V, Wolk A. Inverse association between coffee consumption and risk of cholecystectomy in women but not in men. Clin Gastroenterol Hepatol. 2015;13:1096–102.CrossRefPubMed
29.
go back to reference Kim K, Kim K, Park SM. Association between the prevalence of metabolic syndrome and the level of coffee consumption among Korean women. PLoS One. 2016;11, e0167007.CrossRefPubMedPubMedCentral Kim K, Kim K, Park SM. Association between the prevalence of metabolic syndrome and the level of coffee consumption among Korean women. PLoS One. 2016;11, e0167007.CrossRefPubMedPubMedCentral
30.
go back to reference van Dijk AE, Olthof MR, Meeuse JC, Seebus E, Heine RJ, van Dam RM. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care. 2009;32:1023–5.CrossRefPubMedPubMedCentral van Dijk AE, Olthof MR, Meeuse JC, Seebus E, Heine RJ, van Dam RM. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care. 2009;32:1023–5.CrossRefPubMedPubMedCentral
31.
go back to reference Johnston KL, Clifford MN, Morgan LM. Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr. 2003;78:728–33.PubMed Johnston KL, Clifford MN, Morgan LM. Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr. 2003;78:728–33.PubMed
32.
go back to reference Loopstra-Masters RC, Liese AD, Haffner SM, Wagenknecht LE, Hanley AJ. Associations between the intake of caffeinated and decaffeinated coffee and measures of insulin sensitivity and beta cell function. Diabetologia. 2011;54:320–8.CrossRefPubMed Loopstra-Masters RC, Liese AD, Haffner SM, Wagenknecht LE, Hanley AJ. Associations between the intake of caffeinated and decaffeinated coffee and measures of insulin sensitivity and beta cell function. Diabetologia. 2011;54:320–8.CrossRefPubMed
33.
go back to reference Rodríguez-Morán M, Guerrero-Romero F. Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects: a randomized double-blind controlled trial. Diabetes Care. 2003;26:1147–52.CrossRefPubMed Rodríguez-Morán M, Guerrero-Romero F. Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects: a randomized double-blind controlled trial. Diabetes Care. 2003;26:1147–52.CrossRefPubMed
Metadata
Title
Habitual coffee consumption and genetic predisposition to obesity: gene-diet interaction analyses in three US prospective studies
Authors
Tiange Wang
Tao Huang
Jae H. Kang
Yan Zheng
Majken K. Jensen
Janey L. Wiggs
Louis R. Pasquale
Charles S. Fuchs
Hannia Campos
Eric B. Rimm
Walter C. Willett
Frank B. Hu
Lu Qi
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2017
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-017-0862-0

Other articles of this Issue 1/2017

BMC Medicine 1/2017 Go to the issue