Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 3/2015

01-04-2015

Guidelines for the Isolation and Characterization of Murine Vascular Smooth Muscle Cells. A Report from the International Society of Cardiovascular Translational Research

Authors: Neeta Adhikari, Kadambari Chandra Shekar, Rodney Staggs, Zaw Win, Kerianne Steucke, Yi-Wei Lin, Li-Na Wei, Patrick Alford, Jennifer L. Hall

Published in: Journal of Cardiovascular Translational Research | Issue 3/2015

Login to get access

Abstract

Vascular smooth muscle cells (VSMCs) play important roles in cardiovascular disorders and biology. Outlined in this paper is a step-by-step procedure for isolating aortic VSMCs from adult C57BL6J male mice by enzymatic digestion of the aorta using collagenase. The plating, culturing, and subculturing of the isolated cells are discussed in detail along with techniques to characterize VSMC phenotype by gene expression and immunofluorescence. Traction force microscopy was used to characterize contractility of single subcultured VSMCs at baseline.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chamley, J. H., Campbell, G. R., McConnell, J. D., & Groschel-Stewart, U. (1977). Comparison of vascular smooth muscle cells from adult human, monkey and rabbit in primary culture and in subculture. Cell and Tissue Research, 177(4), 503–522.PubMed Chamley, J. H., Campbell, G. R., McConnell, J. D., & Groschel-Stewart, U. (1977). Comparison of vascular smooth muscle cells from adult human, monkey and rabbit in primary culture and in subculture. Cell and Tissue Research, 177(4), 503–522.PubMed
2.
go back to reference Firulli, A. B., Han, D., Kelly-Roloff, L., Koteliansky, V. E., Schwartz, S. M., Olson, E. N., & Miano, J. M. (1998). A comparative molecular analysis of four rat smooth muscle cell lines. In Vitro Cellular and Developmental Biology - Animal, 34(3), 217–226.CrossRefPubMed Firulli, A. B., Han, D., Kelly-Roloff, L., Koteliansky, V. E., Schwartz, S. M., Olson, E. N., & Miano, J. M. (1998). A comparative molecular analysis of four rat smooth muscle cell lines. In Vitro Cellular and Developmental Biology - Animal, 34(3), 217–226.CrossRefPubMed
3.
go back to reference Lemire, J. M., Covin, C. W., White, S., Giachelli, C. M., & Schwartz, S. M. (1994). Characterization of cloned aortic smooth muscle cells from young rats. American Journal of Pathology, 144(5), 1068–1081.PubMedCentralPubMed Lemire, J. M., Covin, C. W., White, S., Giachelli, C. M., & Schwartz, S. M. (1994). Characterization of cloned aortic smooth muscle cells from young rats. American Journal of Pathology, 144(5), 1068–1081.PubMedCentralPubMed
4.
go back to reference Ross, R. (1971). The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. Journal of Cell Biology, 50(1), 172–186.CrossRefPubMedCentralPubMed Ross, R. (1971). The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. Journal of Cell Biology, 50(1), 172–186.CrossRefPubMedCentralPubMed
5.
go back to reference Thyberg, J. (1996). Differentiated properties and proliferation of arterial smooth muscle cells in culture. International Review of Cytology, 169, 183–265.CrossRefPubMed Thyberg, J. (1996). Differentiated properties and proliferation of arterial smooth muscle cells in culture. International Review of Cytology, 169, 183–265.CrossRefPubMed
6.
go back to reference Owens, G. K., Kumar, M. S., & Wamhoff, B. R. (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiological Reviews, 84(3), 767–801.CrossRefPubMed Owens, G. K., Kumar, M. S., & Wamhoff, B. R. (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiological Reviews, 84(3), 767–801.CrossRefPubMed
7.
go back to reference Somlyo, A. P., & Somlyo, A. V. (2003). Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiological Reviews, 83(4), 1325–1358.CrossRefPubMed Somlyo, A. P., & Somlyo, A. V. (2003). Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiological Reviews, 83(4), 1325–1358.CrossRefPubMed
8.
go back to reference Thomas, W. A., Florentin, R. A., Reiner, J. M., Lee, W. M., & Lee, K. T. (1976). Alterations in population dynamics of arterial smooth muscle cells during atherogenesis. IV. Evidence for a polyclonal origin of hypercholesterolemic diet-induced atherosclerotic lesions in young swine. Experimental and Molecular Pathology, 24(2), 244–260.CrossRefPubMed Thomas, W. A., Florentin, R. A., Reiner, J. M., Lee, W. M., & Lee, K. T. (1976). Alterations in population dynamics of arterial smooth muscle cells during atherogenesis. IV. Evidence for a polyclonal origin of hypercholesterolemic diet-induced atherosclerotic lesions in young swine. Experimental and Molecular Pathology, 24(2), 244–260.CrossRefPubMed
9.
go back to reference Frid, M. G., Moiseeva, E. P., & Stenmark, K. R. (1994). Multiple phenotypically distinct smooth muscle cell populations exist in the adult and developing bovine pulmonary arterial media in vivo. Circulation Research, 75(4), 669–681.CrossRefPubMed Frid, M. G., Moiseeva, E. P., & Stenmark, K. R. (1994). Multiple phenotypically distinct smooth muscle cell populations exist in the adult and developing bovine pulmonary arterial media in vivo. Circulation Research, 75(4), 669–681.CrossRefPubMed
10.
go back to reference Champy, C. (1913). Quelques resultats de la methode de culture des tissus. I. Generalities. II. Le muscle lisse. Arch Zool Exp Gen, 53, 42–51. Champy, C. (1913). Quelques resultats de la methode de culture des tissus. I. Generalities. II. Le muscle lisse. Arch Zool Exp Gen, 53, 42–51.
11.
go back to reference Ray, J. L., Leach, R., Herbert, J. M., & Benson, M. (2001). Isolation of vascular smooth muscle cells from a single murine aorta. Methods in Cell Science, 23(4), 185–188.CrossRefPubMed Ray, J. L., Leach, R., Herbert, J. M., & Benson, M. (2001). Isolation of vascular smooth muscle cells from a single murine aorta. Methods in Cell Science, 23(4), 185–188.CrossRefPubMed
12.
go back to reference Chamley-Campbell, J., Campbell, G. R., & Ross, R. (1979). The smooth muscle cell in culture. Physiological Reviews, 59(1), 1–61.PubMed Chamley-Campbell, J., Campbell, G. R., & Ross, R. (1979). The smooth muscle cell in culture. Physiological Reviews, 59(1), 1–61.PubMed
13.
go back to reference Thyber, J., Palmberg, L., Nilsson, J., Ksiazek, T., & Sjolund, M. (1983). Phenotype modulation in primary cultures of arterial smooth muscle cells. On the role of platelet-derived growth factor. Differentiation, 25(2), 156–167. Thyber, J., Palmberg, L., Nilsson, J., Ksiazek, T., & Sjolund, M. (1983). Phenotype modulation in primary cultures of arterial smooth muscle cells. On the role of platelet-derived growth factor. Differentiation, 25(2), 156–167.
14.
go back to reference Do, K. H., et al. (2009). Angiotensin II-induced aortic ring constriction is mediated by phosphatidylinositol 3-kinase/L-type calcium channel signaling pathway. Experimental and Molecular Medicine, 41, 569–576.CrossRefPubMedCentralPubMed Do, K. H., et al. (2009). Angiotensin II-induced aortic ring constriction is mediated by phosphatidylinositol 3-kinase/L-type calcium channel signaling pathway. Experimental and Molecular Medicine, 41, 569–576.CrossRefPubMedCentralPubMed
15.
go back to reference Gohla, A., Schultz, G., & Offermanns, S. (2000). Role for G12/G13 in agonist-induced vascular smooth muscle cell contraction. Circulation Research, 87(3), 221–227.CrossRefPubMed Gohla, A., Schultz, G., & Offermanns, S. (2000). Role for G12/G13 in agonist-induced vascular smooth muscle cell contraction. Circulation Research, 87(3), 221–227.CrossRefPubMed
16.
go back to reference Cain, A. E., Tanner, D. M., & Khalil, R. A. (2002). Endothelin-1-induced enhancement of coronary smooth muscle contraction via MAPK-dependent and MAPK-independent [Ca2+]i sensitization pathways. Hypertension, 39(2), 543–549.CrossRefPubMed Cain, A. E., Tanner, D. M., & Khalil, R. A. (2002). Endothelin-1-induced enhancement of coronary smooth muscle contraction via MAPK-dependent and MAPK-independent [Ca2+]i sensitization pathways. Hypertension, 39(2), 543–549.CrossRefPubMed
17.
go back to reference Wynne, B. M., Chiao, C. W., & Webb, R. C. (2009). Vascular smooth muscle cell signaling mechanisms for contraction to angiotensin II and endothelin-1. Journal of the American Society of Hypertension, 3(2), 84–95.CrossRefPubMedCentralPubMed Wynne, B. M., Chiao, C. W., & Webb, R. C. (2009). Vascular smooth muscle cell signaling mechanisms for contraction to angiotensin II and endothelin-1. Journal of the American Society of Hypertension, 3(2), 84–95.CrossRefPubMedCentralPubMed
18.
go back to reference Van Nueten, J. M., Janssens, W. J., & Vanhoutte, P. M. (1985). Serotonin and vascular reactivity. Pharmacological Research Communications, 17(7), 585–608.CrossRefPubMed Van Nueten, J. M., Janssens, W. J., & Vanhoutte, P. M. (1985). Serotonin and vascular reactivity. Pharmacological Research Communications, 17(7), 585–608.CrossRefPubMed
19.
go back to reference Watts, S. W. (1996). Serotonin activates the mitogen-activated protein kinase pathway in vascular smooth muscle: use of the mitogen-activated protein kinase kinase inhibitor PD098059. Journal of Pharmacology and Experimental Therapeutics, 279(3), 1541–1550.PubMed Watts, S. W. (1996). Serotonin activates the mitogen-activated protein kinase pathway in vascular smooth muscle: use of the mitogen-activated protein kinase kinase inhibitor PD098059. Journal of Pharmacology and Experimental Therapeutics, 279(3), 1541–1550.PubMed
20.
go back to reference Berk, B. C., Brock, T. A., Webb, R. C., Taubman, M. B., Atkinson, W. J., Gimbrone, M. A., & Alexander, R. W. (1985). Epidermal growth factor, a vascular smooth muscle mitogen, induces rat aortic contraction. Journal of Clinical Investigation, 75(3), 1083–1086.CrossRefPubMedCentralPubMed Berk, B. C., Brock, T. A., Webb, R. C., Taubman, M. B., Atkinson, W. J., Gimbrone, M. A., & Alexander, R. W. (1985). Epidermal growth factor, a vascular smooth muscle mitogen, induces rat aortic contraction. Journal of Clinical Investigation, 75(3), 1083–1086.CrossRefPubMedCentralPubMed
21.
go back to reference Polte, T. R., Eichler, G. S., Wang, N., & Ingber, D. E. (2004). Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress. American Journal of Physiology Cell Physiology, 286, C518–C528.CrossRefPubMed Polte, T. R., Eichler, G. S., Wang, N., & Ingber, D. E. (2004). Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress. American Journal of Physiology Cell Physiology, 286, C518–C528.CrossRefPubMed
23.
go back to reference Balasubramanian, L., Lo, C.-M., Sham, J. S. K., & Yip, K.-P. (2013). Remanent cell traction force in renal vascular smooth muscle cells induced by integrin-mediated mechanotransduction. American Journal of Physiology Cell Physiology, 304, C382–C391.CrossRefPubMedCentralPubMed Balasubramanian, L., Lo, C.-M., Sham, J. S. K., & Yip, K.-P. (2013). Remanent cell traction force in renal vascular smooth muscle cells induced by integrin-mediated mechanotransduction. American Journal of Physiology Cell Physiology, 304, C382–C391.CrossRefPubMedCentralPubMed
24.
go back to reference Chen, J., Li, H., SundarRaj, N., & Wang, J. H. C. (2007). Alpha-smooth muscle actin expression enhances cell traction force. Cell Motility and the Cytoskeleton, 64(4), 248–257.CrossRefPubMed Chen, J., Li, H., SundarRaj, N., & Wang, J. H. C. (2007). Alpha-smooth muscle actin expression enhances cell traction force. Cell Motility and the Cytoskeleton, 64(4), 248–257.CrossRefPubMed
Metadata
Title
Guidelines for the Isolation and Characterization of Murine Vascular Smooth Muscle Cells. A Report from the International Society of Cardiovascular Translational Research
Authors
Neeta Adhikari
Kadambari Chandra Shekar
Rodney Staggs
Zaw Win
Kerianne Steucke
Yi-Wei Lin
Li-Na Wei
Patrick Alford
Jennifer L. Hall
Publication date
01-04-2015
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 3/2015
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-015-9616-6

Other articles of this Issue 3/2015

Journal of Cardiovascular Translational Research 3/2015 Go to the issue