Skip to main content
Top
Published in: Italian Journal of Pediatrics 1/2018

Open Access 01-12-2018 | Review

Guideline on management of the acute asthma attack in children by Italian Society of Pediatrics

Authors: Luciana Indinnimeo, Elena Chiappini, Michele Miraglia del Giudice, The Italian Panel for the management of acute asthma attack in children Roberto Bernardini

Published in: Italian Journal of Pediatrics | Issue 1/2018

Login to get access

Abstract

Background

Acute asthma attack is a frequent condition in children. It is one of the most common reasons for emergency department (ED) visit and hospitalization. Appropriate care is fundamental, considering both the high prevalence of asthma in children, and its life-threatening risks.
Italian Society of Pediatrics recently issued a guideline on the management of acute asthma attack in children over age 2, in ambulatory and emergency department settings.

Methods

The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology was adopted. A literature search was performed using the Cochrane Library and Medline/PubMed databases, retrieving studies in English or Italian and including children over age 2 year.

Results

Inhaled ß2 agonists are the first line drugs for acute asthma attack in children. Ipratropium bromide should be added in moderate/severe attacks. Early use of systemic steroids is associated with reduced risk of ED visits and hospitalization. High doses of inhaled steroids should not replace systemic steroids. Aminophylline use should be avoided in mild/moderate attacks. Weak evidence supports its use in life-threatening attacks. Epinephrine should not be used in the treatment of acute asthma for its lower cost / benefit ratio, compared to β2 agonists. Intravenous magnesium solphate could be used in children with severe attacks and/or forced expiratory volume1 (FEV1) lower than 60% predicted, unresponsive to initial inhaled therapy. Heliox could be administered in life-threatening attacks. Leukotriene receptor antagonists are not recommended.

Conclusions

This Guideline is expected to be a useful resource in managing acute asthma attacks in children over age 2.
Literature
1.
go back to reference Indinnimeo L, Barbato A, Cutrera R, et al. Gestione dell’attacco acuto d’asma in età pediatrica. Ital J Pediatr. 2008;33:14–33. Indinnimeo L, Barbato A, Cutrera R, et al. Gestione dell’attacco acuto d’asma in età pediatrica. Ital J Pediatr. 2008;33:14–33.
2.
go back to reference . National Health, Lung and Blood Institute. Global Initiative for Asthma (GINA). Global Strategy for Asthma Management and Prevention. Publication n. 95–3659, 1995 Bethesda, Maryland, revised 2015. . National Health, Lung and Blood Institute. Global Initiative for Asthma (GINA). Global Strategy for Asthma Management and Prevention. Publication n. 95–3659, 1995 Bethesda, Maryland, revised 2015.
3.
go back to reference Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schünemann HJ. GRADE working group. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. Br Med J. 2008;336:924–6.CrossRef Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schünemann HJ. GRADE working group. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. Br Med J. 2008;336:924–6.CrossRef
4.
go back to reference Boychuk RB, Yamamoto LG, De Mesa CJ, et al. Correlation of initial emergency department pulse oximetry values in asthma severity classes (steps) with the risk of hospitalization. Am J Emerg Med. 2006;24:48–52.CrossRefPubMed Boychuk RB, Yamamoto LG, De Mesa CJ, et al. Correlation of initial emergency department pulse oximetry values in asthma severity classes (steps) with the risk of hospitalization. Am J Emerg Med. 2006;24:48–52.CrossRefPubMed
5.
go back to reference Koga T, Tokuyama K, Itano A, et al. Usefulness of modified pulmonary index score (mPIS) as a quantitative tool for the evaluation of severe acute exacerbation in asthmatic children. Allergol Int. 2015;64:139–44.CrossRefPubMed Koga T, Tokuyama K, Itano A, et al. Usefulness of modified pulmonary index score (mPIS) as a quantitative tool for the evaluation of severe acute exacerbation in asthmatic children. Allergol Int. 2015;64:139–44.CrossRefPubMed
6.
go back to reference Maekawa T, Oba MS, Katsunuma T, et al. Modified pulmonary index score was sufficiently reliable to assess the severity of acute asthma exacerbations in children. Allergol Int. 2014;63:603–7.CrossRefPubMed Maekawa T, Oba MS, Katsunuma T, et al. Modified pulmonary index score was sufficiently reliable to assess the severity of acute asthma exacerbations in children. Allergol Int. 2014;63:603–7.CrossRefPubMed
7.
go back to reference Alnaji F, Zemek R, Barrowman N, et al. PRAM score as predictor of pediatric asthma hospitalization. Acad Emerg Med. 2014;21:872–8.CrossRefPubMed Alnaji F, Zemek R, Barrowman N, et al. PRAM score as predictor of pediatric asthma hospitalization. Acad Emerg Med. 2014;21:872–8.CrossRefPubMed
8.
go back to reference Kamps AW, Veeger NJ, Heijsman SM, et al. An innovative childhood asthma score predicts the need for bronchodilator nebulization in children with acute asthma independent of auscultative findings. Respir Care. 2014;59:1710–5.CrossRefPubMed Kamps AW, Veeger NJ, Heijsman SM, et al. An innovative childhood asthma score predicts the need for bronchodilator nebulization in children with acute asthma independent of auscultative findings. Respir Care. 2014;59:1710–5.CrossRefPubMed
9.
go back to reference Gouin S, Robidas I, Gravel J, et al. Prospective evaluation of two clinical scores for acute asthma in children 18 months to 7 years of age. Acad Emerg Med. 2010;17:598–03.CrossRefPubMed Gouin S, Robidas I, Gravel J, et al. Prospective evaluation of two clinical scores for acute asthma in children 18 months to 7 years of age. Acad Emerg Med. 2010;17:598–03.CrossRefPubMed
10.
go back to reference Lehr AR, McKinney ML, Gouin S, et al. Development and pretesting of an electronic learning module to train health care professionals on the use of the pediatric respiratory assessment measure to assess acute asthma severity. Can Respir J. 2013;20:435–41.CrossRefPubMedPubMedCentral Lehr AR, McKinney ML, Gouin S, et al. Development and pretesting of an electronic learning module to train health care professionals on the use of the pediatric respiratory assessment measure to assess acute asthma severity. Can Respir J. 2013;20:435–41.CrossRefPubMedPubMedCentral
11.
go back to reference Bekhof J, Reimink R, Brand PL. Systematic review: insufficient validation of clinical scores for the assessment of acute dyspnoea in wheezing children. Peadiatr Respir Rev. 2014;15:98–12. Bekhof J, Reimink R, Brand PL. Systematic review: insufficient validation of clinical scores for the assessment of acute dyspnoea in wheezing children. Peadiatr Respir Rev. 2014;15:98–12.
12.
go back to reference Schneider WV, Bulloch B, Wilkinson M, et al. Utility of portable spirometry in a pediatric emergency department in children with acute exacerbation of asthma. J Asthma. 2011;48:248–52.CrossRefPubMed Schneider WV, Bulloch B, Wilkinson M, et al. Utility of portable spirometry in a pediatric emergency department in children with acute exacerbation of asthma. J Asthma. 2011;48:248–52.CrossRefPubMed
13.
14.
go back to reference Arnold DH, Jenkins CA, Hartert TV. Noninvasive assessment of asthma severity using pulse oximeter plethysmograph estimate of pulsus paradoxus physiology. BMC Pulm Med. 2010;29:10–7. Arnold DH, Jenkins CA, Hartert TV. Noninvasive assessment of asthma severity using pulse oximeter plethysmograph estimate of pulsus paradoxus physiology. BMC Pulm Med. 2010;29:10–7.
15.
go back to reference Arnold DH, Gebretsadik T, Moons KG, et al. Development and internal validation of a pediatric acute asthma prediction rule for hospitalization. J Allerly Clin Immunol Pract. 2015;3:228–35.CrossRef Arnold DH, Gebretsadik T, Moons KG, et al. Development and internal validation of a pediatric acute asthma prediction rule for hospitalization. J Allerly Clin Immunol Pract. 2015;3:228–35.CrossRef
16.
go back to reference National Hearth, Lung and Blood Institute. Expert Panel Report 3 (EPR-3). N Y: Guidelines for the diagnosis and Management of Asthma; 2007. p. 08–4051. National Hearth, Lung and Blood Institute. Expert Panel Report 3 (EPR-3). N Y: Guidelines for the diagnosis and Management of Asthma; 2007. p. 08–4051.
17.
go back to reference British Thoracic Society, Scottish Intercollegiate Guidelines Network. “British guideline on the Management of Asthma”. Revised 2016. British Thoracic Society, Scottish Intercollegiate Guidelines Network. “British guideline on the Management of Asthma”. Revised 2016.
18.
go back to reference Andrzejowski P, Carroll W. Salbutamol in paediatrics: pharmacology, prescribing and controversies. Arch Dis Child Educ Pract Ed. 2016;101:194–7.CrossRefPubMed Andrzejowski P, Carroll W. Salbutamol in paediatrics: pharmacology, prescribing and controversies. Arch Dis Child Educ Pract Ed. 2016;101:194–7.CrossRefPubMed
19.
go back to reference Camargo CA, Spooner CH, Rowe BH. Continuous versus intermittent beta-agonists for acute asthma. Cochrane Database Syst Rev. 2003;4:CD001115. Camargo CA, Spooner CH, Rowe BH. Continuous versus intermittent beta-agonists for acute asthma. Cochrane Database Syst Rev. 2003;4:CD001115.
20.
go back to reference Khine H, Fuchs SM, Saville AL. Continuous versus intermittent nebulized albuterol for emergency management of asthma. Acad Emerg Med. 1996;3:1019–24.CrossRefPubMed Khine H, Fuchs SM, Saville AL. Continuous versus intermittent nebulized albuterol for emergency management of asthma. Acad Emerg Med. 1996;3:1019–24.CrossRefPubMed
21.
go back to reference Cates CJ, Welsh EJ, Rowe BH. Holding chambers (spacers) versus nebulisers for beta-agonist treatment of acute asthma. Cochrane database Syst rev. Cochrane Database Syst Rev. 2013;9:CD000052. Cates CJ, Welsh EJ, Rowe BH. Holding chambers (spacers) versus nebulisers for beta-agonist treatment of acute asthma. Cochrane database Syst rev. Cochrane Database Syst Rev. 2013;9:CD000052.
22.
go back to reference Mitselou N, Hedlin G, Hederos CA. Spacers versus nebulizers in treatment of acute asthma - a prospective randomized study in preschool children. J Asthma. 2016;53:1059–62.CrossRefPubMed Mitselou N, Hedlin G, Hederos CA. Spacers versus nebulizers in treatment of acute asthma - a prospective randomized study in preschool children. J Asthma. 2016;53:1059–62.CrossRefPubMed
23.
go back to reference Travers AH, Milan SJ, Jones AP, et al. Addition of intravenous beta(2)-agonists to inhaled beta(2)- agonists for acute asthma. Cochrane Database Syst Rev. 2012;12:CD010179.PubMed Travers AH, Milan SJ, Jones AP, et al. Addition of intravenous beta(2)-agonists to inhaled beta(2)- agonists for acute asthma. Cochrane Database Syst Rev. 2012;12:CD010179.PubMed
24.
go back to reference Teoh L, Cates CJ, Hurwitz M, et al. Anticholinergic therapy for acute asthma in children. Cochrane Database Syst Rev. 2012;4:CD003797. Teoh L, Cates CJ, Hurwitz M, et al. Anticholinergic therapy for acute asthma in children. Cochrane Database Syst Rev. 2012;4:CD003797.
25.
go back to reference Griffiths B, Ducharme FM. Combined inhaled anticholinergics and short-acting beta2-agonists for initial treatment of acute asthma in children. Cochrane Database Syst Rev. 2013;8:CD000060. Griffiths B, Ducharme FM. Combined inhaled anticholinergics and short-acting beta2-agonists for initial treatment of acute asthma in children. Cochrane Database Syst Rev. 2013;8:CD000060.
26.
go back to reference Wyatt EL, Borland ML, Doyle SK, et al. Metered-dose inhaler ipratropium bromide in moderate acute asthma in children: a single-blinded randomised controlled trial. J Paediatr Child Health. 2015;51:192–8.CrossRefPubMed Wyatt EL, Borland ML, Doyle SK, et al. Metered-dose inhaler ipratropium bromide in moderate acute asthma in children: a single-blinded randomised controlled trial. J Paediatr Child Health. 2015;51:192–8.CrossRefPubMed
27.
go back to reference Vézina K, Chauhan BF, Ducharme FM. Inhaled anticholinergics and short-acting beta(2)-agonists versus short-acting beta2-agonists alone for children with acute asthma in hospital. Cochrane Database Syst Rev. 2014;7:CD010283. Vézina K, Chauhan BF, Ducharme FM. Inhaled anticholinergics and short-acting beta(2)-agonists versus short-acting beta2-agonists alone for children with acute asthma in hospital. Cochrane Database Syst Rev. 2014;7:CD010283.
28.
29.
go back to reference Cronin JJ, McCoy S, Kennedy U, et al. A randomized trial of single-dose oral dexamethasone versus multidose prednisolone for acute exacerbations of asthma in children who attend the emergency department. Ann Emerg Med. 2016;67:593–01.CrossRefPubMed Cronin JJ, McCoy S, Kennedy U, et al. A randomized trial of single-dose oral dexamethasone versus multidose prednisolone for acute exacerbations of asthma in children who attend the emergency department. Ann Emerg Med. 2016;67:593–01.CrossRefPubMed
30.
go back to reference Meyer JS, Riese J, Biondi EI. Dexamethasone an effective alternative to oral prednisone in the treatment of pediatric asthma exacerbations? Hosp Pediatr. 2014;4:172–80.CrossRefPubMed Meyer JS, Riese J, Biondi EI. Dexamethasone an effective alternative to oral prednisone in the treatment of pediatric asthma exacerbations? Hosp Pediatr. 2014;4:172–80.CrossRefPubMed
31.
go back to reference Normansell R, Kew KM, Mansour G. Different oral corticosteroid regimens for acute asthma. Cochrane Database Syst Rev. 2016;5:CD011801. Normansell R, Kew KM, Mansour G. Different oral corticosteroid regimens for acute asthma. Cochrane Database Syst Rev. 2016;5:CD011801.
32.
go back to reference Bravo-Soto GA, Harismendy C, Rojas P, Silva R, von Borries PI. Dexamethasone as effective as other corticosteroids for acute asthma exacerbation in children? Medwave. 2017;17:e6931.CrossRefPubMed Bravo-Soto GA, Harismendy C, Rojas P, Silva R, von Borries PI. Dexamethasone as effective as other corticosteroids for acute asthma exacerbation in children? Medwave. 2017;17:e6931.CrossRefPubMed
33.
go back to reference Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids-new mechanisms for old drugs. N Engl J Med. 2005;353:1711–23.CrossRefPubMed Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids-new mechanisms for old drugs. N Engl J Med. 2005;353:1711–23.CrossRefPubMed
34.
go back to reference Bhogal SK. A question of time: systemic corticosteroids in managing acute asthma in children. Curr Opin Pulm Med. 2013;19:73–8.PubMed Bhogal SK. A question of time: systemic corticosteroids in managing acute asthma in children. Curr Opin Pulm Med. 2013;19:73–8.PubMed
35.
go back to reference Fernandes RM, Oleszczuk M, Woods CR, et al. The Cochrane library and safety of systemic corticosteroids for acute respiratory conditions in children: an overview of reviews. Evid Based Child Health. 2014;3:733–47.CrossRef Fernandes RM, Oleszczuk M, Woods CR, et al. The Cochrane library and safety of systemic corticosteroids for acute respiratory conditions in children: an overview of reviews. Evid Based Child Health. 2014;3:733–47.CrossRef
36.
go back to reference van Staa TP, Cooper C, Leufkens HG, Bishop N. Children and the risk of fractures caused by oral corticosteroids. J Bone Miner Res. 2003;18:913–8.CrossRefPubMed van Staa TP, Cooper C, Leufkens HG, Bishop N. Children and the risk of fractures caused by oral corticosteroids. J Bone Miner Res. 2003;18:913–8.CrossRefPubMed
37.
go back to reference Kelly HW, Van Natta ML, Covar RA, Tonascia J, Green RP, Strunk RC. CAMP research group. Effect of long-term corticosteroid use on bone mineral density in children: a prospective longitudinal assessment in the childhood asthma management program (CAMP) study. Pediatrics. 2008;122:e53–61.CrossRefPubMedPubMedCentral Kelly HW, Van Natta ML, Covar RA, Tonascia J, Green RP, Strunk RC. CAMP research group. Effect of long-term corticosteroid use on bone mineral density in children: a prospective longitudinal assessment in the childhood asthma management program (CAMP) study. Pediatrics. 2008;122:e53–61.CrossRefPubMedPubMedCentral
38.
go back to reference Chen AH, Zeng GQ, Chen RC, et al. Effects of nebulized high-dose budesonide on moderate-to-severe acute exacerbation of asthma in children: a randomized, double-blind, placebo-controlled study. Respirology. 2013;18(Suppl 3):47–52.CrossRefPubMed Chen AH, Zeng GQ, Chen RC, et al. Effects of nebulized high-dose budesonide on moderate-to-severe acute exacerbation of asthma in children: a randomized, double-blind, placebo-controlled study. Respirology. 2013;18(Suppl 3):47–52.CrossRefPubMed
39.
go back to reference Alangari AA, Malhis N, Mubasher M, et al. Asthma diagnosis and treatment - 1012. The efficacy of budesonide in the treatment of acute asthma in children: a double-blind, randomized, controlled trial. World Allergy Organ J. 2013;6(Suppl 1):P12.CrossRefPubMedPubMedCentral Alangari AA, Malhis N, Mubasher M, et al. Asthma diagnosis and treatment - 1012. The efficacy of budesonide in the treatment of acute asthma in children: a double-blind, randomized, controlled trial. World Allergy Organ J. 2013;6(Suppl 1):P12.CrossRefPubMedPubMedCentral
40.
go back to reference Alangari AA, Malhis N, Mubasher M, et al. Budesonide nebulization added to systemic prednisolone in the treatment of acute asthma in children: a double-blind, randomized, controlled trial. Chest. 2014;145:772–8.CrossRefPubMed Alangari AA, Malhis N, Mubasher M, et al. Budesonide nebulization added to systemic prednisolone in the treatment of acute asthma in children: a double-blind, randomized, controlled trial. Chest. 2014;145:772–8.CrossRefPubMed
41.
go back to reference Upham BD, Mollen CJ, Scarfone RJ, et al. Nebulized budesonide added to standard pediatric emergency department treatment of acute asthma: a randomized, double-blind trial. Acad Emerg Med. 2011;18:665–73.CrossRefPubMed Upham BD, Mollen CJ, Scarfone RJ, et al. Nebulized budesonide added to standard pediatric emergency department treatment of acute asthma: a randomized, double-blind trial. Acad Emerg Med. 2011;18:665–73.CrossRefPubMed
42.
go back to reference Demirca BP, Cagan H, Kiykim A, et al. Nebulized fluticasone propionate, a viable alternative to systemic route in the management of childhood moderate asthma attack: a double-blind, double-dummy study. Respir Med. 2015;109:1120–5.CrossRefPubMed Demirca BP, Cagan H, Kiykim A, et al. Nebulized fluticasone propionate, a viable alternative to systemic route in the management of childhood moderate asthma attack: a double-blind, double-dummy study. Respir Med. 2015;109:1120–5.CrossRefPubMed
43.
go back to reference Arulparithi CS, Babu TA, Ravichandran C, et al. Efficacy of nebulised budesonide versus oral prednisolone in acute severe asthma. Indian J Pediatr. 2015;82:328–32.CrossRefPubMed Arulparithi CS, Babu TA, Ravichandran C, et al. Efficacy of nebulised budesonide versus oral prednisolone in acute severe asthma. Indian J Pediatr. 2015;82:328–32.CrossRefPubMed
44.
go back to reference Beckhaus AA, Riutort MC, Castro-Rodriguez JA. Inhaled versus systemic corticosteroids for acute asthma in children. A systematic review. Pediatr Pulmonol. 2014;49:326–34.CrossRefPubMed Beckhaus AA, Riutort MC, Castro-Rodriguez JA. Inhaled versus systemic corticosteroids for acute asthma in children. A systematic review. Pediatr Pulmonol. 2014;49:326–34.CrossRefPubMed
45.
go back to reference Quon BS, Fitzgerald JM, Lemière C, et al. Increased versus stable doses of inhaled corticosteroids for exacerbations of chronic asthma in adults and children. Cochrane Database Syst Rev. 2010;12:CD007524. Quon BS, Fitzgerald JM, Lemière C, et al. Increased versus stable doses of inhaled corticosteroids for exacerbations of chronic asthma in adults and children. Cochrane Database Syst Rev. 2010;12:CD007524.
46.
go back to reference Edmonds ML, Milan SJ, Camargo CA Jr, et al. Early use of inhaled corticosteroids in the emergency department treatment of acute asthma. Cochrane Database Syst Rev. 2012;12:CD002308.PubMed Edmonds ML, Milan SJ, Camargo CA Jr, et al. Early use of inhaled corticosteroids in the emergency department treatment of acute asthma. Cochrane Database Syst Rev. 2012;12:CD002308.PubMed
47.
go back to reference Edmonds ML, Milan SJ, Brenner BE, et al. Inhaled steroids for acute asthma following emergency department discharge. Cochrane Database Syst Rev. 2012;12:CD002316.PubMed Edmonds ML, Milan SJ, Brenner BE, et al. Inhaled steroids for acute asthma following emergency department discharge. Cochrane Database Syst Rev. 2012;12:CD002316.PubMed
48.
go back to reference Schuh S, Dick PT, Stephens D, Hartley M, Khaikin S, Rodrigues L, et al. High-dose inhaled fluticasone does not replace oral prednisolone in children with mild to moderate acute asthma. Pediatrics. 2006;118:644–50.CrossRefPubMed Schuh S, Dick PT, Stephens D, Hartley M, Khaikin S, Rodrigues L, et al. High-dose inhaled fluticasone does not replace oral prednisolone in children with mild to moderate acute asthma. Pediatrics. 2006;118:644–50.CrossRefPubMed
49.
go back to reference Neame M, Aragon O, Fernandes RM, et al. Salbutamol or aminophylline for acute severe asthma: how to choose which one, when and why? Arch Dis Child Educ Pract Ed. 2015;100:215–22.CrossRefPubMed Neame M, Aragon O, Fernandes RM, et al. Salbutamol or aminophylline for acute severe asthma: how to choose which one, when and why? Arch Dis Child Educ Pract Ed. 2015;100:215–22.CrossRefPubMed
50.
go back to reference Mitra A, Bassler D, Goodman K, Lasserson TJ, Ducharme FM. Intravenous aminophylline for acute severe asthma in children over two years receiving inhaled bronchodilators. Cochrane Database Syst Rev. 2005;2:CD001276. Mitra A, Bassler D, Goodman K, Lasserson TJ, Ducharme FM. Intravenous aminophylline for acute severe asthma in children over two years receiving inhaled bronchodilators. Cochrane Database Syst Rev. 2005;2:CD001276.
51.
go back to reference Travers AH, Jones AP, Camargo CA Jr, et al. Intravenous beta(2)-agonists versus intravenous aminophylline for acute asthma. Cochrane Database Syst Rev. 2012;12:CD010256.PubMed Travers AH, Jones AP, Camargo CA Jr, et al. Intravenous beta(2)-agonists versus intravenous aminophylline for acute asthma. Cochrane Database Syst Rev. 2012;12:CD010256.PubMed
52.
go back to reference Singhi S, Grover S, Bansal A, et al. Randomised comparison of intravenous magnesium sulphate, terbutaline and aminophylline for children with acute severe asthma. Acta Paediatr. 2014;103:1301–6.CrossRefPubMed Singhi S, Grover S, Bansal A, et al. Randomised comparison of intravenous magnesium sulphate, terbutaline and aminophylline for children with acute severe asthma. Acta Paediatr. 2014;103:1301–6.CrossRefPubMed
53.
go back to reference NS EJ, O'Hagan A, Bickel S, Morton R, Jacobson S, Myers JA. Anti-inflammatory dosing of theophylline in the treatment of status asthmaticus in children. Asthma Allergy. 2016;9:183–9.CrossRef NS EJ, O'Hagan A, Bickel S, Morton R, Jacobson S, Myers JA. Anti-inflammatory dosing of theophylline in the treatment of status asthmaticus in children. Asthma Allergy. 2016;9:183–9.CrossRef
54.
go back to reference Torres S, Sticco N, Bosch JJ, et al. Effectiveness of magnesium sulphate as initial treatment of acute severe asthma in children, conducted in a tertiary-level university hospital: a randomized, controlled trial. Arch Argent Pediatr. 2012;110:291–6.PubMed Torres S, Sticco N, Bosch JJ, et al. Effectiveness of magnesium sulphate as initial treatment of acute severe asthma in children, conducted in a tertiary-level university hospital: a randomized, controlled trial. Arch Argent Pediatr. 2012;110:291–6.PubMed
55.
go back to reference Egelund TA, Wassil SK, Edwards EM, et al. High-dose magnesium sulphate infusion protocol for status asthmaticus: a safety and pharmacokinetics cohort study. Intensive Care Med. 2013;39:117–22.CrossRefPubMed Egelund TA, Wassil SK, Edwards EM, et al. High-dose magnesium sulphate infusion protocol for status asthmaticus: a safety and pharmacokinetics cohort study. Intensive Care Med. 2013;39:117–22.CrossRefPubMed
56.
go back to reference Mangat HS, D’Souza GA, Jacob MS. Nebulized magnesium sulphate versus nebulized salbutamol in acute bronchial asthma: a clinical trial. Eur Respir J. 1998;12:341–4.CrossRefPubMed Mangat HS, D’Souza GA, Jacob MS. Nebulized magnesium sulphate versus nebulized salbutamol in acute bronchial asthma: a clinical trial. Eur Respir J. 1998;12:341–4.CrossRefPubMed
57.
go back to reference Mahajan P, Haritos D, Rosenberg N, et al. Comparison of nebulized magnesium plus albuterol to nebulized albuterol plus saline in children with mild to moderate asthme. J Emerg Med. 2004;27:21–5.CrossRefPubMed Mahajan P, Haritos D, Rosenberg N, et al. Comparison of nebulized magnesium plus albuterol to nebulized albuterol plus saline in children with mild to moderate asthme. J Emerg Med. 2004;27:21–5.CrossRefPubMed
58.
go back to reference Powell CV, Kolamunnage-Dona R, Lowe J, et al. MAGNEsium trial in children (MAGNETIC): a randomised, placebo-controlled trial and economic evaluation of nebulised magnesium sulphate in acute severe asthma in children. Health Technol Assess. 2013;17:1–216.CrossRefPubMedPubMedCentral Powell CV, Kolamunnage-Dona R, Lowe J, et al. MAGNEsium trial in children (MAGNETIC): a randomised, placebo-controlled trial and economic evaluation of nebulised magnesium sulphate in acute severe asthma in children. Health Technol Assess. 2013;17:1–216.CrossRefPubMedPubMedCentral
59.
go back to reference Albuali WH. The use of intravenous and inhaled magnesium sulphate in management of children with bronchial asthma. J Matern Fetal Neonatal Med. 2014;27:1809–15.CrossRefPubMed Albuali WH. The use of intravenous and inhaled magnesium sulphate in management of children with bronchial asthma. J Matern Fetal Neonatal Med. 2014;27:1809–15.CrossRefPubMed
60.
go back to reference Sun YX, Gong CH, Liu S, et al. Effect of inhaled MgSO4 on FEV1 and PEF in children with asthma induced by acetylcholine: a randomized controlled clinical trail of 330 cases. J Trop Pediatr. 2014;60:141–7.CrossRefPubMed Sun YX, Gong CH, Liu S, et al. Effect of inhaled MgSO4 on FEV1 and PEF in children with asthma induced by acetylcholine: a randomized controlled clinical trail of 330 cases. J Trop Pediatr. 2014;60:141–7.CrossRefPubMed
61.
go back to reference Griffiths B, Kew KM. Intravenous magnesium sulfate for treating children with acute asthma in the emergency department. Cochrane Database Syst Rev. 2016;4:CD011050.PubMed Griffiths B, Kew KM. Intravenous magnesium sulfate for treating children with acute asthma in the emergency department. Cochrane Database Syst Rev. 2016;4:CD011050.PubMed
62.
go back to reference Rodrigo G, Pollack C, Rodrigo C, et al. Heliox for nonintubated acute asthma patients. Cochrane Database Syst Rev. 2006;4:CD002884. Rodrigo G, Pollack C, Rodrigo C, et al. Heliox for nonintubated acute asthma patients. Cochrane Database Syst Rev. 2006;4:CD002884.
63.
go back to reference Wong JJ, Lee JH, Turner DA, et al. A review of the use of adjunctive therapies in severe acute asthma exacerbation in critically ill children. Expert Rev Respir Med. 2014;8:423–41.CrossRefPubMed Wong JJ, Lee JH, Turner DA, et al. A review of the use of adjunctive therapies in severe acute asthma exacerbation in critically ill children. Expert Rev Respir Med. 2014;8:423–41.CrossRefPubMed
64.
go back to reference Rodrigo GJ, Castro-Rodriguez JA. Heliox-driven β2-agonists nebulization for children and adults with acute asthma: a systematic review with meta-analysis. Ann Allergy Asthma Immunol. 2014;112:29–34.CrossRefPubMed Rodrigo GJ, Castro-Rodriguez JA. Heliox-driven β2-agonists nebulization for children and adults with acute asthma: a systematic review with meta-analysis. Ann Allergy Asthma Immunol. 2014;112:29–34.CrossRefPubMed
65.
go back to reference Watts K, Chavasse RJ. Leukotriene receptor antagonists in addition to usual care for acute asthma in adults and children. Cochrane Database Syst Rev. 2012;5:CD006100. Watts K, Chavasse RJ. Leukotriene receptor antagonists in addition to usual care for acute asthma in adults and children. Cochrane Database Syst Rev. 2012;5:CD006100.
66.
go back to reference Wang X, Zhou J, Zhao X, Yi X. Montelukast treatment of acute asthma exacerbations in children aged 2 to 5 years: a randomized, double-blind, placebo-controlled trial. Pediatr Emerg Care. 2017; June 7; Wang X, Zhou J, Zhao X, Yi X. Montelukast treatment of acute asthma exacerbations in children aged 2 to 5 years: a randomized, double-blind, placebo-controlled trial. Pediatr Emerg Care. 2017; June 7;
Metadata
Title
Guideline on management of the acute asthma attack in children by Italian Society of Pediatrics
Authors
Luciana Indinnimeo
Elena Chiappini
Michele Miraglia del Giudice
The Italian Panel for the management of acute asthma attack in children Roberto Bernardini
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Italian Journal of Pediatrics / Issue 1/2018
Electronic ISSN: 1824-7288
DOI
https://doi.org/10.1186/s13052-018-0481-1

Other articles of this Issue 1/2018

Italian Journal of Pediatrics 1/2018 Go to the issue