Skip to main content
Top
Published in: BMC Cancer 1/2009

Open Access 01-12-2009 | Research article

Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression

Authors: Laura Arce, Kira T Pate, Marian L Waterman

Published in: BMC Cancer | Issue 1/2009

Login to get access

Abstract

Background

Drosophila Groucho and its human Transducin-like-Enhancer of Split orthologs (TLEs) function as transcription co-repressors within the context of Wnt signaling, a pathway with strong links to cancer. The current model for how Groucho/TLE's modify Wnt signaling is by direct competition with β-catenin for LEF/TCF binding. The molecular events involved in this competitive interaction are not defined and the actions of Groucho/TLEs within the context of Wnt-linked cancer are unknown.

Methods

We used in vitro protein interaction assays with the LEF/TCF family member LEF-1, and in vivo assays with Wnt reporter plasmids to define Groucho/TLE interaction and repressor function.

Results

Mapping studies reveal that Groucho/TLE binds two regions in LEF-1. The primary site of recognition is a 20 amino acid region in the Context Dependent Regulatory domain. An auxiliary site is in the High Mobility Group DNA binding domain. Mutation of an eight amino acid sequence within the primary region (RFSHHMIP) results in a loss of Groucho action in a transient reporter assay. Drosophila Groucho, human TLE-1, and a truncated human TLE isoform Amino-enhancer-of-split (AES), work equivalently to repress LEF-1•β-catenin transcription in transient reporter assays, and these actions are sensitive to the HDAC inhibitor Trichostatin A. A survey of Groucho/TLE action in a panel of six colon cancer cell lines with elevated β-catenin shows that Groucho is not able to repress transcription in a subset of these cell lines.

Conclusion

Our data shows that Groucho/TLE repression requires two sites of interaction in LEF-1 and that a central, conserved amino acid sequence within the primary region (F S/T/P/xx y I/L/V) is critical. Our data also reveals that AES opposes LEF-1 transcription activation and that both Groucho and AES repression require histone deacetylase activity suggesting multiple steps in Groucho competition with β-catenin. The variable ability of Groucho/TLE to oppose Wnt signaling in colon cancer cells suggests there may be defects in one or more of these steps.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hovanes K, Li TW, Munguia JE, Truong T, Milovanovic T, Lawrence Marsh J, Holcombe RF, Waterman ML: Beta-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nature genetics. 2001, 28 (1): 53-57. 10.1038/88264.PubMed Hovanes K, Li TW, Munguia JE, Truong T, Milovanovic T, Lawrence Marsh J, Holcombe RF, Waterman ML: Beta-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nature genetics. 2001, 28 (1): 53-57. 10.1038/88264.PubMed
2.
go back to reference Wetering van de M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, Horn van der K, Batlle E, Coudreuse D, Haramis AP, et al: The beta-Catenin/TCF-4 Complex Imposes a Crypt Progenitor Phenotype on Colorectal Cancer Cells. Cell. 2002, 111 (2): 241-250. 10.1016/S0092-8674(02)01014-0.CrossRefPubMed Wetering van de M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, Horn van der K, Batlle E, Coudreuse D, Haramis AP, et al: The beta-Catenin/TCF-4 Complex Imposes a Crypt Progenitor Phenotype on Colorectal Cancer Cells. Cell. 2002, 111 (2): 241-250. 10.1016/S0092-8674(02)01014-0.CrossRefPubMed
3.
go back to reference Barker N, Hurlstone A, Musisi H, Miles A, Bienz M, Clevers H: The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. The EMBO journal. 2001, 20 (17): 4935-4943. 10.1093/emboj/20.17.4935.CrossRefPubMedPubMedCentral Barker N, Hurlstone A, Musisi H, Miles A, Bienz M, Clevers H: The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. The EMBO journal. 2001, 20 (17): 4935-4943. 10.1093/emboj/20.17.4935.CrossRefPubMedPubMedCentral
4.
go back to reference Hecht A, Vleminckx K, Stemmler MP, van Roy F, Kemler R: The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. The EMBO journal. 2000, 19 (8): 1839-1850. 10.1093/emboj/19.8.1839.CrossRefPubMedPubMedCentral Hecht A, Vleminckx K, Stemmler MP, van Roy F, Kemler R: The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. The EMBO journal. 2000, 19 (8): 1839-1850. 10.1093/emboj/19.8.1839.CrossRefPubMedPubMedCentral
5.
go back to reference Sierra J, Yoshida T, Joazeiro CA, Jones KA: The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes. Genes & development. 2006, 20 (5): 586-600. 10.1101/gad.1385806.CrossRef Sierra J, Yoshida T, Joazeiro CA, Jones KA: The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes. Genes & development. 2006, 20 (5): 586-600. 10.1101/gad.1385806.CrossRef
6.
go back to reference Yang M, Waterman ML, Brachmann RK: hADA2a and hADA3 are required for acetylation, transcriptional activity and proliferative effects of beta-catenin. Cancer biology & therapy. 2008, 7 (1): 120-128.CrossRef Yang M, Waterman ML, Brachmann RK: hADA2a and hADA3 are required for acetylation, transcriptional activity and proliferative effects of beta-catenin. Cancer biology & therapy. 2008, 7 (1): 120-128.CrossRef
7.
go back to reference Shitashige M, Hirohashi S, Yamada T: Wnt signaling inside the nucleus. Cancer science. 2008, 99 (4): 631-637. 10.1111/j.1349-7006.2007.00716.x.CrossRefPubMed Shitashige M, Hirohashi S, Yamada T: Wnt signaling inside the nucleus. Cancer science. 2008, 99 (4): 631-637. 10.1111/j.1349-7006.2007.00716.x.CrossRefPubMed
8.
go back to reference Willert K, Jones KA: Wnt signaling: is the party in the nucleus?. Genes & development. 2006, 20 (11): 1394-1404. 10.1101/gad.1424006.CrossRef Willert K, Jones KA: Wnt signaling: is the party in the nucleus?. Genes & development. 2006, 20 (11): 1394-1404. 10.1101/gad.1424006.CrossRef
9.
go back to reference Cavallo RA, Cox RT, Moline MM, Roose J, Polevoy GA, Clevers H, Peifer M, Bejsovec A: Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature. 1998, 395 (6702): 604-608. 10.1038/26982.CrossRefPubMed Cavallo RA, Cox RT, Moline MM, Roose J, Polevoy GA, Clevers H, Peifer M, Bejsovec A: Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature. 1998, 395 (6702): 604-608. 10.1038/26982.CrossRefPubMed
10.
go back to reference Levanon D, Goldstein RE, Bernstein Y, Tang H, Goldenberg D, Stifani S, Paroush Z, Groner Y: Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proceedings of the National Academy of Sciences of the United States of America. 1998, 95 (20): 11590-11595. 10.1073/pnas.95.20.11590.CrossRefPubMedPubMedCentral Levanon D, Goldstein RE, Bernstein Y, Tang H, Goldenberg D, Stifani S, Paroush Z, Groner Y: Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proceedings of the National Academy of Sciences of the United States of America. 1998, 95 (20): 11590-11595. 10.1073/pnas.95.20.11590.CrossRefPubMedPubMedCentral
11.
go back to reference Courey AJ, Jia S: Transcriptional repression: the long and the short of it. Genes & development. 2001, 15 (21): 2786-2796. Courey AJ, Jia S: Transcriptional repression: the long and the short of it. Genes & development. 2001, 15 (21): 2786-2796.
12.
go back to reference Buscarlet M, Stifani S: The 'Marx' of Groucho on development and disease. Trends in cell biology. 2007, 17 (7): 353-361. 10.1016/j.tcb.2007.07.002.CrossRefPubMed Buscarlet M, Stifani S: The 'Marx' of Groucho on development and disease. Trends in cell biology. 2007, 17 (7): 353-361. 10.1016/j.tcb.2007.07.002.CrossRefPubMed
13.
go back to reference Paroush Z, Finley RL, Kidd T, Wainwright SM, Ingham PW, Brent R, Ish-Horowicz D: Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins. Cell. 1994, 79 (5): 805-815. 10.1016/0092-8674(94)90070-1.CrossRefPubMed Paroush Z, Finley RL, Kidd T, Wainwright SM, Ingham PW, Brent R, Ish-Horowicz D: Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins. Cell. 1994, 79 (5): 805-815. 10.1016/0092-8674(94)90070-1.CrossRefPubMed
14.
go back to reference Eberhard D, Jimenez G, Heavey B, Busslinger M: Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family. The EMBO journal. 2000, 19 (10): 2292-2303. 10.1093/emboj/19.10.2292.CrossRefPubMedPubMedCentral Eberhard D, Jimenez G, Heavey B, Busslinger M: Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family. The EMBO journal. 2000, 19 (10): 2292-2303. 10.1093/emboj/19.10.2292.CrossRefPubMedPubMedCentral
15.
go back to reference Westendorf JJ: Transcriptional co-repressors of Runx2. J Cell Biochem. 2006, 98 (1): 54-64. 10.1002/jcb.20805.CrossRefPubMed Westendorf JJ: Transcriptional co-repressors of Runx2. J Cell Biochem. 2006, 98 (1): 54-64. 10.1002/jcb.20805.CrossRefPubMed
16.
go back to reference Kahler RA, Westendorf JJ: Lymphoid enhancer factor-1 and beta-catenin inhibit Runx2-dependent transcriptional activation of the osteocalcin promoter. The Journal of biological chemistry. 2003, 278 (14): 11937-11944. 10.1074/jbc.M211443200.CrossRefPubMed Kahler RA, Westendorf JJ: Lymphoid enhancer factor-1 and beta-catenin inhibit Runx2-dependent transcriptional activation of the osteocalcin promoter. The Journal of biological chemistry. 2003, 278 (14): 11937-11944. 10.1074/jbc.M211443200.CrossRefPubMed
17.
go back to reference Jennings BH, Pickles LM, Wainwright SM, Roe SM, Pearl LH, Ish-Horowicz D: Molecular recognition of transcriptional repressor motifs by the WD domain of the Groucho/TLE corepressor. Molecular cell. 2006, 22 (5): 645-655. 10.1016/j.molcel.2006.04.024.CrossRefPubMed Jennings BH, Pickles LM, Wainwright SM, Roe SM, Pearl LH, Ish-Horowicz D: Molecular recognition of transcriptional repressor motifs by the WD domain of the Groucho/TLE corepressor. Molecular cell. 2006, 22 (5): 645-655. 10.1016/j.molcel.2006.04.024.CrossRefPubMed
18.
go back to reference Lopez-Rios J, Tessmar K, Loosli F, Wittbrodt J, Bovolenta P: Six3 and Six6 activity is modulated by members of the groucho family. Development (Cambridge, England). 2003, 130 (1): 185-195.CrossRef Lopez-Rios J, Tessmar K, Loosli F, Wittbrodt J, Bovolenta P: Six3 and Six6 activity is modulated by members of the groucho family. Development (Cambridge, England). 2003, 130 (1): 185-195.CrossRef
19.
go back to reference Fisher AL, Caudy M: Groucho proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes & development. 1998, 12 (13): 1931-1940. 10.1101/gad.12.13.1931.CrossRef Fisher AL, Caudy M: Groucho proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes & development. 1998, 12 (13): 1931-1940. 10.1101/gad.12.13.1931.CrossRef
20.
go back to reference Jimenez G, Verrijzer CP, Ish-Horowicz D: A conserved motif in goosecoid mediates groucho-dependent repression in Drosophila embryos. Molecular and cellular biology. 1999, 19 (3): 2080-2087.CrossRefPubMedPubMedCentral Jimenez G, Verrijzer CP, Ish-Horowicz D: A conserved motif in goosecoid mediates groucho-dependent repression in Drosophila embryos. Molecular and cellular biology. 1999, 19 (3): 2080-2087.CrossRefPubMedPubMedCentral
21.
go back to reference Goldstein RE, Cook O, Dinur T, Pisante A, Karandikar UC, Bidwai A, Paroush Z: An eh1-like motif in odd-skipped mediates recruitment of Groucho and repression in vivo. Molecular and cellular biology. 2005, 25 (24): 10711-10720. 10.1128/MCB.25.24.10711-10720.2005.CrossRefPubMedPubMedCentral Goldstein RE, Cook O, Dinur T, Pisante A, Karandikar UC, Bidwai A, Paroush Z: An eh1-like motif in odd-skipped mediates recruitment of Groucho and repression in vivo. Molecular and cellular biology. 2005, 25 (24): 10711-10720. 10.1128/MCB.25.24.10711-10720.2005.CrossRefPubMedPubMedCentral
22.
go back to reference Zhu CC, Dyer MA, Uchikawa M, Kondoh H, Lagutin OV, Oliver G: Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors. Development (Cambridge, England). 2002, 129 (12): 2835-2849. Zhu CC, Dyer MA, Uchikawa M, Kondoh H, Lagutin OV, Oliver G: Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors. Development (Cambridge, England). 2002, 129 (12): 2835-2849.
23.
go back to reference Roose J, Molenaar M, Peterson J, Hurenkamp J, Brantjes H, Moerer P, Wetering van de M, Destree O, Clevers H: The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature. 1998, 395 (6702): 608-612. 10.1038/26989.CrossRefPubMed Roose J, Molenaar M, Peterson J, Hurenkamp J, Brantjes H, Moerer P, Wetering van de M, Destree O, Clevers H: The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature. 1998, 395 (6702): 608-612. 10.1038/26989.CrossRefPubMed
24.
go back to reference Daniels DL, Weis WI: Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol. 2005, 12 (4): 364-371. 10.1038/nsmb912.CrossRefPubMed Daniels DL, Weis WI: Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol. 2005, 12 (4): 364-371. 10.1038/nsmb912.CrossRefPubMed
25.
go back to reference Chen G, Fernandez J, Mische S, Courey AJ: A functional interaction between the histone deacetylase Rpd3 and the corepressor Groucho in Drosophila development. 1999, 13: 2218-2230. Chen G, Fernandez J, Mische S, Courey AJ: A functional interaction between the histone deacetylase Rpd3 and the corepressor Groucho in Drosophila development. 1999, 13: 2218-2230.
26.
go back to reference Tetsuka T, Uranishi H, Imai H, Ono T, Sonta S, Takahashi N, Asamitsu K, Okamoto T: Inhibition of nuclear factor-kappaB-mediated transcription by association with the amino-terminal enhancer of split, a Groucho-related protein lacking WD40 repeats. The Journal of biological chemistry. 2000, 275 (6): 4383-4390. 10.1074/jbc.275.6.4383.CrossRefPubMed Tetsuka T, Uranishi H, Imai H, Ono T, Sonta S, Takahashi N, Asamitsu K, Okamoto T: Inhibition of nuclear factor-kappaB-mediated transcription by association with the amino-terminal enhancer of split, a Groucho-related protein lacking WD40 repeats. The Journal of biological chemistry. 2000, 275 (6): 4383-4390. 10.1074/jbc.275.6.4383.CrossRefPubMed
27.
go back to reference Brantjes H, Roose J, Wetering van De M, Clevers H: All TCF HMG box transcription factors interact with Groucho-related co- repressors. Nucleic acids research. 2001, 29 (7): 1410-1419. 10.1093/nar/29.7.1410.CrossRefPubMedPubMedCentral Brantjes H, Roose J, Wetering van De M, Clevers H: All TCF HMG box transcription factors interact with Groucho-related co- repressors. Nucleic acids research. 2001, 29 (7): 1410-1419. 10.1093/nar/29.7.1410.CrossRefPubMedPubMedCentral
28.
go back to reference Miyaki M, Konishi M, Kikuchi-Yanoshita R, Enomoto M, Igari T, Tanaka K, Muraoka M, Takahashi H, Amada Y, Fukayama M, et al: Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer research. 1994, 54 (11): 3011-3020.PubMed Miyaki M, Konishi M, Kikuchi-Yanoshita R, Enomoto M, Igari T, Tanaka K, Muraoka M, Takahashi H, Amada Y, Fukayama M, et al: Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer research. 1994, 54 (11): 3011-3020.PubMed
29.
go back to reference Rosin-Arbesfeld R, Cliffe A, Brabletz T, Bienz M: Nuclear export of the APC tumour suppressor controls beta-catenin function in transcription. The EMBO journal. 2003, 22 (5): 1101-1113. 10.1093/emboj/cdg105.CrossRefPubMedPubMedCentral Rosin-Arbesfeld R, Cliffe A, Brabletz T, Bienz M: Nuclear export of the APC tumour suppressor controls beta-catenin function in transcription. The EMBO journal. 2003, 22 (5): 1101-1113. 10.1093/emboj/cdg105.CrossRefPubMedPubMedCentral
30.
go back to reference Carlsson P, Waterman M, Jones K: The hLEF/TCF-1a HMG protein contains a context-dependent transcriptional activation domain that induces the TCRa enhancer in T cells. Genes Dev. 1993, 7: 2418-2430. 10.1101/gad.7.12a.2418.CrossRefPubMed Carlsson P, Waterman M, Jones K: The hLEF/TCF-1a HMG protein contains a context-dependent transcriptional activation domain that induces the TCRa enhancer in T cells. Genes Dev. 1993, 7: 2418-2430. 10.1101/gad.7.12a.2418.CrossRefPubMed
31.
go back to reference Stifani S, Blaumueller CM, Redhead NJ, Hill RE, Artavanis-Tsakonas S: Human homologs of a Drosophila Enhancer of split gene product define a novel family of nuclear proteins. Nature genetics. 1992, 2 (4): 343-PubMed Stifani S, Blaumueller CM, Redhead NJ, Hill RE, Artavanis-Tsakonas S: Human homologs of a Drosophila Enhancer of split gene product define a novel family of nuclear proteins. Nature genetics. 1992, 2 (4): 343-PubMed
32.
go back to reference Ghogomu SM, van Venrooy S, Ritthaler M, Wedlich D, Gradl D: HIC-5 is a novel repressor of lymphoid enhancer factor/T-cell factor-driven transcription. The Journal of biological chemistry. 2006, 281 (3): 1755-1764. 10.1074/jbc.M505869200.CrossRefPubMed Ghogomu SM, van Venrooy S, Ritthaler M, Wedlich D, Gradl D: HIC-5 is a novel repressor of lymphoid enhancer factor/T-cell factor-driven transcription. The Journal of biological chemistry. 2006, 281 (3): 1755-1764. 10.1074/jbc.M505869200.CrossRefPubMed
33.
go back to reference Chen G, Courey AJ: Groucho/TLE family proteins and transcriptional repression. Gene. 2000, 249 (1–2): 1-16. 10.1016/S0378-1119(00)00161-X.CrossRefPubMed Chen G, Courey AJ: Groucho/TLE family proteins and transcriptional repression. Gene. 2000, 249 (1–2): 1-16. 10.1016/S0378-1119(00)00161-X.CrossRefPubMed
34.
go back to reference Rowan AJ, Lamlum H, Ilyas M, wheeler J, Straub J, Papadopoulou A, Bicknell D, Bodmer WF, Tomlinson IPM: APC mutations in sporadic colorectal tumors: A mutational "hotspot" and interdependence of the "two hits". Proc Natl Acad Sci. 2000, 97 (7): 3352-3357. 10.1073/pnas.97.7.3352.CrossRefPubMedPubMedCentral Rowan AJ, Lamlum H, Ilyas M, wheeler J, Straub J, Papadopoulou A, Bicknell D, Bodmer WF, Tomlinson IPM: APC mutations in sporadic colorectal tumors: A mutational "hotspot" and interdependence of the "two hits". Proc Natl Acad Sci. 2000, 97 (7): 3352-3357. 10.1073/pnas.97.7.3352.CrossRefPubMedPubMedCentral
35.
go back to reference Ilyas M, Novelli M, Wilkinson K, Tomlinson IP, Abbasi AM, Forbes A, Talbot IC: Tumour recurrence is associated with Jass grouping but not with differences in E-cadherin expression in moderately differentiated Dukes' B colorectal cancers. Journal of clinical pathology. 1997, 50 (3): 218-222. 10.1136/jcp.50.3.218.CrossRefPubMedPubMedCentral Ilyas M, Novelli M, Wilkinson K, Tomlinson IP, Abbasi AM, Forbes A, Talbot IC: Tumour recurrence is associated with Jass grouping but not with differences in E-cadherin expression in moderately differentiated Dukes' B colorectal cancers. Journal of clinical pathology. 1997, 50 (3): 218-222. 10.1136/jcp.50.3.218.CrossRefPubMedPubMedCentral
36.
go back to reference Wang Z, Vogelstein B, Kinzler KW: Phosphorylation of beta-catenin at S33, S37, or T41 can occur in the absence of phosphorylation at T45 in colon cancer cells. Cancer research. 2003, 63 (17): 5234-5235.PubMed Wang Z, Vogelstein B, Kinzler KW: Phosphorylation of beta-catenin at S33, S37, or T41 can occur in the absence of phosphorylation at T45 in colon cancer cells. Cancer research. 2003, 63 (17): 5234-5235.PubMed
37.
go back to reference Roose J, Clevers H: TCF transcription factors: molecular switches in carcinogenesis. Biochim Biophys Acta. 1999, 1424 (2–3): M23-37.PubMed Roose J, Clevers H: TCF transcription factors: molecular switches in carcinogenesis. Biochim Biophys Acta. 1999, 1424 (2–3): M23-37.PubMed
38.
go back to reference Chen G, Nguyen PH, Courey AJ: A role for Groucho tetramerization in transcriptional repression. Molecular and cellular biology. 1998, 18 (12): 7259-7268.CrossRefPubMedPubMedCentral Chen G, Nguyen PH, Courey AJ: A role for Groucho tetramerization in transcriptional repression. Molecular and cellular biology. 1998, 18 (12): 7259-7268.CrossRefPubMedPubMedCentral
39.
go back to reference Dintilhac A, Bernues J: HMGB1 interacts with many apparently unrelated proteins by recognizing short amino acid sequences. The Journal of biological chemistry. 2002, 277 (9): 7021-7028. 10.1074/jbc.M108417200.CrossRefPubMed Dintilhac A, Bernues J: HMGB1 interacts with many apparently unrelated proteins by recognizing short amino acid sequences. The Journal of biological chemistry. 2002, 277 (9): 7021-7028. 10.1074/jbc.M108417200.CrossRefPubMed
40.
go back to reference Sekiya T, Zaret KS: Repression by Groucho/TLE/Grg proteins: genomic site recruitment generates compacted chromatin in vitro and impairs activator binding in vivo. Molecular cell. 2007, 28 (2): 291-303. 10.1016/j.molcel.2007.10.002.CrossRefPubMedPubMedCentral Sekiya T, Zaret KS: Repression by Groucho/TLE/Grg proteins: genomic site recruitment generates compacted chromatin in vitro and impairs activator binding in vivo. Molecular cell. 2007, 28 (2): 291-303. 10.1016/j.molcel.2007.10.002.CrossRefPubMedPubMedCentral
41.
go back to reference Reeves R, Gorman CM, Howard B: Minichromosome assembly of non-integrated plasmid DNA transfected into mammalian cells. Nucleic acids research. 1985, 13 (10): 3599-3615. 10.1093/nar/13.10.3599.CrossRefPubMedPubMedCentral Reeves R, Gorman CM, Howard B: Minichromosome assembly of non-integrated plasmid DNA transfected into mammalian cells. Nucleic acids research. 1985, 13 (10): 3599-3615. 10.1093/nar/13.10.3599.CrossRefPubMedPubMedCentral
42.
go back to reference Pullner A, Mautner J, Albert T, Eick D: Nucleosomal structure of active and inactive c-myc genes. The Journal of biological chemistry. 1996, 271 (49): 31452-31457. 10.1074/jbc.271.49.31452.CrossRefPubMed Pullner A, Mautner J, Albert T, Eick D: Nucleosomal structure of active and inactive c-myc genes. The Journal of biological chemistry. 1996, 271 (49): 31452-31457. 10.1074/jbc.271.49.31452.CrossRefPubMed
43.
go back to reference Stanfield-Oakley SA, Griffith JD: Nucleosomal arrangement of HIV-1 DNA: maps generated from an integrated genome and an EBV-based episomal model. Journal of molecular biology. 1996, 256 (3): 503-516. 10.1006/jmbi.1996.0104.CrossRefPubMed Stanfield-Oakley SA, Griffith JD: Nucleosomal arrangement of HIV-1 DNA: maps generated from an integrated genome and an EBV-based episomal model. Journal of molecular biology. 1996, 256 (3): 503-516. 10.1006/jmbi.1996.0104.CrossRefPubMed
44.
go back to reference Heinen CD, Richardson D, White R, Groden J: Microsatellite instability in colorectal adenocarcinoma cell lines that have full-length adenomatous polyposis coli protein. Cancer research. 1995, 55 (21): 4797-4799.PubMed Heinen CD, Richardson D, White R, Groden J: Microsatellite instability in colorectal adenocarcinoma cell lines that have full-length adenomatous polyposis coli protein. Cancer research. 1995, 55 (21): 4797-4799.PubMed
45.
go back to reference Faux MC, Ross JL, Meeker C, Johns T, Ji H, Simpson RJ, Layton MJ, Burgess AW: Restoration of full-length adenomatous polyposis coli (APC) protein in a colon cancer cell line enhances cell adhesion. Journal of cell science. 2004, 117 (Pt 3): 427-439.PubMed Faux MC, Ross JL, Meeker C, Johns T, Ji H, Simpson RJ, Layton MJ, Burgess AW: Restoration of full-length adenomatous polyposis coli (APC) protein in a colon cancer cell line enhances cell adhesion. Journal of cell science. 2004, 117 (Pt 3): 427-439.PubMed
46.
go back to reference Yang M, Zhong WW, Srivastava N, Slavin A, Yang J, Hoey T, An S: G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the {beta}-catenin pathway. Proceedings of the National Academy of Sciences of the United States of America. 2005, 102 (17): 6027-6032. 10.1073/pnas.0501535102.CrossRefPubMedPubMedCentral Yang M, Zhong WW, Srivastava N, Slavin A, Yang J, Hoey T, An S: G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the {beta}-catenin pathway. Proceedings of the National Academy of Sciences of the United States of America. 2005, 102 (17): 6027-6032. 10.1073/pnas.0501535102.CrossRefPubMedPubMedCentral
47.
go back to reference Yang J, Zhang W, Evans PM, Chen X, He X, Liu C: Adenomatous polyposis coli (APC) differentially regulates beta-catenin phosphorylation and ubiquitination in colon cancer cells. The Journal of biological chemistry. 2006, 281 (26): 17751-17757. 10.1074/jbc.M600831200.CrossRefPubMed Yang J, Zhang W, Evans PM, Chen X, He X, Liu C: Adenomatous polyposis coli (APC) differentially regulates beta-catenin phosphorylation and ubiquitination in colon cancer cells. The Journal of biological chemistry. 2006, 281 (26): 17751-17757. 10.1074/jbc.M600831200.CrossRefPubMed
48.
go back to reference Rosin-Arbesfeld R, Townsley F, Bienz M: The APC tumour suppressor has a nuclear export function. Nature. 2000, 406 (6799): 1009-1012. 10.1038/35023016.CrossRefPubMed Rosin-Arbesfeld R, Townsley F, Bienz M: The APC tumour suppressor has a nuclear export function. Nature. 2000, 406 (6799): 1009-1012. 10.1038/35023016.CrossRefPubMed
Metadata
Title
Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression
Authors
Laura Arce
Kira T Pate
Marian L Waterman
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2009
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-9-159

Other articles of this Issue 1/2009

BMC Cancer 1/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine