Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2017

Open Access 01-12-2017 | Research

Granulocyte colony-stimulating factor (G-CSF) promotes spermatogenic regeneration from surviving spermatogonia after high-dose alkylating chemotherapy

Authors: Travis Kotzur, Roberto Benavides-Garcia, Jennifer Mecklenburg, Jamila R. Sanchez, Matthew Reilly, Brian P. Hermann

Published in: Reproductive Biology and Endocrinology | Issue 1/2017

Login to get access

Abstract

Background

The lifesaving chemotherapy and radiation treatments that allow patients to survive cancer can also result in a lifetime of side-effects, including male infertility. Infertility in male cancer survivors is thought to primarily result from killing of the spermatogonial stem cells (SSCs) responsible for producing spermatozoa since SSCs turn over slowly and are thereby sensitive to antineoplastic therapies. We previously demonstrated that the cytokine granulocyte colony-stimulating factor (G-CSF) can preserve spermatogenesis after alkylating chemotherapy (busulfan).

Methods

Male mice were treated with G-CSF or controls before and/or after sterilizing busulfan treatment and evaluated immediately or 10–19 weeks later for effects on spermatogenesis.

Results

We demonstrated that the protective effect of G-CSF on spermatogenesis was stable for at least 19 weeks after chemotherapy, nearly twice as long as previously shown. Further, G-CSF treatment enhanced spermatogenic measures 10 weeks after treatment in the absence of a cytotoxic insult, suggesting G-CSF acts as a mitogen in steady-state spermatogenesis. In agreement with this conclusion, G-CSF treatment for 3 days before busulfan treatment exacerbated the loss of spermatogenesis observed with G-CSF alone. Reciprocally, spermatogenic recovery was modestly enhanced in mice treated with G-CSF for 4 days after busulfan. These results suggested that G-CSF promoted spermatogonial proliferation, leading to enhanced spermatogenic regeneration from surviving SSCs. Similarly, there was a significant increase in proportion of PLZF+ undifferentiated spermatogonia that were Ki67+ (proliferating) 1 day after G-CSF treatment.

Conclusions

Together, these results clarify that G-CSF protects spermatogenesis after alkylating chemotherapy by stimulating proliferation of surviving spermatogonia, and indicate it may be useful as a retrospective fertility-restoring treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Altekruse SF, et al. SEER cancer statistics review, 1975–2013. [based on November 2015 SEER data submission, posted to the SEER web site, april 2016.]. Bethesda, MD: National Cancer Institute; 2016. 4-17-2016. Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Altekruse SF, et al. SEER cancer statistics review, 1975–2013. [based on November 2015 SEER data submission, posted to the SEER web site, april 2016.]. Bethesda, MD: National Cancer Institute; 2016. 4-17-2016.
2.
go back to reference Karim-Kos HE, Hackl M, Mann G, Urban C, Woehrer A, Slavc I, et al. Trends in incidence, survival and mortality of childhood and adolescent cancer in Austria, 1994–2011. Cancer Epidemiol. 2016;42:72–81.CrossRefPubMed Karim-Kos HE, Hackl M, Mann G, Urban C, Woehrer A, Slavc I, et al. Trends in incidence, survival and mortality of childhood and adolescent cancer in Austria, 1994–2011. Cancer Epidemiol. 2016;42:72–81.CrossRefPubMed
3.
go back to reference PDQ Pediatric Treatment Editorial Board. Late Effects of Treatment for Childhood Cancer (PDQ(R)): Health Professional Version. USA: National Cancer Institute, Bethesda; 2016. p. 3–31. PDQ Pediatric Treatment Editorial Board. Late Effects of Treatment for Childhood Cancer (PDQ(R)): Health Professional Version. USA: National Cancer Institute, Bethesda; 2016. p. 3–31.
4.
go back to reference Chow EJ, Anderson L, Baker KS, Bhatia S, Guilcher GM, Huang JT, et al. Late effects surveillance recommendations among survivors of childhood hematopoietic cell transplantation: a Children’s oncology group report. Biol Blood Marrow Transplant. 2016;22:782–95.CrossRefPubMed Chow EJ, Anderson L, Baker KS, Bhatia S, Guilcher GM, Huang JT, et al. Late effects surveillance recommendations among survivors of childhood hematopoietic cell transplantation: a Children’s oncology group report. Biol Blood Marrow Transplant. 2016;22:782–95.CrossRefPubMed
5.
go back to reference Rose SR, Horne VE, Howell J, Lawson SA, Rutter MM, Trotman GE, et al. Late endocrine effects of childhood cancer. Nat Rev Endocrinol. 2016;12(6):319–36. Rose SR, Horne VE, Howell J, Lawson SA, Rutter MM, Trotman GE, et al. Late endocrine effects of childhood cancer. Nat Rev Endocrinol. 2016;12(6):319–36.
6.
go back to reference Wallace WH, Anderson RA, Irvine DS. Fertility preservation for young patients with cancer: who is at risk and what can be offered? Lancet Oncol. 2005;6:209–18.CrossRefPubMed Wallace WH, Anderson RA, Irvine DS. Fertility preservation for young patients with cancer: who is at risk and what can be offered? Lancet Oncol. 2005;6:209–18.CrossRefPubMed
7.
go back to reference Mitchell RT, Saunders PT, Sharpe RM, Kelnar CJ, Wallace WH. Male fertility and strategies for fertility preservation following childhood cancer treatment. Endocr Dev. 2009;15:101–34.PubMed Mitchell RT, Saunders PT, Sharpe RM, Kelnar CJ, Wallace WH. Male fertility and strategies for fertility preservation following childhood cancer treatment. Endocr Dev. 2009;15:101–34.PubMed
8.
go back to reference Pietzak III EJ, Tasian GE, Tasian SK, Brinster RL, Carlson C, Ginsberg JP, et al. Histology of testicular biopsies obtained for experimental fertility preservation protocol in boys with cancer. J Urol. 2015;194:1420–4.CrossRefPubMedPubMedCentral Pietzak III EJ, Tasian GE, Tasian SK, Brinster RL, Carlson C, Ginsberg JP, et al. Histology of testicular biopsies obtained for experimental fertility preservation protocol in boys with cancer. J Urol. 2015;194:1420–4.CrossRefPubMedPubMedCentral
9.
go back to reference Chow EJ, Stratton KL, Leisenring WM, Oeffinger KC, Sklar CA, Donaldson SS, et al. Pregnancy after chemotherapy in male and female survivors of childhood cancer treated between 1970 and 1999: a report from the Childhood Cancer Survivor Study cohort. Lancet Oncol. 2016;17(5):567–76. Chow EJ, Stratton KL, Leisenring WM, Oeffinger KC, Sklar CA, Donaldson SS, et al. Pregnancy after chemotherapy in male and female survivors of childhood cancer treated between 1970 and 1999: a report from the Childhood Cancer Survivor Study cohort. Lancet Oncol. 2016;17(5):567–76.
10.
go back to reference Clark AT, Phillips BT, Orwig KE. Fruitful progress to fertility: male fertility in the test tube. Nat Med. 2011;17:1564–5.CrossRefPubMed Clark AT, Phillips BT, Orwig KE. Fruitful progress to fertility: male fertility in the test tube. Nat Med. 2011;17:1564–5.CrossRefPubMed
12.
go back to reference Hermann BP, Sukhwani M, Winkler F, Pascarella JN, Peters KA, Sheng Y, et al. Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell. 2012;11:715–26.CrossRefPubMedPubMedCentral Hermann BP, Sukhwani M, Winkler F, Pascarella JN, Peters KA, Sheng Y, et al. Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell. 2012;11:715–26.CrossRefPubMedPubMedCentral
13.
go back to reference Hussein AA, Tran ND, Smith JF. Fertility preservation for boys and adolescents facing sterilizing medical therapy. Transl Androl Urol. 2014;3:382–90.PubMedPubMedCentral Hussein AA, Tran ND, Smith JF. Fertility preservation for boys and adolescents facing sterilizing medical therapy. Transl Androl Urol. 2014;3:382–90.PubMedPubMedCentral
14.
go back to reference Moss JL, Choi AW, Fitzgerald Keeter MK, Brannigan RE. Male adolescent fertility preservation. Fertil Steril. 2016;105:267–73.CrossRefPubMed Moss JL, Choi AW, Fitzgerald Keeter MK, Brannigan RE. Male adolescent fertility preservation. Fertil Steril. 2016;105:267–73.CrossRefPubMed
15.
go back to reference Lambertini M, Del ML, Pescio MC, Andersen CY, Azim Jr HA, Peccatori FA, et al. Cancer and fertility preservation: international recommendations from an expert meeting. BMC Med. 2016;14:1.CrossRefPubMedPubMedCentral Lambertini M, Del ML, Pescio MC, Andersen CY, Azim Jr HA, Peccatori FA, et al. Cancer and fertility preservation: international recommendations from an expert meeting. BMC Med. 2016;14:1.CrossRefPubMedPubMedCentral
16.
go back to reference Long CJ, Ginsberg JP, Kolon TF. Fertility Preservation in Children and Adolescents With Cancer. Urol. 2016;91:190–6. Long CJ, Ginsberg JP, Kolon TF. Fertility Preservation in Children and Adolescents With Cancer. Urol. 2016;91:190–6.
17.
go back to reference Benavides-Garcia R, Joachim R, Pina NA, Mutoji KN, Reilly MA, Hermann BP (Eds). Granulocyte colony-stimulating factor prevents loss of spermatogenesis after sterilizing busulfan chemotherapy. In Fertil Steril. 2015;103: 270–280. Benavides-Garcia R, Joachim R, Pina NA, Mutoji KN, Reilly MA, Hermann BP (Eds). Granulocyte colony-stimulating factor prevents loss of spermatogenesis after sterilizing busulfan chemotherapy. In Fertil Steril. 2015;103: 270–280.
18.
go back to reference Hermann BP, Sukhwani M, Lin CC, Sheng Y, Tomko J, Rodriguez M, et al. Characterization, cryopreservation and ablation of spermatogonial stem cells In adult rhesus macaques. Stem Cells. 2007;25:2330–8.CrossRefPubMedPubMedCentral Hermann BP, Sukhwani M, Lin CC, Sheng Y, Tomko J, Rodriguez M, et al. Characterization, cryopreservation and ablation of spermatogonial stem cells In adult rhesus macaques. Stem Cells. 2007;25:2330–8.CrossRefPubMedPubMedCentral
19.
go back to reference Dawson K, Wu CT, Qi XY, Nattel S. Congestive heart failure effects on atrial fibroblast phenotype: differences between freshly-isolated and cultured cells. PLoS ONE. 2012;7:e52032.CrossRefPubMedPubMedCentral Dawson K, Wu CT, Qi XY, Nattel S. Congestive heart failure effects on atrial fibroblast phenotype: differences between freshly-isolated and cultured cells. PLoS ONE. 2012;7:e52032.CrossRefPubMedPubMedCentral
20.
go back to reference Prasadam I, Farnaghi S, Feng JQ, Gu W, Perry S, Crawford R, et al. Impact of extracellular matrix derived from osteoarthritis subchondral bone osteoblasts on osteocytes: role of integrinbeta1 and focal adhesion kinase signaling cues. Arthritis Res Ther. 2013;15:R150.CrossRefPubMedPubMedCentral Prasadam I, Farnaghi S, Feng JQ, Gu W, Perry S, Crawford R, et al. Impact of extracellular matrix derived from osteoarthritis subchondral bone osteoblasts on osteocytes: role of integrinbeta1 and focal adhesion kinase signaling cues. Arthritis Res Ther. 2013;15:R150.CrossRefPubMedPubMedCentral
21.
go back to reference Maroto-Morales A, Ramon M, Garcia-Alvarez O, Soler AJ, Fernandez-Santos MR, Roldan ER, et al. Morphometrically-distinct sperm subpopulations defined by a multistep statistical procedure in ram ejaculates: intra- and interindividual variation. Theriogenology. 2012;77:1529–39.CrossRef Maroto-Morales A, Ramon M, Garcia-Alvarez O, Soler AJ, Fernandez-Santos MR, Roldan ER, et al. Morphometrically-distinct sperm subpopulations defined by a multistep statistical procedure in ram ejaculates: intra- and interindividual variation. Theriogenology. 2012;77:1529–39.CrossRef
22.
go back to reference Hermann BP, Sukhwani M, Simorangkir DR, Chu T, Plant TM, Orwig KE. Molecular dissection of the male germ cell lineage identifies putative spermatogonial stem cells in rhesus macaques. Hum Reprod. 2009;24:1704–16.CrossRefPubMedPubMedCentral Hermann BP, Sukhwani M, Simorangkir DR, Chu T, Plant TM, Orwig KE. Molecular dissection of the male germ cell lineage identifies putative spermatogonial stem cells in rhesus macaques. Hum Reprod. 2009;24:1704–16.CrossRefPubMedPubMedCentral
23.
go back to reference Tran PB, Banisadr G, Ren D, Chenn A, Miller RJ. Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain. J Comp Neurol. 2007;500:1007–33.CrossRefPubMedPubMedCentral Tran PB, Banisadr G, Ren D, Chenn A, Miller RJ. Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain. J Comp Neurol. 2007;500:1007–33.CrossRefPubMedPubMedCentral
24.
go back to reference Betancourt J, Katzman S, Chen B. Nuclear factor one B regulates neural stem cell differentiation and axonal projection of corticofugal neurons. J Comp Neurol. 2014;522:6–35.CrossRefPubMedPubMedCentral Betancourt J, Katzman S, Chen B. Nuclear factor one B regulates neural stem cell differentiation and axonal projection of corticofugal neurons. J Comp Neurol. 2014;522:6–35.CrossRefPubMedPubMedCentral
25.
go back to reference Ohdo S, Furukubo T, Arata N, Yukawa E, Higuchi S, Nakano S, et al. Influence of dosing time on pharmacological action of G-CSF in mice. Life Sci. 1998;62:L163–8. Ohdo S, Furukubo T, Arata N, Yukawa E, Higuchi S, Nakano S, et al. Influence of dosing time on pharmacological action of G-CSF in mice. Life Sci. 1998;62:L163–8.
26.
go back to reference Han B, Unsinger J, Liu F, Link DC, Bessler M. G-CSF induced progenitor mobilization in mice with PIGA blood cells. Hematol J. 2004;5:347–52.CrossRefPubMed Han B, Unsinger J, Liu F, Link DC, Bessler M. G-CSF induced progenitor mobilization in mice with PIGA blood cells. Hematol J. 2004;5:347–52.CrossRefPubMed
27.
go back to reference Yannaki E, Athanasiou E, Xagorari A, Constantinou V, Batsis I, Kaloyannidis P, et al. G-CSF-primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs. Exp Hematol. 2005;33:108–19.CrossRefPubMed Yannaki E, Athanasiou E, Xagorari A, Constantinou V, Batsis I, Kaloyannidis P, et al. G-CSF-primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs. Exp Hematol. 2005;33:108–19.CrossRefPubMed
28.
go back to reference Blanco-Rodriguez J. gammaH2AX marks the main events of the spermatogenic process. Microsc Res Tech. 2009;72:823–32.CrossRefPubMed Blanco-Rodriguez J. gammaH2AX marks the main events of the spermatogenic process. Microsc Res Tech. 2009;72:823–32.CrossRefPubMed
29.
go back to reference Arya M, Vanha-Perttula T. Comparison of lectin-staining pattern in testis and epididymis of gerbil, guinea pig, mouse, and nutria. Am J Anat. 1986;175:449–69.CrossRefPubMed Arya M, Vanha-Perttula T. Comparison of lectin-staining pattern in testis and epididymis of gerbil, guinea pig, mouse, and nutria. Am J Anat. 1986;175:449–69.CrossRefPubMed
30.
go back to reference Lee MC, Damjanov I. Anatomic distribution of lectin-binding sites in mouse testis and epididymis. Differentiation. 1984;27:74–81.CrossRefPubMed Lee MC, Damjanov I. Anatomic distribution of lectin-binding sites in mouse testis and epididymis. Differentiation. 1984;27:74–81.CrossRefPubMed
31.
go back to reference Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182:311–22.CrossRefPubMed Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182:311–22.CrossRefPubMed
32.
go back to reference Buaas FW, Kirsh AL, Sharma M, McLean DJ, Morris JL, Griswold MD, et al. Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet. 2004;36:647–52.CrossRefPubMed Buaas FW, Kirsh AL, Sharma M, McLean DJ, Morris JL, Griswold MD, et al. Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet. 2004;36:647–52.CrossRefPubMed
33.
go back to reference Costoya JA, Hobbs RM, Barna M, Cattoretti G, Manova K, Sukhwani M, et al. Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet. 2004;36:653–9.CrossRefPubMed Costoya JA, Hobbs RM, Barna M, Cattoretti G, Manova K, Sukhwani M, et al. Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet. 2004;36:653–9.CrossRefPubMed
34.
go back to reference Huckins C. The spermatogonial stem cell population in adult rats. I. Their morphology, proliferation and maturation. Anat Rec. 1971;169:533–57.CrossRefPubMed Huckins C. The spermatogonial stem cell population in adult rats. I. Their morphology, proliferation and maturation. Anat Rec. 1971;169:533–57.CrossRefPubMed
35.
go back to reference Wyns C, Curaba M, Vanabelle B, Van LA, Donnez J. Options for fertility preservation in prepubertal boys. Hum Reprod Update. 2010;16:312–28.CrossRefPubMed Wyns C, Curaba M, Vanabelle B, Van LA, Donnez J. Options for fertility preservation in prepubertal boys. Hum Reprod Update. 2010;16:312–28.CrossRefPubMed
36.
go back to reference Dovey SL, Valli H, Hermann BP, Sukhwani M, Donohue J, Castro CA, et al. Eliminating malignant potential from therapeutic human spermatogonial stem cells. J Clin Investig. 2013;123:1833–43.CrossRefPubMedPubMedCentral Dovey SL, Valli H, Hermann BP, Sukhwani M, Donohue J, Castro CA, et al. Eliminating malignant potential from therapeutic human spermatogonial stem cells. J Clin Investig. 2013;123:1833–43.CrossRefPubMedPubMedCentral
38.
go back to reference Lindley C, Shea T, McCune J, Shord S, Decker J, Harvey D, et al. Intraindividual variability in busulfan pharmacokinetics in patients undergoing a bone marrow transplant: assessment of a test dose and first dose strategy. Anticancer Drugs. 2004;15:453–9.CrossRefPubMed Lindley C, Shea T, McCune J, Shord S, Decker J, Harvey D, et al. Intraindividual variability in busulfan pharmacokinetics in patients undergoing a bone marrow transplant: assessment of a test dose and first dose strategy. Anticancer Drugs. 2004;15:453–9.CrossRefPubMed
39.
go back to reference Takama H, Tanaka H, Nakashima D, Ueda R, Takaue Y. Population pharmacokinetics of intravenous busulfan in patients undergoing hematopoietic stem cell transplantation. Bone Marrow Transplant. 2006;37:345–51.CrossRefPubMed Takama H, Tanaka H, Nakashima D, Ueda R, Takaue Y. Population pharmacokinetics of intravenous busulfan in patients undergoing hematopoietic stem cell transplantation. Bone Marrow Transplant. 2006;37:345–51.CrossRefPubMed
40.
go back to reference Hoy SM, Lyseng-Williamson KA. Intravenous busulfan: in the conditioning treatment of pediatric patients prior to hematopoietic stem cell transplantation. Paediatr Drugs. 2007;9:271–8.CrossRefPubMed Hoy SM, Lyseng-Williamson KA. Intravenous busulfan: in the conditioning treatment of pediatric patients prior to hematopoietic stem cell transplantation. Paediatr Drugs. 2007;9:271–8.CrossRefPubMed
41.
go back to reference Lee JW, Kang HJ, Lee SH, Yu KS, Kim NH, Yuk YJ, et al. Highly variable pharmacokinetics of once-daily intravenous busulfan when combined with fludarabine in pediatric patients: phase I clinical study for determination of optimal once-daily busulfan dose using pharmacokinetic modeling. Biol Blood Marrow Transplant. 2012;18:944–50.CrossRefPubMed Lee JW, Kang HJ, Lee SH, Yu KS, Kim NH, Yuk YJ, et al. Highly variable pharmacokinetics of once-daily intravenous busulfan when combined with fludarabine in pediatric patients: phase I clinical study for determination of optimal once-daily busulfan dose using pharmacokinetic modeling. Biol Blood Marrow Transplant. 2012;18:944–50.CrossRefPubMed
42.
go back to reference Berndtson WE, Igboeli G, Parker WG. The numbers of Sertoli cells in mature Holstein bulls and their relationship to quantitative aspects of spermatogenesis. Biol Reprod. 1987;37:60–7.CrossRefPubMed Berndtson WE, Igboeli G, Parker WG. The numbers of Sertoli cells in mature Holstein bulls and their relationship to quantitative aspects of spermatogenesis. Biol Reprod. 1987;37:60–7.CrossRefPubMed
43.
go back to reference Berndtson WE, Igboeli G, Pickett BW. Relationship of absolute numbers of Sertoli cells to testicular size and spermatogenesis in young beef bulls. J Anim Sci. 1987;64:241–6.CrossRefPubMed Berndtson WE, Igboeli G, Pickett BW. Relationship of absolute numbers of Sertoli cells to testicular size and spermatogenesis in young beef bulls. J Anim Sci. 1987;64:241–6.CrossRefPubMed
44.
go back to reference Berndtson WE, Thompson TL. Changing relationships between testis size, Sertoli cell number and spermatogenesis in Sprague–Dawley rats. J Androl. 1990;11:429–35.PubMed Berndtson WE, Thompson TL. Changing relationships between testis size, Sertoli cell number and spermatogenesis in Sprague–Dawley rats. J Androl. 1990;11:429–35.PubMed
45.
go back to reference Thompson TL, Berndtson WE. Testicular weight, Sertoli cell number, daily sperm production, and sperm output of sexually mature rabbits after neonatal or prepubertal hemicastration. Biol Reprod. 1993;48:952–7.CrossRefPubMed Thompson TL, Berndtson WE. Testicular weight, Sertoli cell number, daily sperm production, and sperm output of sexually mature rabbits after neonatal or prepubertal hemicastration. Biol Reprod. 1993;48:952–7.CrossRefPubMed
46.
go back to reference Singh J, Handelsman DJ. Neonatal administration of FSH increases Sertoli cell numbers and spermatogenesis in gonadotropin-deficient (hpg) mice. J Endocrinol JID - 0375363. 1996;151:37–48.CrossRef Singh J, Handelsman DJ. Neonatal administration of FSH increases Sertoli cell numbers and spermatogenesis in gonadotropin-deficient (hpg) mice. J Endocrinol JID - 0375363. 1996;151:37–48.CrossRef
47.
go back to reference Holsberger DR, Kiesewetter SE, Cooke PS. Regulation of neonatal Sertoli cell development by thyroid hormone receptor alpha1. Biol Reprod. 2005;73:396–403.CrossRefPubMed Holsberger DR, Kiesewetter SE, Cooke PS. Regulation of neonatal Sertoli cell development by thyroid hormone receptor alpha1. Biol Reprod. 2005;73:396–403.CrossRefPubMed
48.
go back to reference Holsberger DR, Cooke PS. Understanding the role of thyroid hormone in Sertoli cell development: a mechanistic hypothesis. Cell Tissue Res. 2005;322:133–40.CrossRefPubMed Holsberger DR, Cooke PS. Understanding the role of thyroid hormone in Sertoli cell development: a mechanistic hypothesis. Cell Tissue Res. 2005;322:133–40.CrossRefPubMed
49.
go back to reference Oatley MJ, Racicot KE, Oatley JM. Sertoli cells dictate spermatogonial stem cell niches in the mouse testis. Biol Reprod. 2011;84:639–45.CrossRefPubMed Oatley MJ, Racicot KE, Oatley JM. Sertoli cells dictate spermatogonial stem cell niches in the mouse testis. Biol Reprod. 2011;84:639–45.CrossRefPubMed
50.
go back to reference Vergouwen RP, Huiskamp R, Bas RJ, Roepers-Gajadien HL, Davids JA, de Rooij DG. Postnatal development of testicular cell populations in mice. J Reprod Fertil. 1993;99:479–85.CrossRefPubMed Vergouwen RP, Huiskamp R, Bas RJ, Roepers-Gajadien HL, Davids JA, de Rooij DG. Postnatal development of testicular cell populations in mice. J Reprod Fertil. 1993;99:479–85.CrossRefPubMed
51.
go back to reference Baker PJ, O’Shaughnessy PJ. Role of gonadotrophins in regulating numbers of Leydig and Sertoli cells during fetal and postnatal development in mice. Reproduction. 2001;122:227–34.CrossRefPubMed Baker PJ, O’Shaughnessy PJ. Role of gonadotrophins in regulating numbers of Leydig and Sertoli cells during fetal and postnatal development in mice. Reproduction. 2001;122:227–34.CrossRefPubMed
52.
go back to reference Metcalf D, Nicola NA. Proliferative effects of purified granulocyte colony-stimulating factor (G-CSF) on normal mouse hemopoietic cells. J Cell Physiol. 1983;116:198–206.CrossRefPubMed Metcalf D, Nicola NA. Proliferative effects of purified granulocyte colony-stimulating factor (G-CSF) on normal mouse hemopoietic cells. J Cell Physiol. 1983;116:198–206.CrossRefPubMed
53.
go back to reference Yang FC, Watanabe S, Tsuji K, Xu MJ, Kaneko A, Ebihara Y, et al. Human granulocyte colony-stimulating factor (G-CSF) stimulates the in vitro and in vivo development but not commitment of primitive multipotential progenitors from transgenic mice expressing the human G-CSF receptor. Blood. 1998;92:4632–40. Yang FC, Watanabe S, Tsuji K, Xu MJ, Kaneko A, Ebihara Y, et al. Human granulocyte colony-stimulating factor (G-CSF) stimulates the in vitro and in vivo development but not commitment of primitive multipotential progenitors from transgenic mice expressing the human G-CSF receptor. Blood. 1998;92:4632–40.
54.
go back to reference Gay AN, Chang S, Rutland L, Yu L, Byeseda S, Naik-Mathuria B, et al. Granulocyte colony stimulating factor alters the phenotype of neuroblastoma cells: implications for disease-free survival of high-risk patients. J Pediatr Surg. 2008;43:837–42.CrossRefPubMedPubMedCentral Gay AN, Chang S, Rutland L, Yu L, Byeseda S, Naik-Mathuria B, et al. Granulocyte colony stimulating factor alters the phenotype of neuroblastoma cells: implications for disease-free survival of high-risk patients. J Pediatr Surg. 2008;43:837–42.CrossRefPubMedPubMedCentral
55.
go back to reference Panopoulos AD, Watowich SS. Granulocyte colony-stimulating factor: molecular mechanisms of action during steady state and ‘emergency’ hematopoiesis. Cytokine. 2008;42:277–88.CrossRefPubMedPubMedCentral Panopoulos AD, Watowich SS. Granulocyte colony-stimulating factor: molecular mechanisms of action during steady state and ‘emergency’ hematopoiesis. Cytokine. 2008;42:277–88.CrossRefPubMedPubMedCentral
56.
go back to reference Spahr L, Lambert JF, Rubbia-Brandt L, Chalandon Y, Frossard JL, Giostra E, et al. Granulocyte-colony stimulating factor induces proliferation of hepatic progenitors in alcoholic steatohepatitis: a randomized trial. Hepatology. 2008;48:221–9.CrossRefPubMed Spahr L, Lambert JF, Rubbia-Brandt L, Chalandon Y, Frossard JL, Giostra E, et al. Granulocyte-colony stimulating factor induces proliferation of hepatic progenitors in alcoholic steatohepatitis: a randomized trial. Hepatology. 2008;48:221–9.CrossRefPubMed
57.
go back to reference Kim J, Lee S, Jeon B, Jang W, Moon C, Kim S. Protection of spermatogenesis against gamma ray-induced damage by granulocyte colony-stimulating factor in mice. Andrologia. 2011;43:87–93.CrossRefPubMed Kim J, Lee S, Jeon B, Jang W, Moon C, Kim S. Protection of spermatogenesis against gamma ray-induced damage by granulocyte colony-stimulating factor in mice. Andrologia. 2011;43:87–93.CrossRefPubMed
58.
go back to reference Skaznik-Wikiel ME, McGuire MM, Sukhwani M, Donohue J, Chu T, Krivak TC, et al. Granulocyte colony-stimulating factor with or without stem cell factor extends time to premature ovarian insufficiency in female mice treated with alkylating chemotherapy. Fertil Steril. 2013;99:2045–54.CrossRefPubMedPubMedCentral Skaznik-Wikiel ME, McGuire MM, Sukhwani M, Donohue J, Chu T, Krivak TC, et al. Granulocyte colony-stimulating factor with or without stem cell factor extends time to premature ovarian insufficiency in female mice treated with alkylating chemotherapy. Fertil Steril. 2013;99:2045–54.CrossRefPubMedPubMedCentral
Metadata
Title
Granulocyte colony-stimulating factor (G-CSF) promotes spermatogenic regeneration from surviving spermatogonia after high-dose alkylating chemotherapy
Authors
Travis Kotzur
Roberto Benavides-Garcia
Jennifer Mecklenburg
Jamila R. Sanchez
Matthew Reilly
Brian P. Hermann
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2017
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-016-0226-1

Other articles of this Issue 1/2017

Reproductive Biology and Endocrinology 1/2017 Go to the issue