Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 9/2014

01-09-2014 | Knee

Graft tension of the posterior cruciate ligament using a finite element model

Authors: Young-Jin Seo, Si Young Song, In Sung Kim, Myeong Jae Seo, Yoon Sang Kim, Yon-Sik Yoo

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 9/2014

Login to get access

Abstract

Purpose

The aim of the study was to analyse the change in length and tension of the reconstructed single-bundle posterior cruciate ligament (PCL) with three different femoral tunnels at different knee flexion angles by use of three-dimensional finite element method.

Methods

The right knees of 12 male subjects were scanned with a high-resolution computed tomography scanner at four different knee flexion angles (0°, 45°, 90° and 135°). Three types of single-bundle PCL reconstruction were then conducted in a 90° flexion model: femoral tunnels were created in anterolateral (AL), central and posteromedial (PM) regions of the footprint. Length versus flexion curves and tension versus flexion curves were generated.

Results

Between 0° and 90° of knee flexion, changes in length and tension in the PM grafts were not significant. Whereas the lengths and tension of the AL and central grafts significantly increased in the same flexion range. The length and tension of the PM grafts at 135° of knee flexion were significantly higher than those at 90° of knee flexion, whereas the AL and the central grafts showed only slight length changes beyond 90° of flexion. However, the tension of the AL graft increased significantly beyond 90° of flexion.

Conclusions

Changes in the graft length, and tension were generally affected by different femoral tunnels and knee flexion angles. In groups with the AL and PM single-bundle reconstruction, the graft tension increased beyond 90° of knee flexion when the graft is tensioned at 90° of flexion. These data suggest that final fixation angle at 90° for the AL or PM graft would induce graft overtension in high knee flexion of 135°. Whereas central graft which is fixed in 90° of flexion is desirable in terms of prevention of graft overtension. Because the graft tension within it was relatively constant beyond 90° of flexion.
Literature
1.
go back to reference DeFrate LE, Gill TJ, Li G (2004) In vivo function of the posterior cruciate ligament during weightbearing knee flexion. Am J Sports Med 32:1923–1928PubMedCrossRef DeFrate LE, Gill TJ, Li G (2004) In vivo function of the posterior cruciate ligament during weightbearing knee flexion. Am J Sports Med 32:1923–1928PubMedCrossRef
2.
go back to reference Dunlop DG, Woodnutt DJ, Nutton RW (2004) A new method to determine graft angles after knee ligament reconstruction. Knee 11:19–24PubMedCrossRef Dunlop DG, Woodnutt DJ, Nutton RW (2004) A new method to determine graft angles after knee ligament reconstruction. Knee 11:19–24PubMedCrossRef
3.
go back to reference Fox RJ, Harner CD, Sakane M, Carlin GJ, Woo SL (1998) Determination of the in situ forces in the human posterior cruciate ligament using robotic technology. A cadaveric study. Am J Sports Med 26:395–401PubMedCrossRef Fox RJ, Harner CD, Sakane M, Carlin GJ, Woo SL (1998) Determination of the in situ forces in the human posterior cruciate ligament using robotic technology. A cadaveric study. Am J Sports Med 26:395–401PubMedCrossRef
4.
go back to reference Fu SC, Cheng WH, Cheuk YC et al (2013) Effect of graft tensioning on mechanical restoration in a rat model of anterior cruciate ligament reconstruction using free tendon graft. Knee Surg Sports Traumatol Arthrosc 21(5):1226–1233PubMedCrossRef Fu SC, Cheng WH, Cheuk YC et al (2013) Effect of graft tensioning on mechanical restoration in a rat model of anterior cruciate ligament reconstruction using free tendon graft. Knee Surg Sports Traumatol Arthrosc 21(5):1226–1233PubMedCrossRef
5.
go back to reference Gill TJ, DeFrate LE, Wang C et al (2003) The biomechanical effect of posterior cruciate ligament reconstruction on knee joint function: kinematic response to simulated muscle loads. Am J Sports Med 31:530–536PubMed Gill TJ, DeFrate LE, Wang C et al (2003) The biomechanical effect of posterior cruciate ligament reconstruction on knee joint function: kinematic response to simulated muscle loads. Am J Sports Med 31:530–536PubMed
6.
go back to reference Gong X, Yu JK, Ao YF (2013) Remnant-preserving posterior cruciate ligament reconstruction with graft tension-relieving: a comparative study with conventional technique. Chin Med J 126(6):1155–1158PubMed Gong X, Yu JK, Ao YF (2013) Remnant-preserving posterior cruciate ligament reconstruction with graft tension-relieving: a comparative study with conventional technique. Chin Med J 126(6):1155–1158PubMed
7.
go back to reference Grood ES, Hefzy MS, Lindenfield TN (1989) Factors affecting the region of most isometric femoral attachments. Part I: the posterior cruciate ligament. Am J Sports Med 17:197–207PubMedCrossRef Grood ES, Hefzy MS, Lindenfield TN (1989) Factors affecting the region of most isometric femoral attachments. Part I: the posterior cruciate ligament. Am J Sports Med 17:197–207PubMedCrossRef
8.
go back to reference Harner CD, Janaushek MA, Kanamori A, Yagi M, Vogrin TM, Woo SL (2000) Biomechanical analysis of a double-bundle posterior cruciate ligament reconstruction. Am J Sports Med 28:144–151PubMed Harner CD, Janaushek MA, Kanamori A, Yagi M, Vogrin TM, Woo SL (2000) Biomechanical analysis of a double-bundle posterior cruciate ligament reconstruction. Am J Sports Med 28:144–151PubMed
9.
go back to reference Hatayama K, Higuchi H, Kimura M, Kobayashi Y, Asagumo H, Takagishi K (2006) A comparison of arthroscopic single- and double-bundle posterior cruciate ligament reconstruction: review of 20 cases. Am J Orthop 35(12):568–571PubMed Hatayama K, Higuchi H, Kimura M, Kobayashi Y, Asagumo H, Takagishi K (2006) A comparison of arthroscopic single- and double-bundle posterior cruciate ligament reconstruction: review of 20 cases. Am J Orthop 35(12):568–571PubMed
10.
go back to reference Houe T, Jorgensen U (2004) Arthroscopic posterior cruciate ligament reconstruction: one- vs. two-tunnel technique. Scand J Med Sci Sports 14(2):107–111PubMedCrossRef Houe T, Jorgensen U (2004) Arthroscopic posterior cruciate ligament reconstruction: one- vs. two-tunnel technique. Scand J Med Sci Sports 14(2):107–111PubMedCrossRef
11.
go back to reference Kim HY, Seo YJ, Kim HJ, Nguyenn T, Shetty NS, Yoo YS (2011) Tension changes within the bundles of anatomic double-bundle anterior cruciate ligament reconstruction at different knee flexion angles: a study using a 3-dimensional finite element model. Arthroscopy 27(10):1400–1408PubMedCrossRef Kim HY, Seo YJ, Kim HJ, Nguyenn T, Shetty NS, Yoo YS (2011) Tension changes within the bundles of anatomic double-bundle anterior cruciate ligament reconstruction at different knee flexion angles: a study using a 3-dimensional finite element model. Arthroscopy 27(10):1400–1408PubMedCrossRef
12.
go back to reference Kim SJ, Park IS, Cheon YM, Ryu SW (2004) Double-bundle technique: endoscopic posterior cruciate ligament reconstruction using tibialis posterior allograft. Arthroscopy 20:1090–1094PubMedCrossRef Kim SJ, Park IS, Cheon YM, Ryu SW (2004) Double-bundle technique: endoscopic posterior cruciate ligament reconstruction using tibialis posterior allograft. Arthroscopy 20:1090–1094PubMedCrossRef
15.
go back to reference Lenschow S, Zantop T, Weimann A, Lemburg T, Raschke M, Strobel M, Petersen W (2006) Joint kinematics and in situ forces after single bundle PCL reconstruction: a graft placed at the center of the femoral attachment does not restore normalposterior laxity. Arch Orthop Trauma Surg 126(4):253–259PubMedCrossRef Lenschow S, Zantop T, Weimann A, Lemburg T, Raschke M, Strobel M, Petersen W (2006) Joint kinematics and in situ forces after single bundle PCL reconstruction: a graft placed at the center of the femoral attachment does not restore normalposterior laxity. Arch Orthop Trauma Surg 126(4):253–259PubMedCrossRef
16.
go back to reference Lopes OV Jr, Ferretti M, Shen W, Ekdahl M, Smolinski P, Fu FH (2008) Topography of the femoral attachment of the posterior cruciate ligament. J Bone Joint Surg Am 90:249–255PubMedCrossRef Lopes OV Jr, Ferretti M, Shen W, Ekdahl M, Smolinski P, Fu FH (2008) Topography of the femoral attachment of the posterior cruciate ligament. J Bone Joint Surg Am 90:249–255PubMedCrossRef
17.
go back to reference Markolf KL, Feeley BT, Jackson SR, McAllister DR (2006) Where should the femoral tunnel of a posterior cruciate ligament reconstruction be placed to best restore anteroposterior laxity and ligament forces? Am J Sports Med 34(4):604–611PubMedCrossRef Markolf KL, Feeley BT, Jackson SR, McAllister DR (2006) Where should the femoral tunnel of a posterior cruciate ligament reconstruction be placed to best restore anteroposterior laxity and ligament forces? Am J Sports Med 34(4):604–611PubMedCrossRef
18.
go back to reference Markolf KL, Jackson SR, McAllister DR (2010) Single-verus double-bundle posterior cruciate ligament reconstruction: effects of femoral tunnel separation. Am J Sports Med 38(6):1141–1146PubMedCrossRef Markolf KL, Jackson SR, McAllister DR (2010) Single-verus double-bundle posterior cruciate ligament reconstruction: effects of femoral tunnel separation. Am J Sports Med 38(6):1141–1146PubMedCrossRef
19.
go back to reference Markolf KL, Slauterbeck JR, Armstrong KL, Shapiro MS, Finerman GA (1997) A biomechanical study of replacement of the posterior cruciate ligament with a graft. Part II: forces in the graft compared with forces in the intact ligament. J Bone Joint Surg Am 79:381–386PubMed Markolf KL, Slauterbeck JR, Armstrong KL, Shapiro MS, Finerman GA (1997) A biomechanical study of replacement of the posterior cruciate ligament with a graft. Part II: forces in the graft compared with forces in the intact ligament. J Bone Joint Surg Am 79:381–386PubMed
20.
go back to reference McCutchen CW (1962) The frictional properties of animal joints. Wear 5:1–17CrossRef McCutchen CW (1962) The frictional properties of animal joints. Wear 5:1–17CrossRef
21.
go back to reference Miller MD, Olszewski AD (1995) Posterior cruciate ligament injuries. New treatment options. Am J Knee Surg 8:145–154PubMed Miller MD, Olszewski AD (1995) Posterior cruciate ligament injuries. New treatment options. Am J Knee Surg 8:145–154PubMed
22.
go back to reference Moorman CT 3rd, Murphy Zane MS, Bansai S et al (2008) Tibial insertion of the posterior cruciate ligament: a sagittal plane analysis using gross, histologic, and radiographic methods. Arthroscopy 24:269–275PubMedCrossRef Moorman CT 3rd, Murphy Zane MS, Bansai S et al (2008) Tibial insertion of the posterior cruciate ligament: a sagittal plane analysis using gross, histologic, and radiographic methods. Arthroscopy 24:269–275PubMedCrossRef
23.
go back to reference Nakagawa S, Johal P, Pinskerova V et al (2004) The posterior cruciate ligament during flexion of the normal knee. J Bone Joint Surg Br 86:450–456PubMedCrossRef Nakagawa S, Johal P, Pinskerova V et al (2004) The posterior cruciate ligament during flexion of the normal knee. J Bone Joint Surg Br 86:450–456PubMedCrossRef
24.
go back to reference Papannagari R, DeFrate LE, Nha KW, Moses JM, Moussa M, Gill TJ, Li G (2007) Function of posterior cruciate ligament bundles during in vivo knee flexion. Am J Sports Med 35(9):1507–1512PubMedCrossRef Papannagari R, DeFrate LE, Nha KW, Moses JM, Moussa M, Gill TJ, Li G (2007) Function of posterior cruciate ligament bundles during in vivo knee flexion. Am J Sports Med 35(9):1507–1512PubMedCrossRef
25.
go back to reference Peña E, Martínez MA, Calvo B, Palanca D, Doblaré M (2005) A finite element simulation of the effect of graft stiffness and graft tensioning in ACL reconstruction. Clin Biomech 20:636–644CrossRef Peña E, Martínez MA, Calvo B, Palanca D, Doblaré M (2005) A finite element simulation of the effect of graft stiffness and graft tensioning in ACL reconstruction. Clin Biomech 20:636–644CrossRef
26.
go back to reference Petermann J, Gotzen L, Trus P (1994) Posterior cruciate ligament (PCL) reconstruction–an in vitro study of isometry. Part II. Tests using an experimental PCL graft model. Knee Surg Sports Traumatol Arthrosc 2:104–106PubMedCrossRef Petermann J, Gotzen L, Trus P (1994) Posterior cruciate ligament (PCL) reconstruction–an in vitro study of isometry. Part II. Tests using an experimental PCL graft model. Knee Surg Sports Traumatol Arthrosc 2:104–106PubMedCrossRef
27.
go back to reference Pioletti DP, Rakotomanana LR, Benvenuti JF, Leyvraz PF (1998) Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons. J Biomech 31:753–757PubMedCrossRef Pioletti DP, Rakotomanana LR, Benvenuti JF, Leyvraz PF (1998) Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons. J Biomech 31:753–757PubMedCrossRef
28.
go back to reference Race A, Amis AA (1998) PCL reconstruction. In vitro biomechanical comparison of ‘isometric’ versus single and double-bundled ‘anatomic’ grafts. J Bone Joint Surg Br 80:173–179PubMedCrossRef Race A, Amis AA (1998) PCL reconstruction. In vitro biomechanical comparison of ‘isometric’ versus single and double-bundled ‘anatomic’ grafts. J Bone Joint Surg Br 80:173–179PubMedCrossRef
29.
go back to reference Rathnayaka K, Sahama T, Schuetz MA, Schmutz B (2011) Effects of CT image segmentation methods on the accuracy of long bone 3D reconstructions. Med Eng Phys 33(2):226–233PubMedCrossRef Rathnayaka K, Sahama T, Schuetz MA, Schmutz B (2011) Effects of CT image segmentation methods on the accuracy of long bone 3D reconstructions. Med Eng Phys 33(2):226–233PubMedCrossRef
30.
go back to reference Rhee PC, Levy BA, Stuart MJ, Thoreson A, Dahm DL (2011) A biomechanical comparison of the Delta screw and RetroScrew tibial fixation on initial intra-articular graft tension. Knee Surg Sports Traumatol Arthrosc 19(5):781–786PubMedCrossRef Rhee PC, Levy BA, Stuart MJ, Thoreson A, Dahm DL (2011) A biomechanical comparison of the Delta screw and RetroScrew tibial fixation on initial intra-articular graft tension. Knee Surg Sports Traumatol Arthrosc 19(5):781–786PubMedCrossRef
31.
go back to reference Richards RS 2nd, Moorman CT 3rd (2003) Use of autograft quadriceps tendon for double-bundle posterior cruciate ligament reconstruction. Arthroscopy 19:906–915PubMedCrossRef Richards RS 2nd, Moorman CT 3rd (2003) Use of autograft quadriceps tendon for double-bundle posterior cruciate ligament reconstruction. Arthroscopy 19:906–915PubMedCrossRef
32.
go back to reference Smolinski P, O’Farrell M, Bell K, Gilbertson L, Fu FH (2013) Effect of ACL reconstruction tunnels on stress in the distal femur. Knee Surg Sports Traumatol Arthrosc 21(4):839–845PubMedCrossRef Smolinski P, O’Farrell M, Bell K, Gilbertson L, Fu FH (2013) Effect of ACL reconstruction tunnels on stress in the distal femur. Knee Surg Sports Traumatol Arthrosc 21(4):839–845PubMedCrossRef
33.
go back to reference Song Y, Debski RE, Musahl V, Thomas M, Woo SL (2004) A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation. J Biomech 37:383–390PubMedCrossRef Song Y, Debski RE, Musahl V, Thomas M, Woo SL (2004) A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation. J Biomech 37:383–390PubMedCrossRef
34.
go back to reference Tajima G, Nozaki M, Iriuchishima T et al (2009) Morphology of the tibial insertion of the posterior cruciate ligament. J Bone Joint Surg Am 91:859–866PubMedCrossRef Tajima G, Nozaki M, Iriuchishima T et al (2009) Morphology of the tibial insertion of the posterior cruciate ligament. J Bone Joint Surg Am 91:859–866PubMedCrossRef
35.
go back to reference Trus P, Petermann J, Gotzen L (1994) Posterior cruciate ligament (PCL) reconstruction–an in vitro study of isometry. Part I. Tests using a string linkage model. Knee Surg Sports Traumatol Arthrosc 2:100–103PubMedCrossRef Trus P, Petermann J, Gotzen L (1994) Posterior cruciate ligament (PCL) reconstruction–an in vitro study of isometry. Part I. Tests using a string linkage model. Knee Surg Sports Traumatol Arthrosc 2:100–103PubMedCrossRef
36.
go back to reference Veronda DR, Westmann RA (1970) Mechanical characterization of skin-finite deformation. J Biomech 3:111–124PubMedCrossRef Veronda DR, Westmann RA (1970) Mechanical characterization of skin-finite deformation. J Biomech 3:111–124PubMedCrossRef
37.
go back to reference Weiss JA, Maker BN, Govindjee S (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng 135:107–128CrossRef Weiss JA, Maker BN, Govindjee S (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng 135:107–128CrossRef
38.
go back to reference Yoon KH, Kim YH, Ha JH, Kim K, Park WM (2010) Biomechanical evaluation of double bundle augmentation of posterior cruciate ligament using finite element analysis. Clin Biomech 25:1042–1046CrossRef Yoon KH, Kim YH, Ha JH, Kim K, Park WM (2010) Biomechanical evaluation of double bundle augmentation of posterior cruciate ligament using finite element analysis. Clin Biomech 25:1042–1046CrossRef
Metadata
Title
Graft tension of the posterior cruciate ligament using a finite element model
Authors
Young-Jin Seo
Si Young Song
In Sung Kim
Myeong Jae Seo
Yoon Sang Kim
Yon-Sik Yoo
Publication date
01-09-2014
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 9/2014
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-013-2609-6

Other articles of this Issue 9/2014

Knee Surgery, Sports Traumatology, Arthroscopy 9/2014 Go to the issue