Skip to main content
Top
Published in: Journal of Assisted Reproduction and Genetics 1/2020

01-01-2020 | GnRH Agonists | Assisted Reproduction Technologies

Transcriptome sequencing of endometrium revealed alterations in mRNAs and lncRNAs after ovarian stimulation

Authors: Lingxiu Li, Peng Wang, Shan Liu, Xueyan Bai, Binbin Zou, Yuan Li

Published in: Journal of Assisted Reproduction and Genetics | Issue 1/2020

Login to get access

Abstract

Research question

Using RNA-sequencing analysis, we investigated the relationship between ovarian stimulation and endometrial transcriptome profiles during the window of implantation (WOI) to identify candidate predictive factors for the WOI and to optimize timing for embryo transfer.

Methods

Twelve women with normal basal hormone levels and regular ovulation were randomly assigned into three groups based on sampling time: late-proliferate phase (P group), and receptive phase in natural cycles (LH+7, N group) and stimulated cycles (hCG+7, S group). Transcriptome profiles of mRNAs and long non-coding RNAs (lncRNAs) were then compared among the three groups. Validation was performed using real-time qPCR.

Results

Comparison of transcriptome profiles between the natural and stimulated endometrium revealed 173 differentially expressed genes (DEGs), with a > 2-fold change (FC) and p < 0.05, under the influence of supraphysiological estradiol (E2) induced by ovarian stimulation. By clustering and KEGG pathway analysis, molecules and pathways associated with endometrial receptivity were identified. Of the 39 DEGs common to the three groups, eight genes were validated using real-time PCR. ESR1, MMP10, and HPSE were previously reported to be associated with endometrial receptivity. In addition, three novel genes (IL13RA2, ZCCHC12, SRARP) and two lncRNAs (LINC01060, LINC01104) were new potential endometrial receptivity-related markers.

Conclusion

Using mRNA and lncRNA sequencing, we found that supraphysiological E2 levels from ovarian stimulation had a marked impact upon endometrial transcriptome profiles and may result in a shift of the WOI. The precise mechanisms underlying the supraphysiological hormone-induced shift of the WOI require further research.

Registration number

ChiCTR180001453
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, et al. Physiological and molecular determinants of embryo implantation. Mol Asp Med. 2014;34:939–80. Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, et al. Physiological and molecular determinants of embryo implantation. Mol Asp Med. 2014;34:939–80.
2.
go back to reference Norwitz ER, Schust DJ, Fisher JS. Implantation and the survival of early pregnancy. N Engl J Med. 2001;345:1400–8.PubMed Norwitz ER, Schust DJ, Fisher JS. Implantation and the survival of early pregnancy. N Engl J Med. 2001;345:1400–8.PubMed
3.
go back to reference Rachel SMD. The receptivity of the endometrium to implementation. Journal of Obstetrics & Gynaecology of the British Empire. 2010;69(1):107–9. Rachel SMD. The receptivity of the endometrium to implementation. Journal of Obstetrics & Gynaecology of the British Empire. 2010;69(1):107–9.
5.
go back to reference Macklon NS, Geraedts JPM, Fauser BCJM. Conception to ongoing pregnancy: The “black box” of early pregnancy loss. Hum Reprod Update. 2002;8:333–43.PubMed Macklon NS, Geraedts JPM, Fauser BCJM. Conception to ongoing pregnancy: The “black box” of early pregnancy loss. Hum Reprod Update. 2002;8:333–43.PubMed
7.
go back to reference Pellicer A, Valbuena D, Cano F, Remohi J, Simon C. Lower implantation rates in high responders: Evidence for an altered endocrine milieu during the preimplantation period. Fertil Steril. 1996;65:1190–5.PubMed Pellicer A, Valbuena D, Cano F, Remohi J, Simon C. Lower implantation rates in high responders: Evidence for an altered endocrine milieu during the preimplantation period. Fertil Steril. 1996;65:1190–5.PubMed
8.
go back to reference Evans J, Hannan NJ, Edgell TA, Vollenhoven BJ, Lutjen PJ, Osianlis T, et al. Fresh versus frozen embryo transfer: Backing clinical decisions with scientific and clinical evidence. Hum Reprod Update. 2014;20:808–21.PubMed Evans J, Hannan NJ, Edgell TA, Vollenhoven BJ, Lutjen PJ, Osianlis T, et al. Fresh versus frozen embryo transfer: Backing clinical decisions with scientific and clinical evidence. Hum Reprod Update. 2014;20:808–21.PubMed
9.
go back to reference Ozkaya E, Kutlu T, Yayla CA, et al. Area under the curve of temporal estrogen and progesterone measurements during assisted reproductive technology: Which hormone is the main determinant of cycle outcome? Journal of Obstetrics and Gynaecology Research. 2018;44(2):263–9.PubMed Ozkaya E, Kutlu T, Yayla CA, et al. Area under the curve of temporal estrogen and progesterone measurements during assisted reproductive technology: Which hormone is the main determinant of cycle outcome? Journal of Obstetrics and Gynaecology Research. 2018;44(2):263–9.PubMed
10.
go back to reference Basir GS, Wai-sum O, Ng EHY, Ho PC. Morphometric analysis of peri-implantation endometrium in patients having excessively high oestradiol concentrations after ovarian stimulation. Hum Reprod. 2001;16:435–40.PubMed Basir GS, Wai-sum O, Ng EHY, Ho PC. Morphometric analysis of peri-implantation endometrium in patients having excessively high oestradiol concentrations after ovarian stimulation. Hum Reprod. 2001;16:435–40.PubMed
11.
go back to reference Bourgain C, Devroey P. The endometrium in stimulated cycles for IVF. Hum Reprod Update. 2003;9:515–22.PubMed Bourgain C, Devroey P. The endometrium in stimulated cycles for IVF. Hum Reprod Update. 2003;9:515–22.PubMed
12.
go back to reference Nikas G. Endometrial receptivity: Changes in cell-surface morphology. Semin Reprod Med. 2000;18:229–35.PubMed Nikas G. Endometrial receptivity: Changes in cell-surface morphology. Semin Reprod Med. 2000;18:229–35.PubMed
13.
go back to reference Hsiu JG, Toner JP, Oehninger S, Jones HW. Endometrial estrogen and progesterone receptor and pinopode expression in stimulated cycles of oocyte donors. Fertil Steril. 1999;71:1040–7.PubMed Hsiu JG, Toner JP, Oehninger S, Jones HW. Endometrial estrogen and progesterone receptor and pinopode expression in stimulated cycles of oocyte donors. Fertil Steril. 1999;71:1040–7.PubMed
14.
go back to reference Valdez-Morales FJ, Domà nguez AG, Vital-Reyes VS, Hinojosa Cruz JC, Chimal-Monroy J, Franco-Murillo Y, et al. Changes in receptivity epithelial cell markers of endometrium after ovarian stimulation treatments: Its role during implantation window. Reprod Health. 2015;12:1–11. Valdez-Morales FJ, Domà nguez AG, Vital-Reyes VS, Hinojosa Cruz JC, Chimal-Monroy J, Franco-Murillo Y, et al. Changes in receptivity epithelial cell markers of endometrium after ovarian stimulation treatments: Its role during implantation window. Reprod Health. 2015;12:1–11.
16.
go back to reference Chen Q j, Sun X x, Li L, Gao X h, Gemzell-Danielsson K, Cheng L n. Effects of ovarian stimulation on endometrial integrin β3 and leukemia inhibitory factor expression in the peri-implantation phase. Fertil Steril. 2008;89:1357–63.PubMed Chen Q j, Sun X x, Li L, Gao X h, Gemzell-Danielsson K, Cheng L n. Effects of ovarian stimulation on endometrial integrin β3 and leukemia inhibitory factor expression in the peri-implantation phase. Fertil Steril. 2008;89:1357–63.PubMed
18.
go back to reference Bourgain C, Ubaldi F, Tavaniotou A, Smitz J, Van Steirteghem AC, Devroey P. Endometrial hormone receptors and proliferation index in the periovulatory phase of stimulated embryo transfer cycles in comparison with natural cycles and relation to clinical pregnancy outcome. Fertil Steril. 2002;78:237–44.PubMed Bourgain C, Ubaldi F, Tavaniotou A, Smitz J, Van Steirteghem AC, Devroey P. Endometrial hormone receptors and proliferation index in the periovulatory phase of stimulated embryo transfer cycles in comparison with natural cycles and relation to clinical pregnancy outcome. Fertil Steril. 2002;78:237–44.PubMed
22.
go back to reference Ponnampalam AP, Weston GC, Trajstman AC, Susil B, Rogers PAW. Molecular classification of human endometrial cycle stages by transcriptional profiling. Mol Hum Reprod. 2004;10:879–93.PubMed Ponnampalam AP, Weston GC, Trajstman AC, Susil B, Rogers PAW. Molecular classification of human endometrial cycle stages by transcriptional profiling. Mol Hum Reprod. 2004;10:879–93.PubMed
23.
go back to reference Horcajadas JA, Riesewijk A, Martin J, Cervero A, Mosselman S, Pellicer A, et al. Global gene expression profiling of human endometrial receptivity. J Reprod Immunol. 2004;63:41–9.PubMed Horcajadas JA, Riesewijk A, Martin J, Cervero A, Mosselman S, Pellicer A, et al. Global gene expression profiling of human endometrial receptivity. J Reprod Immunol. 2004;63:41–9.PubMed
28.
go back to reference Mirkin S, Nikas G, Hsiu JG, Díaz J, Oehninger S. Gene expression profiles and structural/functional features of the peri-implantation endometrium in natural and gonadotropin-stimulated cycles. J Clin Endocrinol Metab. 2004;89:5742–52.PubMed Mirkin S, Nikas G, Hsiu JG, Díaz J, Oehninger S. Gene expression profiles and structural/functional features of the peri-implantation endometrium in natural and gonadotropin-stimulated cycles. J Clin Endocrinol Metab. 2004;89:5742–52.PubMed
29.
go back to reference Macklon NS, Van Der Gaast MH, Hamilton A, Fauser BCJM, Giudice LC. The Impact of Ovarian Stimulation With Recombinant. :357–65. Macklon NS, Van Der Gaast MH, Hamilton A, Fauser BCJM, Giudice LC. The Impact of Ovarian Stimulation With Recombinant. :357–65.
30.
go back to reference Haouzi D, Assou S, Mahmoud K, Tondeur S, Rème T, Hedon B, et al. Gene expression profile of human endometrial receptivity: Comparison between natural and stimulated cycles for the same patients. Hum Reprod. 2009;24:1436–45.PubMedPubMedCentral Haouzi D, Assou S, Mahmoud K, Tondeur S, Rème T, Hedon B, et al. Gene expression profile of human endometrial receptivity: Comparison between natural and stimulated cycles for the same patients. Hum Reprod. 2009;24:1436–45.PubMedPubMedCentral
33.
go back to reference Simon C, Oberye J, Bellver J, Vidal C, Bosch E, Horcajadas JA, et al. Similar endometrial development in oocyte donors treated with either high- or standard-dose GnRH antagonist compared to treatment with a GnRH agonist or in natural cycles. Hum Reprod. 2005;20:3318–27.PubMed Simon C, Oberye J, Bellver J, Vidal C, Bosch E, Horcajadas JA, et al. Similar endometrial development in oocyte donors treated with either high- or standard-dose GnRH antagonist compared to treatment with a GnRH agonist or in natural cycles. Hum Reprod. 2005;20:3318–27.PubMed
34.
go back to reference Lessey BA, Salamonsen LA, Simón C, Altmäe S, Macklon NS, Campoy C, et al. Guidelines for the design, analysis and interpretation of ‘omics’ data: focus on human endometrium. Hum Reprod Update. 2013;20:12–28.PubMedPubMedCentral Lessey BA, Salamonsen LA, Simón C, Altmäe S, Macklon NS, Campoy C, et al. Guidelines for the design, analysis and interpretation of ‘omics’ data: focus on human endometrium. Hum Reprod Update. 2013;20:12–28.PubMedPubMedCentral
35.
go back to reference Hu S, Yao G, Wang Y, Xu H, Ji X, He Y, et al. Transcriptomic changes during the pre-receptive to receptive transition in human endometrium detected by RNA-Seq. J Clin Endocrinol Metab. 2014;99:E2744–53.PubMed Hu S, Yao G, Wang Y, Xu H, Ji X, He Y, et al. Transcriptomic changes during the pre-receptive to receptive transition in human endometrium detected by RNA-Seq. J Clin Endocrinol Metab. 2014;99:E2744–53.PubMed
36.
go back to reference Ganesh A, Chauhan N, Das S, Chakravarty B, Chaudhury K. Endometrial receptivity markers in infertile women stimulated with letrozole compared with clomiphene citrate and natural cycles. Syst Biol Reprod Med. 2014;60:105–11.PubMed Ganesh A, Chauhan N, Das S, Chakravarty B, Chaudhury K. Endometrial receptivity markers in infertile women stimulated with letrozole compared with clomiphene citrate and natural cycles. Syst Biol Reprod Med. 2014;60:105–11.PubMed
37.
go back to reference Miller PB, Parnell BA, Bushnell G, Tallman N, Forstein DA, Higdon HL, et al. Endometrial receptivity defects during IVF cycles with and without letrozole. Hum Reprod. 2012;27:881–8.PubMedPubMedCentral Miller PB, Parnell BA, Bushnell G, Tallman N, Forstein DA, Higdon HL, et al. Endometrial receptivity defects during IVF cycles with and without letrozole. Hum Reprod. 2012;27:881–8.PubMedPubMedCentral
38.
go back to reference He Z, Ma Y, Li L, Liu J, Yang H, Chen C, et al. Osteopontin and Integrin αvβ3 Expression during the Implantation Window in IVF Patients with Elevated Serum Progesterone and Oestradiol Level. Geburtshilfe Frauenheilkd. 2016;76:709–17.PubMedPubMedCentral He Z, Ma Y, Li L, Liu J, Yang H, Chen C, et al. Osteopontin and Integrin αvβ3 Expression during the Implantation Window in IVF Patients with Elevated Serum Progesterone and Oestradiol Level. Geburtshilfe Frauenheilkd. 2016;76:709–17.PubMedPubMedCentral
39.
go back to reference Liu Y, Kodithuwakku SP, Ng PY, Chai J, Ng EHY, Yeung WSB, et al. Excessive ovarian stimulation up-regulates the Wnt-signaling molecule DKK1 in human endometrium and may affect implantation: An in vitro co-culture study. Hum Reprod. 2010;25:479–90.PubMed Liu Y, Kodithuwakku SP, Ng PY, Chai J, Ng EHY, Yeung WSB, et al. Excessive ovarian stimulation up-regulates the Wnt-signaling molecule DKK1 in human endometrium and may affect implantation: An in vitro co-culture study. Hum Reprod. 2010;25:479–90.PubMed
40.
go back to reference Mebratu Y, Tesfaigzi Y. How ERK1/2 Activation Controls Cell Proliferation and Cell Death Is Subcellular Localization the Answer? Cell Cycle. 2010;8:1168–75. Mebratu Y, Tesfaigzi Y. How ERK1/2 Activation Controls Cell Proliferation and Cell Death Is Subcellular Localization the Answer? Cell Cycle. 2010;8:1168–75.
41.
go back to reference Arlier S, Murk W, Guzeloglu-Kayisli O, Semerci N, Larsen K, Tabak MS, et al. The extracellular signal-regulated kinase 1/2 triggers angiogenesis in human ectopic endometrial implants by inducing angioblast differentiation and proliferation. Am J Reprod Immunol. 2017;78:1–11. Arlier S, Murk W, Guzeloglu-Kayisli O, Semerci N, Larsen K, Tabak MS, et al. The extracellular signal-regulated kinase 1/2 triggers angiogenesis in human ectopic endometrial implants by inducing angioblast differentiation and proliferation. Am J Reprod Immunol. 2017;78:1–11.
42.
go back to reference Fluhr H, Spratte J, Bredow M, Heidrich S, Zygmunt M. Constitutive activity of Erk1/2 and NF-κB protects human endometrial stromal cells from death receptor-mediated apoptosis. Reprod Biol [Internet]. Society for Biology of Reproduction and; the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn; 2013;13:113–21. Available from: https://doi.org/10.1016/j.repbio.2013.03.001 PubMed Fluhr H, Spratte J, Bredow M, Heidrich S, Zygmunt M. Constitutive activity of Erk1/2 and NF-κB protects human endometrial stromal cells from death receptor-mediated apoptosis. Reprod Biol [Internet]. Society for Biology of Reproduction and; the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn; 2013;13:113–21. Available from: https://​doi.​org/​10.​1016/​j.​repbio.​2013.​03.​001 PubMed
43.
go back to reference Wang Z, Gerstein M, Snyder M. RNA-Seq : a revolutionary tool for transcriptomics. Nature Reviews Genetics. 2010;10(1):57–63. Wang Z, Gerstein M, Snyder M. RNA-Seq : a revolutionary tool for transcriptomics. Nature Reviews Genetics. 2010;10(1):57–63.
45.
go back to reference Ganesh V, Venkatesan V, Koshy T, Nellapalli S, Muthumuthiah S, Franklin S, et al. Systems Biology in Reproductive Medicine Association of estrogen , progesterone and follicle stimulating hormone receptor polymorphisms with in vitro fertilization outcomes. Syst Biol Reprod Med. Taylor & Francis; 2018;64:260–5. https://doi.org/10.1080/19396368.2018.1482030 PubMed Ganesh V, Venkatesan V, Koshy T, Nellapalli S, Muthumuthiah S, Franklin S, et al. Systems Biology in Reproductive Medicine Association of estrogen , progesterone and follicle stimulating hormone receptor polymorphisms with in vitro fertilization outcomes. Syst Biol Reprod Med. Taylor & Francis; 2018;64:260–5. https://​doi.​org/​10.​1080/​19396368.​2018.​1482030 PubMed
46.
go back to reference Paskulin DD, Cunha-filho JS, Paskulin LD, Augusto C, Souza B, Ashton-prolla P. ESR1 rs9340799 Is Associated with Endometriosis-Related Infertility and In Vitro Fertilization Failure. 2013;35:907–13. Paskulin DD, Cunha-filho JS, Paskulin LD, Augusto C, Souza B, Ashton-prolla P. ESR1 rs9340799 Is Associated with Endometriosis-Related Infertility and In Vitro Fertilization Failure. 2013;35:907–13.
47.
go back to reference Swaminathan M, Ganesh V, Koshy T, et al. A Study on the Role of Estrogen Receptor Gene Polymorphisms in Female Infertility. Genetic Testing and Molecular Biomarkers. 2016;20(11):692–5.PubMed Swaminathan M, Ganesh V, Koshy T, et al. A Study on the Role of Estrogen Receptor Gene Polymorphisms in Female Infertility. Genetic Testing and Molecular Biomarkers. 2016;20(11):692–5.PubMed
48.
go back to reference Biosciences M, Medicine V, Li S, Neill SRSO, Zhang Y, Holtzman MJ, et al. Estrogen receptor a is required for oviductal transport of embryos. :1595–607. Biosciences M, Medicine V, Li S, Neill SRSO, Zhang Y, Holtzman MJ, et al. Estrogen receptor a is required for oviductal transport of embryos. :1595–607.
49.
go back to reference Pan H, Suo P, Liu C, Wang J, Zhou S, Ma X, et al. The ESR1 gene in unexplained recurrent spontaneous abortion. Syst Biol Reprod Med. 2014;60:161–4.PubMed Pan H, Suo P, Liu C, Wang J, Zhou S, Ma X, et al. The ESR1 gene in unexplained recurrent spontaneous abortion. Syst Biol Reprod Med. 2014;60:161–4.PubMed
50.
go back to reference Boudjenah R, Molina-gomes D, Torre A, Bergere M, Bailly M, Wainer R, et al. Genetic Polymorphisms Influence the Ovarian Response to rFSH Stimulation in Patients Undergoing In Vitro Fertilization Programs with ICSI. 2012;7. Boudjenah R, Molina-gomes D, Torre A, Bergere M, Bailly M, Wainer R, et al. Genetic Polymorphisms Influence the Ovarian Response to rFSH Stimulation in Patients Undergoing In Vitro Fertilization Programs with ICSI. 2012;7.
51.
go back to reference De Mattos CS, Trevisan CM, Peluso C, Adami F, Cordts EB, Christofolini DM, et al. ESR1 and ESR2 gene polymorphisms are associated with human reproduction outcomes in Brazilian women. J Ovarian Res. 2014;7:1–9. De Mattos CS, Trevisan CM, Peluso C, Adami F, Cordts EB, Christofolini DM, et al. ESR1 and ESR2 gene polymorphisms are associated with human reproduction outcomes in Brazilian women. J Ovarian Res. 2014;7:1–9.
52.
go back to reference Wu X, Pan Y. Molecular characterization, mapping, and haplotype analysis of porcine matrix metalloproteinase genes MMP1 and MMP10. Biochem Genet. 2009;47:763–74.PubMed Wu X, Pan Y. Molecular characterization, mapping, and haplotype analysis of porcine matrix metalloproteinase genes MMP1 and MMP10. Biochem Genet. 2009;47:763–74.PubMed
53.
go back to reference Quintero-Ronderos P, Mercier E, Fukuda M, Suarez C, Gonzalez R, Patarroyo M, et al. Novel genes and mutations in patients affected by recurrent spontaneous abortion. PLoS One. 2017;Submitted:1–14. Quintero-Ronderos P, Mercier E, Fukuda M, Suarez C, Gonzalez R, Patarroyo M, et al. Novel genes and mutations in patients affected by recurrent spontaneous abortion. PLoS One. 2017;Submitted:1–14.
54.
go back to reference Kim MS, Yu JH, Lee MY, Kim AL, Jo MH, Kim MG, et al. Differential expression of extracellular matrix and adhesion molecules in fetalorigin amniotic epithelial cells of preeclamptic pregnancy. PLoS One. 2016;11:1–16. Kim MS, Yu JH, Lee MY, Kim AL, Jo MH, Kim MG, et al. Differential expression of extracellular matrix and adhesion molecules in fetalorigin amniotic epithelial cells of preeclamptic pregnancy. PLoS One. 2016;11:1–16.
55.
go back to reference Kaartokallio T, Cervera A, Kyllönen A, Laivuori K, Kere J, Laivuori H. Gene expression profiling of pre-eclamptic placentae by RNA sequencing. Sci Rep [Internet]. Nature Publishing Group; 2015;5:1–15. Available from: https://doi.org/10.1038/srep14107 Kaartokallio T, Cervera A, Kyllönen A, Laivuori K, Kere J, Laivuori H. Gene expression profiling of pre-eclamptic placentae by RNA sequencing. Sci Rep [Internet]. Nature Publishing Group; 2015;5:1–15. Available from: https://​doi.​org/​10.​1038/​srep14107
56.
go back to reference Davidson LM, Coward K. Molecular mechanisms of membrane interaction at implantation [J]. Birth Defects Research Part C: Embryo Today: Reviews. 2016;108(1):19–32. Davidson LM, Coward K. Molecular mechanisms of membrane interaction at implantation [J]. Birth Defects Research Part C: Embryo Today: Reviews. 2016;108(1):19–32.
57.
go back to reference Shi X, Guo X, Li X, Wang M, Qin R. Loss of Linc01060 induces pancreatic cancer progression through vinculin-mediated focal adhesion turnover. Cancer Lett. 2018;433:76–85.PubMed Shi X, Guo X, Li X, Wang M, Qin R. Loss of Linc01060 induces pancreatic cancer progression through vinculin-mediated focal adhesion turnover. Cancer Lett. 2018;433:76–85.PubMed
58.
go back to reference Sohn SJ, Sarvis BK, Cado D, Winoto A. ERK5 MAPK regulates embryonic angiogenesis and acts as a hypoxia-sensitive repressor of vascular endothelial growth factor expression. J Biol Chem. 2002;277:43344–51.PubMed Sohn SJ, Sarvis BK, Cado D, Winoto A. ERK5 MAPK regulates embryonic angiogenesis and acts as a hypoxia-sensitive repressor of vascular endothelial growth factor expression. J Biol Chem. 2002;277:43344–51.PubMed
Metadata
Title
Transcriptome sequencing of endometrium revealed alterations in mRNAs and lncRNAs after ovarian stimulation
Authors
Lingxiu Li
Peng Wang
Shan Liu
Xueyan Bai
Binbin Zou
Yuan Li
Publication date
01-01-2020
Publisher
Springer US
Keyword
GnRH Agonists
Published in
Journal of Assisted Reproduction and Genetics / Issue 1/2020
Print ISSN: 1058-0468
Electronic ISSN: 1573-7330
DOI
https://doi.org/10.1007/s10815-019-01616-5

Other articles of this Issue 1/2020

Journal of Assisted Reproduction and Genetics 1/2020 Go to the issue