Skip to main content
Top
Published in: NeuroMolecular Medicine 3/2020

01-09-2020 | Original Paper

Gnaq Protects PC12 Cells from Oxidative Damage by Activation of Nrf2 and Inhibition of NF-kB

Authors: Xin Sun, Guo-Ping Li, Pu Huang, Lu-Gang Wei, Jia-Zhi Guo, Li-Juan Ao, Di Lu, Shao-Chun Chen

Published in: NeuroMolecular Medicine | Issue 3/2020

Login to get access

Abstract

Reactive oxygen species (ROS) are continuously produced as byproducts of aerobic metabolism. Oxidative stress (OS) plays an important role in the occurrence of several neurodegenerative diseases as well as aging because of the accumulation of ROS. Gnaq is a member of G protein α subunits. It has been reported that the expression level of Gnaq in the mouse forebrain cortex was significantly decreased with age in our previous study; therefore, we supposed that Gnaq contributes to attenuate the OS. In this study, we generated a Gnaq-overexpression cell using gene recombinant technique and lentivirus transfection technique in a neuron-like PC12 cell, and investigated whether Gnaq had antioxidant effects in PC12 cells treated with H2O2. The viability of cells, concentration of ROS, Nrf2 nuclear translocation, expression of antioxidant enzymes, activation of NF-κB and apoptosis were compared between Gnaq-PC12 cells and Vector-PC12 cells. Results showed that, compared with Vector-PC12 cells, the antioxidative ability of Gnaq-PC12 cells was significantly improved, while the ROS level in Gnaq-PC12 cells was significantly decreased. Nrf2 nuclear translocation was up-regulated and NF-κB nuclear translocation was down-regulated in Gnaq-PC12 cells after H2O2 treatment. The results suggest that Gnaq plays a crucial role in neuroprotection in PC12 cells. A possible mechanism for this would be that the overexpressed Gnaq enhances the antioxidative effect mediated by Nrf2 signal pathway and inhibits the cellular damaging effect through NF-κB signal pathway.
Literature
go back to reference Alfonso, J., Frick, L. R., Silberman, D. M., Palumbo, M. L., Genaro, A. M., & Frasch, A. C. (2006). Regulation of hippocampal gene expression is conserved in two species subjected to different stressors and antidepressant treatments. Biological Psychiatry, 59, 244–251.CrossRef Alfonso, J., Frick, L. R., Silberman, D. M., Palumbo, M. L., Genaro, A. M., & Frasch, A. C. (2006). Regulation of hippocampal gene expression is conserved in two species subjected to different stressors and antidepressant treatments. Biological Psychiatry, 59, 244–251.CrossRef
go back to reference Alfonso, J., Pollevick, G. D., Van Der Hart, M. G., Flugge, G., Fuchs, E., & Frasch, A. C. (2004). Identification of genes regulated by chronic psychosocial stress and antidepressant treatment in the hippocampus. European Journal of Neuroscience, 19, 659–666.CrossRef Alfonso, J., Pollevick, G. D., Van Der Hart, M. G., Flugge, G., Fuchs, E., & Frasch, A. C. (2004). Identification of genes regulated by chronic psychosocial stress and antidepressant treatment in the hippocampus. European Journal of Neuroscience, 19, 659–666.CrossRef
go back to reference Arey, R. N., Stein, G. M., Kaletsky, R., Kauffman, A., & Murphy, C. T. (2018). Activation of G alpha q signaling enhances memory consolidation and slows cognitive decline. Neuron, 98, 562–574.CrossRef Arey, R. N., Stein, G. M., Kaletsky, R., Kauffman, A., & Murphy, C. T. (2018). Activation of G alpha q signaling enhances memory consolidation and slows cognitive decline. Neuron, 98, 562–574.CrossRef
go back to reference Ben-Neriah, Y., & Karin, M. (2011). Inflammation meets cancer, with NF-kappaB as the matchmaker. Nature Immunology, 12, 715–723.CrossRef Ben-Neriah, Y., & Karin, M. (2011). Inflammation meets cancer, with NF-kappaB as the matchmaker. Nature Immunology, 12, 715–723.CrossRef
go back to reference Chen, S. C., Lu, G., Chan, C. Y., Chen, Y., Wang, H., Yew, D. T., et al. (2010). Microarray profile of brain aging-related genes in the frontal cortex of SAMP8. Journal of Molecular Neuroscience, 41, 12–16.CrossRef Chen, S. C., Lu, G., Chan, C. Y., Chen, Y., Wang, H., Yew, D. T., et al. (2010). Microarray profile of brain aging-related genes in the frontal cortex of SAMP8. Journal of Molecular Neuroscience, 41, 12–16.CrossRef
go back to reference Chen, Y., Granger, A. J., Tran, T., Saulnier, J. L., Kirkwood, A., & Sabatini, B. L. (2017). Endogenous galphaq-coupled neuromodulator receptors activate protein kinase A. Neuron, 96, 1070–1083.CrossRef Chen, Y., Granger, A. J., Tran, T., Saulnier, J. L., Kirkwood, A., & Sabatini, B. L. (2017). Endogenous galphaq-coupled neuromodulator receptors activate protein kinase A. Neuron, 96, 1070–1083.CrossRef
go back to reference Cuadrado, A., Rojo, A. I., Wells, G., Hayes, J. D., Cousin, S. P., Rumsey, W. L., et al. (2019). Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nature Review Drug Discovery, 18(4), 295–317.CrossRef Cuadrado, A., Rojo, A. I., Wells, G., Hayes, J. D., Cousin, S. P., Rumsey, W. L., et al. (2019). Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nature Review Drug Discovery, 18(4), 295–317.CrossRef
go back to reference Fredriksson, R., Lagerstrom, M. C., Lundin, L. G., & Schioth, H. B. (2003). The G-protein-coupled receptors in the human genome form five main families, phylogenetic analysis, paralogon groups, and fingerprints. Molecular Pharmacology, 63, 1256–1272.CrossRef Fredriksson, R., Lagerstrom, M. C., Lundin, L. G., & Schioth, H. B. (2003). The G-protein-coupled receptors in the human genome form five main families, phylogenetic analysis, paralogon groups, and fingerprints. Molecular Pharmacology, 63, 1256–1272.CrossRef
go back to reference Greene, L. A., & Tischler, A. S. (1976). Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proceedings of the National Academy of Sciences of the United States of America, 73, 2424–2428.CrossRef Greene, L. A., & Tischler, A. S. (1976). Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proceedings of the National Academy of Sciences of the United States of America, 73, 2424–2428.CrossRef
go back to reference Hubbard, K. B., & Hepler, J. R. (2006). Cell signalling diversity of the Gqalpha family of heterotrimeric G proteins. Cellular Signalling, 18, 135–150.CrossRef Hubbard, K. B., & Hepler, J. R. (2006). Cell signalling diversity of the Gqalpha family of heterotrimeric G proteins. Cellular Signalling, 18, 135–150.CrossRef
go back to reference Jain, A., Lamark, T., Sjottem, E., Larsen, K. B., Awuh, J. A., Overvatn, A., et al. (2010). p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. The Journal of Biological Chemistry, 285, 22576–22591.CrossRef Jain, A., Lamark, T., Sjottem, E., Larsen, K. B., Awuh, J. A., Overvatn, A., et al. (2010). p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. The Journal of Biological Chemistry, 285, 22576–22591.CrossRef
go back to reference Jeong, H., Liu, Y., & Kim, H. S. (2017). Dried plum and chokeberry ameliorate d-galactose-induced aging in mice by regulation of Pl3k/Akt-mediated Nrf2 and Nf-kB pathways. Experimental Gerontology, 95, 16–25.CrossRef Jeong, H., Liu, Y., & Kim, H. S. (2017). Dried plum and chokeberry ameliorate d-galactose-induced aging in mice by regulation of Pl3k/Akt-mediated Nrf2 and Nf-kB pathways. Experimental Gerontology, 95, 16–25.CrossRef
go back to reference Jia, N., Li, G., Huang, P., Guo, J., Wei, L., Lu, D., et al. (2017). Protective role and related mechanism of Gnaq in neural cells damaged by oxidative stress. Acta Biochimica et Biophysica Sinica, 49, 428–434.CrossRef Jia, N., Li, G., Huang, P., Guo, J., Wei, L., Lu, D., et al. (2017). Protective role and related mechanism of Gnaq in neural cells damaged by oxidative stress. Acta Biochimica et Biophysica Sinica, 49, 428–434.CrossRef
go back to reference Jiang, T., Tian, F., Zheng, H., Whitman, S. A., Lin, Y., Zhang, Z., et al. (2014). Nrf2 suppresses lupus nephritis through inhibition of oxidative injury and the NF-kappaB-mediated inflammatory response. Kidney International, 85, 333–343.CrossRef Jiang, T., Tian, F., Zheng, H., Whitman, S. A., Lin, Y., Zhang, Z., et al. (2014). Nrf2 suppresses lupus nephritis through inhibition of oxidative injury and the NF-kappaB-mediated inflammatory response. Kidney International, 85, 333–343.CrossRef
go back to reference Kankanamge, D., Tennakoon, M., Weerasinghe, A., Cedeno-Rosario, L., Chadee, D. N., & Karunarathne, A. (2019). G protein αq exerts expression level-dependent distinct signaling paradigms. Cellular Signalling, 58, 34–43.CrossRef Kankanamge, D., Tennakoon, M., Weerasinghe, A., Cedeno-Rosario, L., Chadee, D. N., & Karunarathne, A. (2019). G protein αq exerts expression level-dependent distinct signaling paradigms. Cellular Signalling, 58, 34–43.CrossRef
go back to reference Kobayashi, A., Ohta, T., & Yamamoto, M. (2004). Unique function of the Nrf2-Keap1 pathway in the inducible expression of antioxidant and detoxifying enzymes. Methods in Enzymology, 378, 273–286.CrossRef Kobayashi, A., Ohta, T., & Yamamoto, M. (2004). Unique function of the Nrf2-Keap1 pathway in the inducible expression of antioxidant and detoxifying enzymes. Methods in Enzymology, 378, 273–286.CrossRef
go back to reference Kumar, M., & Sandhir, R. (2018). Neuroprotective effect of hydrogen sulfide in hyperhomocysteinemia is mediated through antioxidant action involving Nrf2. Neuromolecular Med, 20(4), 475–490.CrossRef Kumar, M., & Sandhir, R. (2018). Neuroprotective effect of hydrogen sulfide in hyperhomocysteinemia is mediated through antioxidant action involving Nrf2. Neuromolecular Med, 20(4), 475–490.CrossRef
go back to reference Kwak, M. K., Wakabayashi, N., Greenlaw, J. L., Yamamoto, M., & Kensler, T. W. (2003). Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Molecular and Cellular Biology, 23, 8786–8794.CrossRef Kwak, M. K., Wakabayashi, N., Greenlaw, J. L., Yamamoto, M., & Kensler, T. W. (2003). Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Molecular and Cellular Biology, 23, 8786–8794.CrossRef
go back to reference Lee, J., Jo, D. G., Park, D., Chung, H. Y., & Mattson, M. P. (2014). Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: Focus on the nervous system. Pharmacological Reviews, 66, 815–868.CrossRef Lee, J., Jo, D. G., Park, D., Chung, H. Y., & Mattson, M. P. (2014). Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: Focus on the nervous system. Pharmacological Reviews, 66, 815–868.CrossRef
go back to reference Manea, A., Manea, S. A., Gafencu, A. V., & Raicu, M. (2007). Regulation of NADPH oxidase subunit p22 (phox) by NF-kB in human aortic smooth muscle cells. Archives of Physiology and Biochemistry, 113, 163–172.CrossRef Manea, A., Manea, S. A., Gafencu, A. V., & Raicu, M. (2007). Regulation of NADPH oxidase subunit p22 (phox) by NF-kB in human aortic smooth muscle cells. Archives of Physiology and Biochemistry, 113, 163–172.CrossRef
go back to reference Mauro, C., Leow, S. C., Anso, E., Rocha, S., Thotakura, A. K., Tornatore, L., et al. (2011). NF-kappaB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nature Cell Biology, 13, 1272–1279.CrossRef Mauro, C., Leow, S. C., Anso, E., Rocha, S., Thotakura, A. K., Tornatore, L., et al. (2011). NF-kappaB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nature Cell Biology, 13, 1272–1279.CrossRef
go back to reference Sanghvi, V. R., Leibold, J., Mina, M., Mohan, P., Berishaj, M., Li, Z., et al. (2019). The oncogenic action of NRF2 depends on de-glycation by fructosamine-3-kinase. Cell, 178(4), 807–819.CrossRef Sanghvi, V. R., Leibold, J., Mina, M., Mohan, P., Berishaj, M., Li, Z., et al. (2019). The oncogenic action of NRF2 depends on de-glycation by fructosamine-3-kinase. Cell, 178(4), 807–819.CrossRef
go back to reference Thimmulappa, R. K., Mai, K. H., Srisuma, S., Kensler, T. W., Yamamoto, M., & Biswal, S. (2002). Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Research, 62, 5196–5203.PubMed Thimmulappa, R. K., Mai, K. H., Srisuma, S., Kensler, T. W., Yamamoto, M., & Biswal, S. (2002). Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Research, 62, 5196–5203.PubMed
go back to reference Vaughan, S., & Jat, P. S. (2011). Deciphering the role of nuclear factor-kappaB in cellular senescence. Aging, 3, 913–919.CrossRef Vaughan, S., & Jat, P. S. (2011). Deciphering the role of nuclear factor-kappaB in cellular senescence. Aging, 3, 913–919.CrossRef
go back to reference Wettschureck, N., Moers, A., Wallenwein, B., Parlow, A. F., Maser-Gluth, C., & Offermanns, S. (2005). Loss of Gq/11 family G proteins in the nervous system causes pituitary somatotroph hypoplasia and dwarfism in mice. Molecular and Cellular Biology, 25, 1942–1948.CrossRef Wettschureck, N., Moers, A., Wallenwein, B., Parlow, A. F., Maser-Gluth, C., & Offermanns, S. (2005). Loss of Gq/11 family G proteins in the nervous system causes pituitary somatotroph hypoplasia and dwarfism in mice. Molecular and Cellular Biology, 25, 1942–1948.CrossRef
go back to reference Yu, M., Li, H., Liu, Q., Liu, F., Tang, L., Li, C., et al. (2011). Nuclear factor p65 interacts with Keap1 to repress the Nrf2-ARE pathway. Cellular Signalling, 23, 883–892.CrossRef Yu, M., Li, H., Liu, Q., Liu, F., Tang, L., Li, C., et al. (2011). Nuclear factor p65 interacts with Keap1 to repress the Nrf2-ARE pathway. Cellular Signalling, 23, 883–892.CrossRef
go back to reference Zhai, M., Zhao, Z., Yang, M., Liang, Y., Liang, H., Xie, Y., et al. (2019). The effect of GNAQ methylation on GnRH secretion in sheep hypothalamic neurons. Journal of Cellular Biochemistry, 120, 19396–19405.CrossRef Zhai, M., Zhao, Z., Yang, M., Liang, Y., Liang, H., Xie, Y., et al. (2019). The effect of GNAQ methylation on GnRH secretion in sheep hypothalamic neurons. Journal of Cellular Biochemistry, 120, 19396–19405.CrossRef
Metadata
Title
Gnaq Protects PC12 Cells from Oxidative Damage by Activation of Nrf2 and Inhibition of NF-kB
Authors
Xin Sun
Guo-Ping Li
Pu Huang
Lu-Gang Wei
Jia-Zhi Guo
Li-Juan Ao
Di Lu
Shao-Chun Chen
Publication date
01-09-2020
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 3/2020
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-020-08598-z

Other articles of this Issue 3/2020

NeuroMolecular Medicine 3/2020 Go to the issue