Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2010

Open Access 01-12-2010 | Research

Glycogen synthase kinase-3β inhibition induces nuclear factor-κB-mediated apoptosis in pediatric acute lymphocyte leukemia cells

Authors: Yanni Hu, Xiaoyan Gu, Ruiyan Li, Qing Luo, Youhua Xu

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2010

Login to get access

Abstract

Background

Molecular therapies that target genetic abnormalities in leukemic cells and their affected signaling pathways have been emerging in pediatric acute lymphoblastic leukemia (ALL). Glycogen synthase kinase-3β (GSK-3β) has recently been found to positively regulate the activity of nuclear factor-κB (NF-κB). Here, we investigated the relationship between GSK-3β inhibition and NF-κB in apoptosis of pediatric primary leukemia cells obtained from 39 newly diagnosed ALL children in China.

Methods

Bone marrow mononuclear cells (BMMC) were isolated by density gradient centrifugation from the heparinized aspirates of children with ALL. We used immunofluorescence staining to detect nuclear GSK-3β in these cells. After treatment with chemically distinct GSK-3β inhibitors in vitro, NF-κB transcriptional activity was identified by means of western blotting and electrophoretic mobility shift assay (EMSA). NF-κB-mediated apoptosis was detected by Annexin V-PE/7-AAD double-staining flow cytometry. The expression level of the survivin gene was detected by reverse-transcriptase polymerase chain reaction (RT-PCR).

Results

GSK-3β significantly accumulates in the nuclei of ALL cells than in the nuclei of control cells. Cell death induced by GSK-3β inhibition in ALL cells was mediated by a downregulation of NF-κB p65 transcriptional activity. GSK-3β inhibition significantly decreased the expression of the NF-κB target gene survivin.

Conclusions

These results indicate that inhibition of GSK-3β downregulates the NF-κB activation pathway, leading to suppression of the expression of an NF-κB-regulated gene and promotion of apoptosis in ALL cells in vitro. Furthermore, our findings suggest that GSK-3β or NF-κB is a potential therapeutic target in the treatment of pediatric ALL.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pui CH, Evans WE: Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006, 354: 166-178. 10.1056/NEJMra052603.CrossRef Pui CH, Evans WE: Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006, 354: 166-178. 10.1056/NEJMra052603.CrossRef
2.
go back to reference Pui CH, Jeha S: New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nat Rev Drug Discov. 2007, 6: 149-165. 10.1038/nrd2240.CrossRef Pui CH, Jeha S: New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nat Rev Drug Discov. 2007, 6: 149-165. 10.1038/nrd2240.CrossRef
3.
go back to reference Kaidanovich O, Eldar-Finkelman H: The role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Expert Opin Ther Targets. 2002, 6: 555-561. 10.1517/14728222.6.5.555.CrossRef Kaidanovich O, Eldar-Finkelman H: The role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Expert Opin Ther Targets. 2002, 6: 555-561. 10.1517/14728222.6.5.555.CrossRef
4.
go back to reference Doble BW, Woodgett JR: GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci. 2003, 116: 1175-1186. 10.1242/jcs.00384.CrossRef Doble BW, Woodgett JR: GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci. 2003, 116: 1175-1186. 10.1242/jcs.00384.CrossRef
5.
go back to reference Zhong W, Kevin SS, Mark M, Obdulio P, Tim CPS, Michael LC: Glycogen synthase kinase 3 in MLL leukemia maintenance and targeted therapy. Nature. 2008, 455: 1205-1210. 10.1038/nature07284.CrossRef Zhong W, Kevin SS, Mark M, Obdulio P, Tim CPS, Michael LC: Glycogen synthase kinase 3 in MLL leukemia maintenance and targeted therapy. Nature. 2008, 455: 1205-1210. 10.1038/nature07284.CrossRef
6.
go back to reference Takada Y, Fang X, Jamaluddin MS, Douglas DB, Bharat BA: Genetic deletion of glycogen synthase kinase-3β abrogates activation of IκBα kinase, JNK, Akt, and p44/p42 MAPK but potentiates apoptosis induced by Tumor Necrosis Factor. J Biol Chem. 2004, 279: 39541-54. 10.1074/jbc.M403449200.CrossRef Takada Y, Fang X, Jamaluddin MS, Douglas DB, Bharat BA: Genetic deletion of glycogen synthase kinase-3β abrogates activation of IκBα kinase, JNK, Akt, and p44/p42 MAPK but potentiates apoptosis induced by Tumor Necrosis Factor. J Biol Chem. 2004, 279: 39541-54. 10.1074/jbc.M403449200.CrossRef
7.
go back to reference Klaus PH, Juan L, Elizabeth AR, Ming ST, Ou J, James RW: Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature. 2000, 406: 86-90. 10.1038/35017574.CrossRef Klaus PH, Juan L, Elizabeth AR, Ming ST, Ou J, James RW: Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature. 2000, 406: 86-90. 10.1038/35017574.CrossRef
8.
go back to reference Andrei VO, Martin EF, Doris NS, Raul AU, Daniel DB: Glycogen synthase kinase-3β participates in nuclear factor kappaB-mediated gene transcription and cell survival in pancreatic cancer cells. Cancer Res. 2005, 65 (6): 2076-2081. 10.1158/0008-5472.CAN-04-3642.CrossRef Andrei VO, Martin EF, Doris NS, Raul AU, Daniel DB: Glycogen synthase kinase-3β participates in nuclear factor kappaB-mediated gene transcription and cell survival in pancreatic cancer cells. Cancer Res. 2005, 65 (6): 2076-2081. 10.1158/0008-5472.CAN-04-3642.CrossRef
9.
go back to reference Andrei VO, Nancy DB, Martin EF, Neil EK, Daniel DB: Inhibition of glycogen synthase kinase-3 activity leads to epigenetic silencing of nuclear factor κB target genes and induction of apoptosis in chronic lymphocytic leukemia B cells. Blood. 2007, 110: 735-742. 10.1182/blood-2006-12-060947.CrossRef Andrei VO, Nancy DB, Martin EF, Neil EK, Daniel DB: Inhibition of glycogen synthase kinase-3 activity leads to epigenetic silencing of nuclear factor κB target genes and induction of apoptosis in chronic lymphocytic leukemia B cells. Blood. 2007, 110: 735-742. 10.1182/blood-2006-12-060947.CrossRef
10.
go back to reference Amy H, Monique LB, Renee XM, Meyling HC, Cheng C, Karin MK, Gritta EJ, Ulrich G, Ulrike BG, William EE, Rob P: The expression of 70 apoptosis genes in relation to lineage, genetic subtype,cellular drug resistance, and outcome in childhood acute lymphoblastic leukemia. Blood. 2006, 107: 769-776. 10.1182/blood-2005-07-2930.CrossRef Amy H, Monique LB, Renee XM, Meyling HC, Cheng C, Karin MK, Gritta EJ, Ulrich G, Ulrike BG, William EE, Rob P: The expression of 70 apoptosis genes in relation to lineage, genetic subtype,cellular drug resistance, and outcome in childhood acute lymphoblastic leukemia. Blood. 2006, 107: 769-776. 10.1182/blood-2005-07-2930.CrossRef
11.
go back to reference Matthew PC, Ainsley AC, Darren AC, Stacey LC, John WY, Nigel JP, Oliver LR, Gregory JM, Paul SC, Lynne RC, David M, Murray JB, David H, Robert WW, David GS, Kenneth JM, Alastair DR, Julie CH: Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol. 2000, 7: 793-803. 10.1016/S1074-5521(00)00025-9.CrossRef Matthew PC, Ainsley AC, Darren AC, Stacey LC, John WY, Nigel JP, Oliver LR, Gregory JM, Paul SC, Lynne RC, David M, Murray JB, David H, Robert WW, David GS, Kenneth JM, Alastair DR, Julie CH: Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol. 2000, 7: 793-803. 10.1016/S1074-5521(00)00025-9.CrossRef
12.
go back to reference Peters SK, Douglas AM: A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci. 1996, 93 (16): 8455-8459. 10.1073/pnas.93.16.8455.CrossRef Peters SK, Douglas AM: A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci. 1996, 93 (16): 8455-8459. 10.1073/pnas.93.16.8455.CrossRef
13.
go back to reference Tiffany H, Tracey AO, Robert K, Robert L, Sylvie S, Emma S, Geoff S, Alla D: Glycogen Synthase Kinase-3β Inhibition Preserves Hematopoietic Stem Cell Activity and Inhibits Leukemic Cell Growth. Stem Cell. 2008, 26: 1288-1297. 10.1634/stemcells.2007-0600.CrossRef Tiffany H, Tracey AO, Robert K, Robert L, Sylvie S, Emma S, Geoff S, Alla D: Glycogen Synthase Kinase-3β Inhibition Preserves Hematopoietic Stem Cell Activity and Inhibits Leukemic Cell Growth. Stem Cell. 2008, 26: 1288-1297. 10.1634/stemcells.2007-0600.CrossRef
14.
go back to reference Ghosh JC, Altieri DC: Activation of p53-dependent apoptosis by acute ablation of glycogen synthase kinase-3beta in colorectal cancer cells. Clin Cancer Res. 2005, 11: 4580-4588. 10.1158/1078-0432.CCR-04-2624.CrossRef Ghosh JC, Altieri DC: Activation of p53-dependent apoptosis by acute ablation of glycogen synthase kinase-3beta in colorectal cancer cells. Clin Cancer Res. 2005, 11: 4580-4588. 10.1158/1078-0432.CCR-04-2624.CrossRef
15.
go back to reference Abbas S, Andrei O, Zhi WY, Bin Z, Mohammad HM, Daniel DB, Masayoshi M, Yutaka T, Toshinari M: Deregulated GSK3beta activity in colorectal cancer: its association with tumor cell survival and proliferation. Biochem Biophys Res Commun. 2005, 334: 1365-1373. 10.1016/j.bbrc.2005.07.041.CrossRef Abbas S, Andrei O, Zhi WY, Bin Z, Mohammad HM, Daniel DB, Masayoshi M, Yutaka T, Toshinari M: Deregulated GSK3beta activity in colorectal cancer: its association with tumor cell survival and proliferation. Biochem Biophys Res Commun. 2005, 334: 1365-1373. 10.1016/j.bbrc.2005.07.041.CrossRef
16.
go back to reference Mazor M, Kawano Y, Zhu H, Waxman J, Kypta RM: Inhibition of glycogen synthase kinase-3 represses androgen receptor activity and prostate cancer cell growth. Oncogene. 2004, 23: 7882-7892. 10.1038/sj.onc.1208068.CrossRef Mazor M, Kawano Y, Zhu H, Waxman J, Kypta RM: Inhibition of glycogen synthase kinase-3 represses androgen receptor activity and prostate cancer cell growth. Oncogene. 2004, 23: 7882-7892. 10.1038/sj.onc.1208068.CrossRef
17.
go back to reference Andrei VO, Martin EF, Vladimir NB, Thomas CS, Suresh TC, Daniel DB: Aberrant nuclear accumulation of glycogen synthase kinase-3β in human pancreatic cancer: association with kinase activity and tumor dedifferentiation. Clin Cancer Res. 2006, 12: 5074-5081. 10.1158/1078-0432.CCR-06-0196.CrossRef Andrei VO, Martin EF, Vladimir NB, Thomas CS, Suresh TC, Daniel DB: Aberrant nuclear accumulation of glycogen synthase kinase-3β in human pancreatic cancer: association with kinase activity and tumor dedifferentiation. Clin Cancer Res. 2006, 12: 5074-5081. 10.1158/1078-0432.CCR-06-0196.CrossRef
18.
go back to reference Buss H, Dorrie A, Schmitz ML, Frank R, Livingstone M, Resch K, Kracht M: Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-κB activity. J Biol Chem. 2004, 279: 49571-49574. 10.1074/jbc.C400442200.CrossRef Buss H, Dorrie A, Schmitz ML, Frank R, Livingstone M, Resch K, Kracht M: Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-κB activity. J Biol Chem. 2004, 279: 49571-49574. 10.1074/jbc.C400442200.CrossRef
19.
go back to reference Michael Karin : Nuclear factor-κB in cancer development and progression. Nature. 2006, 441: 431-436. 10.1038/nature04870.CrossRef Michael Karin : Nuclear factor-κB in cancer development and progression. Nature. 2006, 441: 431-436. 10.1038/nature04870.CrossRef
20.
go back to reference Véronique Baud, Michael Karin : Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nature. 2009, 8: 33-40. 10.1038/nrd2781. Véronique Baud, Michael Karin : Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nature. 2009, 8: 33-40. 10.1038/nrd2781.
21.
go back to reference Toni FD, Racaud-Sultan C, Chicanne G, Mas MV, Cariven C, Mesange F, Salles JP, Demur C, Allouche M, Payrastre B, Manenti S, Ysebaert L: A crosstalk between the Wnt and the adhesion-dependent signaling pathways governs the chemosensitivity of acute myeloid leukemia. Oncogene. 2006, 25: 3113-3122. 10.1038/sj.onc.1209346.CrossRef Toni FD, Racaud-Sultan C, Chicanne G, Mas MV, Cariven C, Mesange F, Salles JP, Demur C, Allouche M, Payrastre B, Manenti S, Ysebaert L: A crosstalk between the Wnt and the adhesion-dependent signaling pathways governs the chemosensitivity of acute myeloid leukemia. Oncogene. 2006, 25: 3113-3122. 10.1038/sj.onc.1209346.CrossRef
22.
go back to reference Aggarwal BB: Nuclear factor-kappaB: the enemy within. Cancer Cell. 2004, 6: 203-208. 10.1016/j.ccr.2004.09.003.CrossRef Aggarwal BB: Nuclear factor-kappaB: the enemy within. Cancer Cell. 2004, 6: 203-208. 10.1016/j.ccr.2004.09.003.CrossRef
23.
go back to reference Tracey L, Perez-Rosado A, Artiga MJ, Camacho FI, Rodriguez A, Martinez N, Ruiz-Ballesteros E, Mollejo M, Martinez B, Cuadros M, Garcia JF, Lawler M, Piris MA: Expression of the NF-κB targets BCL2 and BIRCS/Survivin characterizes small B-cell and aggressive B-cell lymphomas, respectively. J Pathol. 2005, 206: 123-134. 10.1002/path.1768.CrossRef Tracey L, Perez-Rosado A, Artiga MJ, Camacho FI, Rodriguez A, Martinez N, Ruiz-Ballesteros E, Mollejo M, Martinez B, Cuadros M, Garcia JF, Lawler M, Piris MA: Expression of the NF-κB targets BCL2 and BIRCS/Survivin characterizes small B-cell and aggressive B-cell lymphomas, respectively. J Pathol. 2005, 206: 123-134. 10.1002/path.1768.CrossRef
24.
go back to reference Kuzhuvelil BH, Ajaikumar BK, Kwang SA, Preetha A, Sunil K, Sushovan G, Bharat BA: Modification of the cysteine residues in IkappaBalpha kinase and NF-kappaB (p65) by xanthohumol leads to suppression of NF-kappaB-regulated gene products and potentiation of apoptosis in leukemia cells. Blood. 2009, 113: 2003-2013. 10.1182/blood-2008-04-151944.CrossRef Kuzhuvelil BH, Ajaikumar BK, Kwang SA, Preetha A, Sunil K, Sushovan G, Bharat BA: Modification of the cysteine residues in IkappaBalpha kinase and NF-kappaB (p65) by xanthohumol leads to suppression of NF-kappaB-regulated gene products and potentiation of apoptosis in leukemia cells. Blood. 2009, 113: 2003-2013. 10.1182/blood-2008-04-151944.CrossRef
Metadata
Title
Glycogen synthase kinase-3β inhibition induces nuclear factor-κB-mediated apoptosis in pediatric acute lymphocyte leukemia cells
Authors
Yanni Hu
Xiaoyan Gu
Ruiyan Li
Qing Luo
Youhua Xu
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2010
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-29-154

Other articles of this Issue 1/2010

Journal of Experimental & Clinical Cancer Research 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine