Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2013

Open Access 01-12-2013 | Research

Glycemic variability in relation to oral disposition index in the subjects with different stages of glucose tolerance

Authors: Tong Chen, Feng Xu, Jian-bin Su, Xue-qin Wang, Jin-feng Chen, Gang Wu, Yan Jin, Xiao-hua Wang

Published in: Diabetology & Metabolic Syndrome | Issue 1/2013

Login to get access

Abstract

Background

Glucose variability could be an independent risk factor for diabetes complications in addition to average glucose. The deficiency in islet β cell secretion and insulin sensitivity, the two important pathophysiological mechanisms of diabetes, are responsible for glycemic disorders. The oral disposition index evaluated by product of insulin secretion and sensitivity is a useful marker of islet β cell function. The aim of the study is to investigate glycemic variability in relation to oral disposition index in the subjects across a range of glucose tolerance from the normal to overt type 2 diabetes.

Methods

75-g oral glucose tolerance test (OGTT) was performed in total 220 subjects: 47 with normal glucose regulation (NGR), 52 with impaired glucose metabolism (IGM, 8 with isolated impaired fasting glucose [IFG], 18 with isolated impaired glucose tolerance [IGT] and 26 with combined IFG and IGT), 61 screen-diagnosed diabetes by isolated 2-h glucose (DM2h) and 60 newly diagnosed diabetes by both fasting and 2-h glucose (DM). Insulin sensitivity index (Matsuda index, ISI), insulin secretion index (ΔI30/ΔG30), and integrated β cell function measured by the oral disposition index (ΔI30/ΔG30 multiplied by the ISI) were derived from OGTT. All subjects were monitored using the continuous glucose monitoring system for consecutive 72 hours. The multiple parameters of glycemic variability included the standard deviation of blood glucose (SD), mean of blood glucose (MBG), high blood glucose index (HBGI), continuous overlapping net glycemic action calculated every 1 h (CONGA1), mean of daily differences (MODD) and mean amplitude of glycemic excursions (MAGE).

Results

From the NGR to IGM to DM2h to DM group, the respective values of SD (mean ± SD) (0.9 ± 0.3, 1.5 ± 0.5, 1.9 ± 0.6 and 2.2 ± 0.6 mmol/), MBG (5.9 ± 0.5, 6.7 ± 0.7, 7.7 ± 1.0 and 8.7 ± 1.5 mmol/L), HGBI [median(Q1–Q3)][0.8(0.2–1.2), 2.0(1.2–3.7), 3.8(2.4–5.6) and 6.4(3.2–9.5)], CONGA1 (1.0 ± 0.2, 1.3 ± 0.2, 1.5 ± 0.3 and 1.8 ± 0.4 mmol/L), MODD (0.9 ± 0.3, 1.4 ± 0.4, 1.8 ± 0.7 and 2.1 ± 0.7 mmol/L) and MAGE (2.1 ± 0.6, 3.3 ± 1.0, 4.3 ± 1.4 and 4.8 ± 1.6 mmol/L) were all increased progressively (all p < 0.05), while their oral disposition indices [745(546–947), 362(271–475), 203(134–274) and 91(70–139)] were decreased progressively (p < 0.05). In addition, SD, MBG, HGBI, CONGA1, MODD and MAGE were all negatively associated with the oral disposition index in each group (all p < 0.05) and in the entire data set (r = −0.66, –0.66, –0.72, –0.59, –0.61 and −0.65, respectively, p < 0.05).

Conclusions

Increased glycemic variability parameters are consistently associated with decreased oral disposition index in subjects across the range of glucose tolerance from the NGR to IGM to DM2h to DM group.
Appendix
Available only for authorised users
Literature
1.
go back to reference Abdul-Ghani MA, Williams K, DeFronzo R, Stern M: Risk of progression to type 2 diabetes based on relationship between postload plasma glucose and fasting plasma glucose. Diabetes Care. 2006, 29: 1613-1618. 10.2337/dc05-1711.CrossRefPubMed Abdul-Ghani MA, Williams K, DeFronzo R, Stern M: Risk of progression to type 2 diabetes based on relationship between postload plasma glucose and fasting plasma glucose. Diabetes Care. 2006, 29: 1613-1618. 10.2337/dc05-1711.CrossRefPubMed
2.
go back to reference Abdul-Ghani MA, Tripathy D, DeFronzo RA: Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care. 2006, 29: 1130-1139. 10.2337/dc05-2179.CrossRefPubMed Abdul-Ghani MA, Tripathy D, DeFronzo RA: Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care. 2006, 29: 1130-1139. 10.2337/dc05-2179.CrossRefPubMed
3.
go back to reference Festa A, Williams K, Hanley AJ, Haffner SM: Beta-cell dysfunction in subjects with impaired glucose tolerance and early type 2 diabetes: comparison of surrogate markers with first-phase insulin secretion from an intravenous glucose tolerance test. Diabetes. 2008, 57: 1638-1644. 10.2337/db07-0954.CrossRefPubMed Festa A, Williams K, Hanley AJ, Haffner SM: Beta-cell dysfunction in subjects with impaired glucose tolerance and early type 2 diabetes: comparison of surrogate markers with first-phase insulin secretion from an intravenous glucose tolerance test. Diabetes. 2008, 57: 1638-1644. 10.2337/db07-0954.CrossRefPubMed
4.
go back to reference Abdul-Ghani MA, Williams K, DeFronzo RA, Stern M: What is the best predictor of future type 2 diabetes?. Diabetes Care. 2007, 30: 1544-1548. 10.2337/dc06-1331.CrossRefPubMed Abdul-Ghani MA, Williams K, DeFronzo RA, Stern M: What is the best predictor of future type 2 diabetes?. Diabetes Care. 2007, 30: 1544-1548. 10.2337/dc06-1331.CrossRefPubMed
5.
go back to reference Stumvoll M, Mitrakou A, Pimenta W, Jenssen T, Yki-Järvinen H, Van Haeften T, Renn W, Gerich J: Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care. 2000, 23: 295-301. 10.2337/diacare.23.3.295.CrossRefPubMed Stumvoll M, Mitrakou A, Pimenta W, Jenssen T, Yki-Järvinen H, Van Haeften T, Renn W, Gerich J: Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care. 2000, 23: 295-301. 10.2337/diacare.23.3.295.CrossRefPubMed
6.
go back to reference Kim JY, Coletta DK, Mandarino LJ, Shaibi GQ: Glucose response curve and type 2 diabetes risk in Latino adolescents. Diabetes Care. 2012, 35: 1925-1930. 10.2337/dc11-2476.PubMedCentralCrossRefPubMed Kim JY, Coletta DK, Mandarino LJ, Shaibi GQ: Glucose response curve and type 2 diabetes risk in Latino adolescents. Diabetes Care. 2012, 35: 1925-1930. 10.2337/dc11-2476.PubMedCentralCrossRefPubMed
7.
go back to reference Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, Colette C: Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006, 295: 1681-1687. 10.1001/jama.295.14.1681.CrossRefPubMed Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, Colette C: Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006, 295: 1681-1687. 10.1001/jama.295.14.1681.CrossRefPubMed
8.
go back to reference Torimoto K, Okada Y, Mori H, Tanaka Y: Relationship between fluctuations in glucose levels measured by continuous glucose monitoring and vascular endothelial dysfunction in type 2 diabetes mellitus. Cardiovasc Diabetol. 2013, 12: 1-10.1186/1475-2840-12-1.PubMedCentralCrossRefPubMed Torimoto K, Okada Y, Mori H, Tanaka Y: Relationship between fluctuations in glucose levels measured by continuous glucose monitoring and vascular endothelial dysfunction in type 2 diabetes mellitus. Cardiovasc Diabetol. 2013, 12: 1-10.1186/1475-2840-12-1.PubMedCentralCrossRefPubMed
9.
go back to reference Sartore G, Chilelli NC, Burlina S, Lapolla A: Association between glucose variability as assessed by continuous glucose monitoring (CGM) and diabetic retinopathy in type 1 and type 2 diabetes. Acta Diabetol. 2013, 50: 437-442. 10.1007/s00592-013-0459-9.CrossRefPubMed Sartore G, Chilelli NC, Burlina S, Lapolla A: Association between glucose variability as assessed by continuous glucose monitoring (CGM) and diabetic retinopathy in type 1 and type 2 diabetes. Acta Diabetol. 2013, 50: 437-442. 10.1007/s00592-013-0459-9.CrossRefPubMed
10.
go back to reference Klonoff DC, Buckingham B, Christiansen JS, Montori VM, Tamborlane WV, Vigersky RA, Wolpert H, Endocrine Society: Continuous glucose monitoring: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2011, 96: 2968-2979. 10.1210/jc.2010-2756.CrossRefPubMed Klonoff DC, Buckingham B, Christiansen JS, Montori VM, Tamborlane WV, Vigersky RA, Wolpert H, Endocrine Society: Continuous glucose monitoring: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2011, 96: 2968-2979. 10.1210/jc.2010-2756.CrossRefPubMed
11.
go back to reference Chinese Diabetes Society: Chinese clinical guideline for continuous glucose monitoring (2012). Chin Med J (Engl). 2012, 125: 4167-4174. Chinese Diabetes Society: Chinese clinical guideline for continuous glucose monitoring (2012). Chin Med J (Engl). 2012, 125: 4167-4174.
12.
go back to reference Hill NR, Oliver NS, Choudhary P, Levy JC, Hindmarsh P, Matthews DR: Normal reference range for mean tissue glucose and glycemic variability derived from continuous glucose monitoring for subjects without diabetes in different ethnic groups. Diabetes Technol Ther. 2011, 13: 921-928. 10.1089/dia.2010.0247.PubMedCentralCrossRefPubMed Hill NR, Oliver NS, Choudhary P, Levy JC, Hindmarsh P, Matthews DR: Normal reference range for mean tissue glucose and glycemic variability derived from continuous glucose monitoring for subjects without diabetes in different ethnic groups. Diabetes Technol Ther. 2011, 13: 921-928. 10.1089/dia.2010.0247.PubMedCentralCrossRefPubMed
13.
14.
go back to reference Matsuda M, DeFronzo RA: Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999, 22: 1462-1470. 10.2337/diacare.22.9.1462.CrossRefPubMed Matsuda M, DeFronzo RA: Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999, 22: 1462-1470. 10.2337/diacare.22.9.1462.CrossRefPubMed
15.
go back to reference Oka R, Yagi K, Sakurai M, Nakamura K, Moriuchi T, Miyamoto S, Nohara A, Kawashiri MA, Takeda Y, Yamagishi M: Insulin secretion and insulin sensitivity on the oral glucose tolerance test (OGTT) in middle-aged Japanese. Endocr J. 2012, 59: 55-64. 10.1507/endocrj.EJ11-0157.CrossRefPubMed Oka R, Yagi K, Sakurai M, Nakamura K, Moriuchi T, Miyamoto S, Nohara A, Kawashiri MA, Takeda Y, Yamagishi M: Insulin secretion and insulin sensitivity on the oral glucose tolerance test (OGTT) in middle-aged Japanese. Endocr J. 2012, 59: 55-64. 10.1507/endocrj.EJ11-0157.CrossRefPubMed
16.
go back to reference McDonnell CM, Donath SM, Vidmar SI, Werther GA, Cameron FJ: A novel approach to continuous glucose analysis utilizing glycemic variation. Diabetes Technol Ther. 2005, 7: 253-263. 10.1089/dia.2005.7.253.CrossRefPubMed McDonnell CM, Donath SM, Vidmar SI, Werther GA, Cameron FJ: A novel approach to continuous glucose analysis utilizing glycemic variation. Diabetes Technol Ther. 2005, 7: 253-263. 10.1089/dia.2005.7.253.CrossRefPubMed
17.
go back to reference Kovatchev BP, Cox DJ, Kumar A, Gonder-Frederick L, Clarke WL: Algorithmic evaluation of metabolic control and risk of severe hypoglycemia in type 1 and type 2 diabetes using self-monitoring blood glucose data. Diabetes Technol Ther. 2003, 5: 817-828. 10.1089/152091503322527021.CrossRefPubMed Kovatchev BP, Cox DJ, Kumar A, Gonder-Frederick L, Clarke WL: Algorithmic evaluation of metabolic control and risk of severe hypoglycemia in type 1 and type 2 diabetes using self-monitoring blood glucose data. Diabetes Technol Ther. 2003, 5: 817-828. 10.1089/152091503322527021.CrossRefPubMed
18.
go back to reference Molnar GD, Taylor WF, Ho MM: Day-to-day variation of continuously monitored glycaemia: a further measure of diabetic instability. Diabetologia. 1972, 8: 342-348. 10.1007/BF01218495.CrossRefPubMed Molnar GD, Taylor WF, Ho MM: Day-to-day variation of continuously monitored glycaemia: a further measure of diabetic instability. Diabetologia. 1972, 8: 342-348. 10.1007/BF01218495.CrossRefPubMed
19.
go back to reference Service FJ, Molnar GD, Rosevear JW, Ackerman E, Gatewood LC, Taylor WF: Mean amplitude of glycemic excursions, a measure of diabetic instability. Diabetes. 1970, 19: 644-655.CrossRefPubMed Service FJ, Molnar GD, Rosevear JW, Ackerman E, Gatewood LC, Taylor WF: Mean amplitude of glycemic excursions, a measure of diabetic instability. Diabetes. 1970, 19: 644-655.CrossRefPubMed
20.
go back to reference Zhou J, Li H, Ran X, Yang W, Li Q, Peng Y, Li Y, Gao X, Luan X, Wang W, Jia W: Establishment of normal reference ranges for glycemic variability in Chinese subjects using continuous glucose monitoring. Med Sci Monit. 2011, 17: CR9-CR13. 10.12659/MSM.881318.PubMedCentralPubMed Zhou J, Li H, Ran X, Yang W, Li Q, Peng Y, Li Y, Gao X, Luan X, Wang W, Jia W: Establishment of normal reference ranges for glycemic variability in Chinese subjects using continuous glucose monitoring. Med Sci Monit. 2011, 17: CR9-CR13. 10.12659/MSM.881318.PubMedCentralPubMed
21.
go back to reference Utzschneider KM, Prigeon RL, Faulenbach MV, Tong J, Carr DB, Boyko EJ, Leonetti DL, McNeely MJ, Fujimoto WY, Kahn SE: Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care. 2009, 32: 335-341.PubMedCentralCrossRefPubMed Utzschneider KM, Prigeon RL, Faulenbach MV, Tong J, Carr DB, Boyko EJ, Leonetti DL, McNeely MJ, Fujimoto WY, Kahn SE: Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care. 2009, 32: 335-341.PubMedCentralCrossRefPubMed
22.
go back to reference Retnakaran R, Shen S, Hanley AJ, Vuksan V, Hamilton JK, Zinman B: Hyperbolic relationship between insulin secretion and sensitivity on oral glucose tolerance test. Obesity (Silver Spring). 2008, 16 (8): 1901-1907. 10.1038/oby.2008.307.CrossRef Retnakaran R, Shen S, Hanley AJ, Vuksan V, Hamilton JK, Zinman B: Hyperbolic relationship between insulin secretion and sensitivity on oral glucose tolerance test. Obesity (Silver Spring). 2008, 16 (8): 1901-1907. 10.1038/oby.2008.307.CrossRef
23.
go back to reference Monnier L, Colette C, Owens DR: Glycemic variability: the third component of the dysglycemia in diabetes. Is it important? How to measure it?. J Diabetes Sci Technol. 2008, 2: 1094-1100.PubMedCentralCrossRefPubMed Monnier L, Colette C, Owens DR: Glycemic variability: the third component of the dysglycemia in diabetes. Is it important? How to measure it?. J Diabetes Sci Technol. 2008, 2: 1094-1100.PubMedCentralCrossRefPubMed
24.
go back to reference Borg R, Kuenen JC, Carstensen B, Zheng H, Nathan DM, Heine RJ, Nerup J, Borch-Johnsen K, Witte DR, ADAG Study Group: Real-life glycaemic profiles in non-diabetic individuals with low fasting glucose and normal HbA1c: the A1C-Derived Average Glucose (ADAG) study. Diabetologia. 2010, 53: 1608-1611. 10.1007/s00125-010-1741-9.PubMedCentralCrossRefPubMed Borg R, Kuenen JC, Carstensen B, Zheng H, Nathan DM, Heine RJ, Nerup J, Borch-Johnsen K, Witte DR, ADAG Study Group: Real-life glycaemic profiles in non-diabetic individuals with low fasting glucose and normal HbA1c: the A1C-Derived Average Glucose (ADAG) study. Diabetologia. 2010, 53: 1608-1611. 10.1007/s00125-010-1741-9.PubMedCentralCrossRefPubMed
25.
go back to reference Wang C, Lv L, Yang Y, Chen D, Liu G, Chen L, Song Y, He L, Li X, Tian H, Jia W, Ran X: Glucose fluctuations in subjects with normal glucose tolerance, impaired glucose regulation and newly diagnosed type 2 diabetes mellitus. Clin Endocrinol (Oxf). 2012, 76: 810-815. 10.1111/j.1365-2265.2011.04205.x.CrossRef Wang C, Lv L, Yang Y, Chen D, Liu G, Chen L, Song Y, He L, Li X, Tian H, Jia W, Ran X: Glucose fluctuations in subjects with normal glucose tolerance, impaired glucose regulation and newly diagnosed type 2 diabetes mellitus. Clin Endocrinol (Oxf). 2012, 76: 810-815. 10.1111/j.1365-2265.2011.04205.x.CrossRef
26.
go back to reference Kildegaard J, Christensen TF, Hejlesen OK: Sources of glycemic variability–what type of technology is needed?. J Diabetes Sci Technol. 2009, 3: 986-991.PubMedCentralCrossRefPubMed Kildegaard J, Christensen TF, Hejlesen OK: Sources of glycemic variability–what type of technology is needed?. J Diabetes Sci Technol. 2009, 3: 986-991.PubMedCentralCrossRefPubMed
27.
go back to reference Kohnert KD, Heinke P, Fritzsche G, Vogt L, Augstein P, Salzsieder E: Evaluation of the mean absolute glucose change as a measure of glycemic variability using continuous glucose monitoring data. Diabetes Technol Ther. 2013, 15: 448-454. 10.1089/dia.2012.0303.CrossRefPubMed Kohnert KD, Heinke P, Fritzsche G, Vogt L, Augstein P, Salzsieder E: Evaluation of the mean absolute glucose change as a measure of glycemic variability using continuous glucose monitoring data. Diabetes Technol Ther. 2013, 15: 448-454. 10.1089/dia.2012.0303.CrossRefPubMed
28.
go back to reference Rodbard D: New and improved methods to characterize glycemic variability using continuous glucose monitoring. Diabetes Technol Ther. 2009, 11: 551-565. 10.1089/dia.2009.0015.CrossRefPubMed Rodbard D: New and improved methods to characterize glycemic variability using continuous glucose monitoring. Diabetes Technol Ther. 2009, 11: 551-565. 10.1089/dia.2009.0015.CrossRefPubMed
29.
go back to reference Rodbard D, Bailey T, Jovanovic L, Zisser H, Kaplan R, Garg SK: Improved quality of glycemic control and reduced glycemic variability with use of continuous glucose monitoring. Diabetes Technol Ther. 2009, 11: 717-723. 10.1089/dia.2009.0077.CrossRefPubMed Rodbard D, Bailey T, Jovanovic L, Zisser H, Kaplan R, Garg SK: Improved quality of glycemic control and reduced glycemic variability with use of continuous glucose monitoring. Diabetes Technol Ther. 2009, 11: 717-723. 10.1089/dia.2009.0077.CrossRefPubMed
30.
go back to reference Rodbard D: Interpretation of continuous glucose monitoring data: glycemic variability and quality of glycemic control. Diabetes Technol Ther. 2009, 11: S55-S67.PubMed Rodbard D: Interpretation of continuous glucose monitoring data: glycemic variability and quality of glycemic control. Diabetes Technol Ther. 2009, 11: S55-S67.PubMed
31.
go back to reference Fritzsche G, Kohnert KD, Heinke P, Vogt L, Salzsieder E: The use of a computer program to calculate the mean amplitude of glycemic excursions. Diabetes Technol Ther. 2011, 13: 319-325. 10.1089/dia.2010.0108.CrossRefPubMed Fritzsche G, Kohnert KD, Heinke P, Vogt L, Salzsieder E: The use of a computer program to calculate the mean amplitude of glycemic excursions. Diabetes Technol Ther. 2011, 13: 319-325. 10.1089/dia.2010.0108.CrossRefPubMed
32.
go back to reference Pratley RE, Weyer C: The role of impaired early insulin secretion in the pathogenesis of Type II diabetes mellitus. Diabetologia. 2001, 44: 929-945. 10.1007/s001250100580.CrossRefPubMed Pratley RE, Weyer C: The role of impaired early insulin secretion in the pathogenesis of Type II diabetes mellitus. Diabetologia. 2001, 44: 929-945. 10.1007/s001250100580.CrossRefPubMed
33.
go back to reference Fukushima M, Suzuki H, Seino Y: Insulin secretion capacity in the development from normal glucose tolerance to type 2 diabetes. Diabetes Res Clin Pract. 2004, 66: S37-S43.CrossRefPubMed Fukushima M, Suzuki H, Seino Y: Insulin secretion capacity in the development from normal glucose tolerance to type 2 diabetes. Diabetes Res Clin Pract. 2004, 66: S37-S43.CrossRefPubMed
34.
go back to reference Del Prato S: Loss of early insulin secretion leads to postprandial hyperglycaemia. Diabetologia. 2003, 46: M2-M8.PubMed Del Prato S: Loss of early insulin secretion leads to postprandial hyperglycaemia. Diabetologia. 2003, 46: M2-M8.PubMed
35.
go back to reference Bergman RN: Orchestration of glucose homeostasis: from a small acorn to the California oak. Diabetes. 2007, 56: 1489-1501. 10.2337/db07-9903.CrossRefPubMed Bergman RN: Orchestration of glucose homeostasis: from a small acorn to the California oak. Diabetes. 2007, 56: 1489-1501. 10.2337/db07-9903.CrossRefPubMed
Metadata
Title
Glycemic variability in relation to oral disposition index in the subjects with different stages of glucose tolerance
Authors
Tong Chen
Feng Xu
Jian-bin Su
Xue-qin Wang
Jin-feng Chen
Gang Wu
Yan Jin
Xiao-hua Wang
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2013
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/1758-5996-5-38

Other articles of this Issue 1/2013

Diabetology & Metabolic Syndrome 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine