Skip to main content
Top
Published in: Brain Structure and Function 5/2015

01-09-2015 | Original Article

Glutamate receptors of the delta family are widely expressed in the adult brain

Authors: Régine Hepp, Y. Audrey Hay, Carolina Aguado, Rafael Lujan, Luce Dauphinot, Marie Claude Potier, Shinobu Nomura, Odile Poirel, Salah El Mestikawy, Bertrand Lambolez, Ludovic Tricoire

Published in: Brain Structure and Function | Issue 5/2015

Login to get access

Abstract

Recent reports point to critical roles of glutamate receptor subunit delta2 (GluD2) at excitatory synapses and link GluD1 gene alteration to schizophrenia but the expression patterns of these subunits in the brain remain almost uncharacterized. We examined the distribution of GluD1–2 mRNAs and proteins in the adult rodent brain, focusing mainly on GluD1. In situ hybridization revealed widespread neuronal expression of the GluD1 mRNA, with higher levels occurring in several forebrain regions and lower levels in cerebellum. Quantitative RT-PCR assessed differential GluD1 expression in cortex and cerebellum, and revealed GluD2 expression in cortex, albeit at markedly lower level than in cerebellum. Likewise, a high GluD1/GluD2 mRNA ratio was observed in cortex and a low ratio in cerebellum. GluD1 and GluD2 mRNAs were co-expressed in single cortical and hippocampal neurons, with a large predominance of GluD1. Western blots using GluD1- and GluD2-specific antibodies showed expression of both subunits in various brain structures, but not in non-nervous tissues examined. Both delta subunits were upregulated during postnatal development. Widespread neuronal expression of the GluD1 protein was confirmed using immunohistochemistry. Examination at the electron microscopic level in the hippocampus revealed that GluD1 was mainly localized at postsynaptic density of excitatory synapses on pyramidal cells. Control experiments performed using mice carrying deletion of the GluD1- or the GluD2-encoding gene confirmed the specificity of the present mRNA and protein analyses. Our results support a role for the delta family of glutamate receptors at excitatory synapses in neuronal networks throughout the adult brain.
Literature
go back to reference Angulo MC, Lambolez B, Audinat E, Hestrin S, Rossier J (1997) Subunit composition, kinetic, and permeation properties of AMPA receptors in single neocortical nonpyramidal cells. J Neurosci 17(17):6685–6696PubMed Angulo MC, Lambolez B, Audinat E, Hestrin S, Rossier J (1997) Subunit composition, kinetic, and permeation properties of AMPA receptors in single neocortical nonpyramidal cells. J Neurosci 17(17):6685–6696PubMed
go back to reference Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y, Mishina M (1993) Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells. Biochem Biophys Res Commun 197(3):1267–1276. doi:10.1006/bbrc.1993.2614 CrossRefPubMed Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y, Mishina M (1993) Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells. Biochem Biophys Res Commun 197(3):1267–1276. doi:10.​1006/​bbrc.​1993.​2614 CrossRefPubMed
go back to reference Bayer S, Altman J (1991) Neocortical development. Raven Press, New York Bayer S, Altman J (1991) Neocortical development. Raven Press, New York
go back to reference Blue ME, Parnavelas JG (1983) The formation and maturation of synapses in the visual cortex of the rat. I. Qualitative analysis. J Neurocytol 12(4):599–616CrossRefPubMed Blue ME, Parnavelas JG (1983) The formation and maturation of synapses in the visual cortex of the rat. I. Qualitative analysis. J Neurocytol 12(4):599–616CrossRefPubMed
go back to reference Cauli B, Audinat E, Lambolez B, Angulo MC, Ropert N, Tsuzuki K, Hestrin S, Rossier J (1997) Molecular and physiological diversity of cortical nonpyramidal cells. J Neurosci 17(10):3894–3906PubMed Cauli B, Audinat E, Lambolez B, Angulo MC, Ropert N, Tsuzuki K, Hestrin S, Rossier J (1997) Molecular and physiological diversity of cortical nonpyramidal cells. J Neurosci 17(10):3894–3906PubMed
go back to reference Cauli B, Porter JT, Tsuzuki K, Lambolez B, Rossier J, Quenet B, Audinat E (2000) Classification of fusiform neocortical interneurons based on unsupervised clustering. Proc Natl Acad Sci USA 97(11):6144–6149 (97/11/6144)PubMedCentralCrossRefPubMed Cauli B, Porter JT, Tsuzuki K, Lambolez B, Rossier J, Quenet B, Audinat E (2000) Classification of fusiform neocortical interneurons based on unsupervised clustering. Proc Natl Acad Sci USA 97(11):6144–6149 (97/11/6144)PubMedCentralCrossRefPubMed
go back to reference Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13(3):99–104 pii:0166-2236(90)90185-DCrossRefPubMed Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13(3):99–104 pii:0166-2236(90)90185-DCrossRefPubMed
go back to reference Fallin MD, Lasseter VK, Avramopoulos D, Nicodemus KK, Wolyniec PS, McGrath JA, Steel G, Nestadt G, Liang KY, Huganir RL, Valle D, Pulver AE (2005) Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. Am J Hum Genet 77(6):918–936. doi:10.1086/497703 PubMedCentralCrossRefPubMed Fallin MD, Lasseter VK, Avramopoulos D, Nicodemus KK, Wolyniec PS, McGrath JA, Steel G, Nestadt G, Liang KY, Huganir RL, Valle D, Pulver AE (2005) Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. Am J Hum Genet 77(6):918–936. doi:10.​1086/​497703 PubMedCentralCrossRefPubMed
go back to reference Gao J, Maison SF, Wu X, Hirose K, Jones SM, Bayazitov I, Tian Y, Mittleman G, Matthews DB, Zakharenko SS, Liberman MC, Zuo J (2007) Orphan glutamate receptor delta1 subunit required for high-frequency hearing. Mol Cell Biol 27(12):4500–4512. doi:10.1128/MCB.02051-06 PubMedCentralCrossRefPubMed Gao J, Maison SF, Wu X, Hirose K, Jones SM, Bayazitov I, Tian Y, Mittleman G, Matthews DB, Zakharenko SS, Liberman MC, Zuo J (2007) Orphan glutamate receptor delta1 subunit required for high-frequency hearing. Mol Cell Biol 27(12):4500–4512. doi:10.​1128/​MCB.​02051-06 PubMedCentralCrossRefPubMed
go back to reference Gras C, Amilhon B, Lepicard EM, Poirel O, Vinatier J, Herbin M, Dumas S, Tzavara ET, Wade MR, Nomikos GG, Hanoun N, Saurini F, Kemel ML, Gasnier B, Giros B, El Mestikawy S (2008) The vesicular glutamate transporter VGLUT3 synergizes striatal acetylcholine tone. Nat Neurosci 11(3):292–300. doi:10.1038/nn2052 CrossRefPubMed Gras C, Amilhon B, Lepicard EM, Poirel O, Vinatier J, Herbin M, Dumas S, Tzavara ET, Wade MR, Nomikos GG, Hanoun N, Saurini F, Kemel ML, Gasnier B, Giros B, El Mestikawy S (2008) The vesicular glutamate transporter VGLUT3 synergizes striatal acetylcholine tone. Nat Neurosci 11(3):292–300. doi:10.​1038/​nn2052 CrossRefPubMed
go back to reference Guastavino JM, Sotelo C, Damez-Kinselle I (1990) Hot-foot murine mutation: behavioral effects and neuroanatomical alterations. Brain Res 523(2):199–210 pii:0006-8993(90)91488-3CrossRefPubMed Guastavino JM, Sotelo C, Damez-Kinselle I (1990) Hot-foot murine mutation: behavioral effects and neuroanatomical alterations. Brain Res 523(2):199–210 pii:0006-8993(90)91488-3CrossRefPubMed
go back to reference Guo SZ, Huang K, Shi YY, Tang W, Zhou J, Feng GY, Zhu SM, Liu HJ, Chen Y, Sun XD, He L (2007) A case-control association study between the GRID1 gene and schizophrenia in the Chinese Northern Han population. Schizophr Res 93(1–3):385–390. doi:10.1016/j.schres.2007.03.007 CrossRefPubMed Guo SZ, Huang K, Shi YY, Tang W, Zhou J, Feng GY, Zhu SM, Liu HJ, Chen Y, Sun XD, He L (2007) A case-control association study between the GRID1 gene and schizophrenia in the Chinese Northern Han population. Schizophr Res 93(1–3):385–390. doi:10.​1016/​j.​schres.​2007.​03.​007 CrossRefPubMed
go back to reference Kakegawa W, Miyazaki T, Emi K, Matsuda K, Kohda K, Motohashi J, Mishina M, Kawahara S, Watanabe M, Yuzaki M (2008) Differential regulation of synaptic plasticity and cerebellar motor learning by the C-terminal PDZ-binding motif of GluRdelta2. J Neurosci 28(6):1460–1468. doi:10.1523/JNEUROSCI.2553-07.2008 CrossRefPubMed Kakegawa W, Miyazaki T, Emi K, Matsuda K, Kohda K, Motohashi J, Mishina M, Kawahara S, Watanabe M, Yuzaki M (2008) Differential regulation of synaptic plasticity and cerebellar motor learning by the C-terminal PDZ-binding motif of GluRdelta2. J Neurosci 28(6):1460–1468. doi:10.​1523/​JNEUROSCI.​2553-07.​2008 CrossRefPubMed
go back to reference Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, Inoue Y, Kutsuwada T, Yagi T, Kang Y et al (1995) Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell 81(2):245–252 pii:0092-8674(95)90334-8CrossRefPubMed Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, Inoue Y, Kutsuwada T, Yagi T, Kang Y et al (1995) Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell 81(2):245–252 pii:0092-8674(95)90334-8CrossRefPubMed
go back to reference Kato AS, Knierman MD, Siuda ER, Isaac JT, Nisenbaum ES, Bredt DS (2012) Glutamate receptor delta2 associates with metabotropic glutamate receptor 1 (mGluR1), protein kinase Cgamma, and canonical transient receptor potential 3 and regulates mGluR1-mediated synaptic transmission in cerebellar Purkinje neurons. J Neurosci 32(44):15296–15308. doi:10.1523/JNEUROSCI.0705-12.2012 CrossRefPubMed Kato AS, Knierman MD, Siuda ER, Isaac JT, Nisenbaum ES, Bredt DS (2012) Glutamate receptor delta2 associates with metabotropic glutamate receptor 1 (mGluR1), protein kinase Cgamma, and canonical transient receptor potential 3 and regulates mGluR1-mediated synaptic transmission in cerebellar Purkinje neurons. J Neurosci 32(44):15296–15308. doi:10.​1523/​JNEUROSCI.​0705-12.​2012 CrossRefPubMed
go back to reference Lalouette A, Lohof A, Sotelo C, Guenet J, Mariani J (2001) Neurobiological effects of a null mutation depend on genetic context: comparison between two hotfoot alleles of the delta-2 ionotropic glutamate receptor. Neuroscience 105(2):443–455. pii:S0306452201001932CrossRefPubMed Lalouette A, Lohof A, Sotelo C, Guenet J, Mariani J (2001) Neurobiological effects of a null mutation depend on genetic context: comparison between two hotfoot alleles of the delta-2 ionotropic glutamate receptor. Neuroscience 105(2):443–455. pii:S0306452201001932CrossRefPubMed
go back to reference Lambolez B, Audinat E, Bochet P, Crepel F, Rossier J (1992) AMPA receptor subunits expressed by single Purkinje cells. Neuron 9(2):247–258. pii:0896-6273(92)90164-9CrossRefPubMed Lambolez B, Audinat E, Bochet P, Crepel F, Rossier J (1992) AMPA receptor subunits expressed by single Purkinje cells. Neuron 9(2):247–258. pii:0896-6273(92)90164-9CrossRefPubMed
go back to reference Lambolez B, Ropert N, Perrais D, Rossier J, Hestrin S (1996) Correlation between kinetics and RNA splicing of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in neocortical neurons. Proc Natl Acad Sci USA 93(5):1797–1802PubMedCentralCrossRefPubMed Lambolez B, Ropert N, Perrais D, Rossier J, Hestrin S (1996) Correlation between kinetics and RNA splicing of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in neocortical neurons. Proc Natl Acad Sci USA 93(5):1797–1802PubMedCentralCrossRefPubMed
go back to reference Landsend AS, Amiry-Moghaddam M, Matsubara A, Bergersen L, Usami S, Wenthold RJ, Ottersen OP (1997) Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J Neurosci 17(2):834–842PubMed Landsend AS, Amiry-Moghaddam M, Matsubara A, Bergersen L, Usami S, Wenthold RJ, Ottersen OP (1997) Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J Neurosci 17(2):834–842PubMed
go back to reference Lomeli H, Sprengel R, Laurie DJ, Kohr G, Herb A, Seeburg PH, Wisden W (1993) The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FEBS Lett 315(3):318–322. pii:0014-5793(93)81186-4CrossRefPubMed Lomeli H, Sprengel R, Laurie DJ, Kohr G, Herb A, Seeburg PH, Wisden W (1993) The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FEBS Lett 315(3):318–322. pii:0014-5793(93)81186-4CrossRefPubMed
go back to reference Lujan R, Nusser Z, Roberts JD, Shigemoto R, Somogyi P (1996) Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci 8(7):1488–1500CrossRefPubMed Lujan R, Nusser Z, Roberts JD, Shigemoto R, Somogyi P (1996) Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci 8(7):1488–1500CrossRefPubMed
go back to reference Matsuda K, Miura E, Miyazaki T, Kakegawa W, Emi K, Narumi S, Fukazawa Y, Ito-Ishida A, Kondo T, Shigemoto R, Watanabe M, Yuzaki M (2010) Cbln1 is a ligand for an orphan glutamate receptor delta2, a bidirectional synapse organizer. Science 328(5976):363–368. doi:10.1126/science.1185152 CrossRefPubMed Matsuda K, Miura E, Miyazaki T, Kakegawa W, Emi K, Narumi S, Fukazawa Y, Ito-Ishida A, Kondo T, Shigemoto R, Watanabe M, Yuzaki M (2010) Cbln1 is a ligand for an orphan glutamate receptor delta2, a bidirectional synapse organizer. Science 328(5976):363–368. doi:10.​1126/​science.​1185152 CrossRefPubMed
go back to reference Mayat E, Petralia RS, Wang YX, Wenthold RJ (1995) Immunoprecipitation, immunoblotting, and immunocytochemistry studies suggest that glutamate receptor delta subunits form novel postsynaptic receptor complexes. J Neurosci 15(3 Pt 2):2533–2546PubMed Mayat E, Petralia RS, Wang YX, Wenthold RJ (1995) Immunoprecipitation, immunoblotting, and immunocytochemistry studies suggest that glutamate receptor delta subunits form novel postsynaptic receptor complexes. J Neurosci 15(3 Pt 2):2533–2546PubMed
go back to reference Shigemoto R, Nakanishi S, Mizuno N (1992) Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: an in situ hybridization study in adult and developing rat. J Comp Neurol 322(1):121–135. doi:10.1002/cne.903220110 CrossRefPubMed Shigemoto R, Nakanishi S, Mizuno N (1992) Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: an in situ hybridization study in adult and developing rat. J Comp Neurol 322(1):121–135. doi:10.​1002/​cne.​903220110 CrossRefPubMed
go back to reference Takayama C, Nakagawa S, Watanabe M, Mishina M, Inoue Y (1995) Light- and electron-microscopic localization of the glutamate receptor channel delta 2 subunit in the mouse Purkinje cell. Neurosci Lett 188(2):89–92. pii:030439409511403JCrossRefPubMed Takayama C, Nakagawa S, Watanabe M, Mishina M, Inoue Y (1995) Light- and electron-microscopic localization of the glutamate receptor channel delta 2 subunit in the mouse Purkinje cell. Neurosci Lett 188(2):89–92. pii:030439409511403JCrossRefPubMed
go back to reference Tonnes J, Stierli B, Cerletti C, Behrmann JT, Molnar E, Streit P (1999) Regional distribution and developmental changes of GluR1-flop protein revealed by monoclonal antibody in rat brain. J Neurochem 73(5):2195–2205PubMed Tonnes J, Stierli B, Cerletti C, Behrmann JT, Molnar E, Streit P (1999) Regional distribution and developmental changes of GluR1-flop protein revealed by monoclonal antibody in rat brain. J Neurochem 73(5):2195–2205PubMed
go back to reference Treutlein J, Muhleisen TW, Frank J, Mattheisen M, Herms S, Ludwig KU, Treutlein T, Schmael C, Strohmaier J, Bosshenz KV, Breuer R, Paul T, Witt SH, Schulze TG, Schlosser RG, Nenadic I, Sauer H, Becker T, Maier W, Cichon S, Nothen MM, Rietschel M (2009) Dissection of phenotype reveals possible association between schizophrenia and glutamate receptor delta 1 (GRID1) gene promoter. Schizophr Res 111(1–3):123–130. doi:10.1016/j.schres.2009.03.011 CrossRefPubMed Treutlein J, Muhleisen TW, Frank J, Mattheisen M, Herms S, Ludwig KU, Treutlein T, Schmael C, Strohmaier J, Bosshenz KV, Breuer R, Paul T, Witt SH, Schulze TG, Schlosser RG, Nenadic I, Sauer H, Becker T, Maier W, Cichon S, Nothen MM, Rietschel M (2009) Dissection of phenotype reveals possible association between schizophrenia and glutamate receptor delta 1 (GRID1) gene promoter. Schizophr Res 111(1–3):123–130. doi:10.​1016/​j.​schres.​2009.​03.​011 CrossRefPubMed
go back to reference Uemura T, Lee SJ, Yasumura M, Takeuchi T, Yoshida T, Ra M, Taguchi R, Sakimura K, Mishina M (2010) Trans-synaptic interaction of GluRdelta2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141(6):1068–1079. doi:10.1016/j.cell.2010.04.035 CrossRefPubMed Uemura T, Lee SJ, Yasumura M, Takeuchi T, Yoshida T, Ra M, Taguchi R, Sakimura K, Mishina M (2010) Trans-synaptic interaction of GluRdelta2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141(6):1068–1079. doi:10.​1016/​j.​cell.​2010.​04.​035 CrossRefPubMed
go back to reference Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034PubMedCentralCrossRefPubMed Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034PubMedCentralCrossRefPubMed
go back to reference Yamasaki M, Miyazaki T, Azechi H, Abe M, Natsume R, Hagiwara T, Aiba A, Mishina M, Sakimura K, Watanabe M (2011) Glutamate receptor delta2 is essential for input pathway-dependent regulation of synaptic AMPAR contents in cerebellar Purkinje cells. J Neurosci 31(9):3362–3374. doi:10.1523/JNEUROSCI.5601-10.2011 CrossRefPubMed Yamasaki M, Miyazaki T, Azechi H, Abe M, Natsume R, Hagiwara T, Aiba A, Mishina M, Sakimura K, Watanabe M (2011) Glutamate receptor delta2 is essential for input pathway-dependent regulation of synaptic AMPAR contents in cerebellar Purkinje cells. J Neurosci 31(9):3362–3374. doi:10.​1523/​JNEUROSCI.​5601-10.​2011 CrossRefPubMed
go back to reference Yamazaki M, Araki K, Shibata A, Mishina M (1992) Molecular cloning of a cDNA encoding a novel member of the mouse glutamate receptor channel family. Biochem Biophys Res Commun 183(2):886–892 pii:0006-291X(92)90566-4CrossRefPubMed Yamazaki M, Araki K, Shibata A, Mishina M (1992) Molecular cloning of a cDNA encoding a novel member of the mouse glutamate receptor channel family. Biochem Biophys Res Commun 183(2):886–892 pii:0006-291X(92)90566-4CrossRefPubMed
Metadata
Title
Glutamate receptors of the delta family are widely expressed in the adult brain
Authors
Régine Hepp
Y. Audrey Hay
Carolina Aguado
Rafael Lujan
Luce Dauphinot
Marie Claude Potier
Shinobu Nomura
Odile Poirel
Salah El Mestikawy
Bertrand Lambolez
Ludovic Tricoire
Publication date
01-09-2015
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 5/2015
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-014-0827-4

Other articles of this Issue 5/2015

Brain Structure and Function 5/2015 Go to the issue