Skip to main content
Top
Published in: Acta Neuropathologica 4/2003

01-10-2003 | Regular Paper

GluR2/3, NMDAε1 and GABAA receptors in Creutzfeldt-Jakob disease

Authors: I. Ferrer, B. Puig

Published in: Acta Neuropathologica | Issue 4/2003

Login to get access

Abstract

The excitatory ionotropic glutamate receptors N-methyl-d-aspartate (NMDA) and α-amino-3-hydro-5methyl-4-isoxazole propionic acid (AMPA) receptors, and the inhibitory γ-aminobutyric acid (GABA) receptors are major regulators of synaptic transmission in the central nervous system. Glutamate receptors AMPA GluR2/3 and NMDA R2A: NR2A (NMDAε1), and GABAA (GABAA Rα1) receptors were examined by immunohistochemistry in the cerebral cortex (frontal cortex) entorhinal cortex, hippocampus and cerebellar cortex in nine patients with sporadic Creutzfeldt-Jakob disease (CJD) and eight age-matched controls obtained 3–8 h after death. All patients with CJD showed methionine/methionine in codon 129 of the prion protein gene. Decreased GluR2/3 immunoreactivity was found in the frontal cortex, entorhinal cortex and Purkinje cells; reduced NMDAε1 immunoreactivity was found in the frontal cortex, entorhinal cortex, and molecular and granular cell layers of the cerebellum. Decreased GluR2/3 and NMDAε1 immunoreactivity was also observed in the molecular layer of the dentate gyrus, but not in the hippocampus proper in cases with hippocampal involvement. GABAA Rα1 expression was markedly decreased in the granular cell layer of the cerebellum in CJD. Decreased GluR2/3 and NMDAε1 expression correlated with prion protein deposition, neuron loss and spongiform degeneration in the cerebral cortex in every case. However, reduced GluR2/3 immunoreactivity in Purkinje cells was apparently independent of these parameters. In contrast to ionotropic glutamate receptors, GABAA Rα1 immunoreactivity was moderately increased in the frontal cortex, entorhinal cortex and molecular layer of the cerebellum in CJD. The present results show marked and selective abnormalities in the expression of crucial neurotransmitter receptors in CJD, ionotropic glutamate receptors being more severely affected than ionotropic GABA receptors. These findings stress selective vulnerability of glutamate receptors versus GABA receptors in CJD.
Literature
1.
go back to reference Aguglia U, Oliveri RL, Gambardella A, Talerico G, Zappia M, De Sarro GB, Quattrone A (1996) Functional preservation of nezodiazepine receptors of the primary somatosensory cortex in Creutzfeldt-Jakob disease: a pharmacologic-evoked potential study. Clin Neuropharmacol 19:87–91PubMed Aguglia U, Oliveri RL, Gambardella A, Talerico G, Zappia M, De Sarro GB, Quattrone A (1996) Functional preservation of nezodiazepine receptors of the primary somatosensory cortex in Creutzfeldt-Jakob disease: a pharmacologic-evoked potential study. Clin Neuropharmacol 19:87–91PubMed
2.
go back to reference Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ (1998) Subtypes of GABAA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 50:291–313PubMed Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ (1998) Subtypes of GABAA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 50:291–313PubMed
3.
go back to reference Belichenko PV, Brown D, Jeffrey M, Fraser JR (2000) Dendritic and synaptic alterations of hippocampal pyramidal neurones in scrapie-infected mice. Neuropathol Appl Neurobiol 26:143–149CrossRefPubMed Belichenko PV, Brown D, Jeffrey M, Fraser JR (2000) Dendritic and synaptic alterations of hippocampal pyramidal neurones in scrapie-infected mice. Neuropathol Appl Neurobiol 26:143–149CrossRefPubMed
4.
go back to reference Bignami A, Parry HB (1972) Electron microscopic studies on the brain of sheep with natural scrapie. II. The small nerve processes in neuronal degeneration. Brain 95:487–494PubMed Bignami A, Parry HB (1972) Electron microscopic studies on the brain of sheep with natural scrapie. II. The small nerve processes in neuronal degeneration. Brain 95:487–494PubMed
5.
go back to reference Borges K, Digledine R (1998) AMPA receptors: molecular and functional diversity. Prog Brain Res 116:153–170PubMed Borges K, Digledine R (1998) AMPA receptors: molecular and functional diversity. Prog Brain Res 116:153–170PubMed
6.
go back to reference Brown D, Halliday W, Jeffrey M, Fraser J (1997) Visualising scrapie infected and normal neurons in the murine hippocampus using Golgi impregnation and confocal imaging of intracellular dye. J Cell Pathol 2:131–136 Brown D, Halliday W, Jeffrey M, Fraser J (1997) Visualising scrapie infected and normal neurons in the murine hippocampus using Golgi impregnation and confocal imaging of intracellular dye. J Cell Pathol 2:131–136
7.
go back to reference Brown DR, Herms JW, Schmidt B, Kretzschmar HA (1997) PrP and β amyloid fragments activate different neurotoxic mechanisms in cultured mouse cells. Eur J Neurosci 9:1162–1169PubMed Brown DR, Herms JW, Schmidt B, Kretzschmar HA (1997) PrP and β amyloid fragments activate different neurotoxic mechanisms in cultured mouse cells. Eur J Neurosci 9:1162–1169PubMed
8.
go back to reference Catalá I, Ferrer I, Galofré E, Fábregues I (1988) Decreased numbers of dendritic spines on cortical pyramidal neurons in dementia. A quantitative Golgi study in biopsy samples. Hum Neurobiol 6:255–259PubMed Catalá I, Ferrer I, Galofré E, Fábregues I (1988) Decreased numbers of dendritic spines on cortical pyramidal neurons in dementia. A quantitative Golgi study in biopsy samples. Hum Neurobiol 6:255–259PubMed
9.
go back to reference Chou SM, Payne WN, Gibbs CJ, Gajdusek DC (1980) Transmission and scanning electron microscopy of spongiform change in Creutzfeldt-Jakob disease. Brain 103:885–904PubMed Chou SM, Payne WN, Gibbs CJ, Gajdusek DC (1980) Transmission and scanning electron microscopy of spongiform change in Creutzfeldt-Jakob disease. Brain 103:885–904PubMed
10.
go back to reference Collinge J, Whittington MA, Sidle KCL, Smith J, Palmer MS, Clarke AR, Jeffreys JGR (1994) Prion protein is necessary for normal synaptic function. Nature 370:295–297PubMed Collinge J, Whittington MA, Sidle KCL, Smith J, Palmer MS, Clarke AR, Jeffreys JGR (1994) Prion protein is necessary for normal synaptic function. Nature 370:295–297PubMed
11.
go back to reference Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7-61PubMed Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7-61PubMed
12.
go back to reference Ferrer I, Costa F, Grau Veciana JM (1981) Creutzfeldt-Jakob disease: a Golgi study. Neuropathol Appl Neurobiol 7:237–242PubMed Ferrer I, Costa F, Grau Veciana JM (1981) Creutzfeldt-Jakob disease: a Golgi study. Neuropathol Appl Neurobiol 7:237–242PubMed
13.
go back to reference Ferrer I, Casas R, Rivera R (1993) Parvalbumin-immunoreactive cortical neurons in Creutzfeldt-Jakob disease. Ann Neurol 34:864–866PubMed Ferrer I, Casas R, Rivera R (1993) Parvalbumin-immunoreactive cortical neurons in Creutzfeldt-Jakob disease. Ann Neurol 34:864–866PubMed
14.
go back to reference Gonatas NK, Terry RD, Weiss M (1965) Electron microscopic study in two cases of Jakob-Creutzfeldt disease. J Neuropathol Exp Neurol 24:575–598PubMed Gonatas NK, Terry RD, Weiss M (1965) Electron microscopic study in two cases of Jakob-Creutzfeldt disease. J Neuropathol Exp Neurol 24:575–598PubMed
15.
go back to reference Güentchev M, Hainfellner JA, Trabattoni GR, Budka H (1997) Distribution of parvalbumin-immunoreactive neurons in brain correlates with hippocampal and temporal cortical pathology in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 56:1119–1124 Güentchev M, Hainfellner JA, Trabattoni GR, Budka H (1997) Distribution of parvalbumin-immunoreactive neurons in brain correlates with hippocampal and temporal cortical pathology in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 56:1119–1124
16.
go back to reference Güentchev M, Groschup MH, Kodek R, Liberski PP, Budka H (1998) Severe, early and selective loss of a subpopulation of GABAergic inhibitory neurons in experimental transmissible spongiform encephalopathies. Brain Pathol 8:615–623PubMed Güentchev M, Groschup MH, Kodek R, Liberski PP, Budka H (1998) Severe, early and selective loss of a subpopulation of GABAergic inhibitory neurons in experimental transmissible spongiform encephalopathies. Brain Pathol 8:615–623PubMed
17.
go back to reference Hogan RN, Baringer JR, Prusiner SB (1987) Scrapie infection diminishes spines and increases varicosities of dendrites in hamsters: a quantitative Golgi study. J Neuropathol Exp Neurol 46:461–473PubMed Hogan RN, Baringer JR, Prusiner SB (1987) Scrapie infection diminishes spines and increases varicosities of dendrites in hamsters: a quantitative Golgi study. J Neuropathol Exp Neurol 46:461–473PubMed
18.
go back to reference Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108PubMed Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108PubMed
19.
go back to reference Ito Y, Amano T, Shimizu T, Hashimoto J, Kubo A, Fukuuchi Y (1998) Single-photon emission computed tomography image of benzodiazepine receptors in a patient with Creutzfeldt-Jakob disease. Intern Med 37:896–900PubMed Ito Y, Amano T, Shimizu T, Hashimoto J, Kubo A, Fukuuchi Y (1998) Single-photon emission computed tomography image of benzodiazepine receptors in a patient with Creutzfeldt-Jakob disease. Intern Med 37:896–900PubMed
20.
go back to reference Kannenberg K, Groschup MH, Siegel E (1995) Cellular prion protein and GABAA receptors: no physical association? NeuroReport 7:77–80 Kannenberg K, Groschup MH, Siegel E (1995) Cellular prion protein and GABAA receptors: no physical association? NeuroReport 7:77–80
21.
go back to reference Korpi ER, Mattila MJ, Wisden W, Luddens H (1999) GABAA-receptor subtypes: clinical efficiency and selectivity of benzodiazepine site ligands. Ann Med 29:275–282 Korpi ER, Mattila MJ, Wisden W, Luddens H (1999) GABAA-receptor subtypes: clinical efficiency and selectivity of benzodiazepine site ligands. Ann Med 29:275–282
22.
go back to reference Lampert PW, Gajdusek DC, Gibbs CJ Jr (1971) Experimental spongiform encephalopathy (Creutzfeldt-Jakob disease) in chimpanzees. Electron microscopical studies. J Neuropathol Exp Neurol 30:20–32PubMed Lampert PW, Gajdusek DC, Gibbs CJ Jr (1971) Experimental spongiform encephalopathy (Creutzfeldt-Jakob disease) in chimpanzees. Electron microscopical studies. J Neuropathol Exp Neurol 30:20–32PubMed
23.
go back to reference Landis DNMD, Williams RS, Masters CL (1981) Golgi and electron microscopic studies of spongiform encephalopathies. Neurology 31:538–549PubMed Landis DNMD, Williams RS, Masters CL (1981) Golgi and electron microscopic studies of spongiform encephalopathies. Neurology 31:538–549PubMed
24.
go back to reference Liberski P, Yanigahira R, Asher DM, Gibbs CJ, Gajdusek DC (1990) Reevaluation of the ultrastructural pathology of experimental Creutzfeldt-Jakob disease. Brain 113:121–137PubMed Liberski P, Yanigahira R, Asher DM, Gibbs CJ, Gajdusek DC (1990) Reevaluation of the ultrastructural pathology of experimental Creutzfeldt-Jakob disease. Brain 113:121–137PubMed
25.
go back to reference Macdonald RL, Olsen RW (1994) GABAA receptor channels. Annu Rev Neurosci 17:569–602PubMed Macdonald RL, Olsen RW (1994) GABAA receptor channels. Annu Rev Neurosci 17:569–602PubMed
26.
go back to reference Machado-Salas JP (1986) Dendritic and axonal spherules in the neocortex of a patient with Creutzfeldt-Jakob disease (CJD): Golgi and electron-microscopical investigation-neurobiological significance. Clin Neuropathol 5:176–184PubMed Machado-Salas JP (1986) Dendritic and axonal spherules in the neocortex of a patient with Creutzfeldt-Jakob disease (CJD): Golgi and electron-microscopical investigation-neurobiological significance. Clin Neuropathol 5:176–184PubMed
27.
go back to reference Marin O, Vial JD (1964) Neuropathological and ultrastructural findings in two cases of subacute spongiform encephalopathy. Acta Neuropathol 4:218–229 Marin O, Vial JD (1964) Neuropathological and ultrastructural findings in two cases of subacute spongiform encephalopathy. Acta Neuropathol 4:218–229
28.
go back to reference Müller WEG, Ushijima H, Schröder HC, Forrest JM, Schatton WF, Rytik PG, Heffner-Lauc M (1993) Cytoprotective effect of NMDA receptor antagonists on prion protein (PrionSc)-induced toxicity in rat cortical cell cultures. Eur J Pharmacol 246:261–267CrossRefPubMed Müller WEG, Ushijima H, Schröder HC, Forrest JM, Schatton WF, Rytik PG, Heffner-Lauc M (1993) Cytoprotective effect of NMDA receptor antagonists on prion protein (PrionSc)-induced toxicity in rat cortical cell cultures. Eur J Pharmacol 246:261–267CrossRefPubMed
29.
go back to reference Nakanishi S, Nakajima Y, Masu M, Ueda Y, Ankara K, Watanaabe D, Yamaguchi S, Kawabata S, Okada M (1998) Glutamate receptors: brain function and signal transduction. Brain Res Rev 26:230–235CrossRefPubMed Nakanishi S, Nakajima Y, Masu M, Ueda Y, Ankara K, Watanaabe D, Yamaguchi S, Kawabata S, Okada M (1998) Glutamate receptors: brain function and signal transduction. Brain Res Rev 26:230–235CrossRefPubMed
30.
go back to reference Olney JW, Ishimaru MJ (1999) Excitotoxic cell death. In: Koliatsos VE, Ratan RR (eds) Cell death and diseases of the nervous system. Humana Press, Totowa, pp 197–218 Olney JW, Ishimaru MJ (1999) Excitotoxic cell death. In: Koliatsos VE, Ratan RR (eds) Cell death and diseases of the nervous system. Humana Press, Totowa, pp 197–218
31.
go back to reference Ozawa S, Kamiya H, Tsuzuki K (1998) Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 54:581–618PubMed Ozawa S, Kamiya H, Tsuzuki K (1998) Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 54:581–618PubMed
32.
go back to reference Scallet AC, Ye X (1997) Excitotoxic mechanisms of neurodegeneration in transmissible spongiform encephalopathies. Ann NY Acad Sci 15:194–205 Scallet AC, Ye X (1997) Excitotoxic mechanisms of neurodegeneration in transmissible spongiform encephalopathies. Ann NY Acad Sci 15:194–205
33.
go back to reference Schoepfer R, Monyer H, Sommer B, Wisden W, Sprengel R, Kuner T, Lomeli H, Herb A, Kohler M, Burnashev N, Gunther W, Ruppersberg P, Seeburg P (1994) Molecular biology of glutamate receptors. Prog Neurobiol 42:353–357CrossRefPubMed Schoepfer R, Monyer H, Sommer B, Wisden W, Sprengel R, Kuner T, Lomeli H, Herb A, Kohler M, Burnashev N, Gunther W, Ruppersberg P, Seeburg P (1994) Molecular biology of glutamate receptors. Prog Neurobiol 42:353–357CrossRefPubMed
34.
go back to reference Tateishi J, Sato Y, Ohta M (1983) Creutzfeldt-Jakob disease in humans and laboratory animals. Prog Neuropathol 5:195–221 Tateishi J, Sato Y, Ohta M (1983) Creutzfeldt-Jakob disease in humans and laboratory animals. Prog Neuropathol 5:195–221
35.
go back to reference Wang Y, TesFaye E, Yasuda RP, Mash DC, Armstrong DM, Wolfe BB (2000) Effects of post-mortem delay on subunits of ionotropic glutamate receptors in human brain. Mol Brain Res 80:123–131CrossRefPubMed Wang Y, TesFaye E, Yasuda RP, Mash DC, Armstrong DM, Wolfe BB (2000) Effects of post-mortem delay on subunits of ionotropic glutamate receptors in human brain. Mol Brain Res 80:123–131CrossRefPubMed
36.
go back to reference Yoneda Y, Kuramoto N, Kitayama T, Hinoi E (2001) Consolidation of transient ionotropic glutamate signals through nuclear transcription factors in the brain. Prog Neurobiol 63:697–719CrossRefPubMed Yoneda Y, Kuramoto N, Kitayama T, Hinoi E (2001) Consolidation of transient ionotropic glutamate signals through nuclear transcription factors in the brain. Prog Neurobiol 63:697–719CrossRefPubMed
Metadata
Title
GluR2/3, NMDAε1 and GABAA receptors in Creutzfeldt-Jakob disease
Authors
I. Ferrer
B. Puig
Publication date
01-10-2003
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 4/2003
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-003-0732-z

Other articles of this Issue 4/2003

Acta Neuropathologica 4/2003 Go to the issue