Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2024

Open Access 01-12-2024 | Glucocorticoid | Review

Research progress in the pathogenesis of hormone-induced femoral head necrosis based on microvessels: a systematic review

Authors: Tiancheng Ma, Yan Wang, Jianxiong Ma, Hongwei Cui, Xiaotian Feng, Xinlong Ma

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2024

Login to get access

Abstract

Hormonal necrosis of the femoral head is caused by long-term use of glucocorticoids and other causes of abnormal bone metabolism, lipid metabolism imbalance and blood microcirculation disorders in the femoral head, resulting in bone trabecular fracture, bone tissue necrosis collapse, and hip dysfunction. It is the most common type of non-traumatic necrosis of the femoral head, and its pathogenesis is complex, while impaired blood circulation is considered to be the key to its occurrence. There are a large number of microvessels in the femoral head, among which H-type vessels play a decisive role in the “angiogenesis and osteogenesis coupling”, and thus have an important impact on the occurrence and development of femoral head necrosis. Glucocorticoids can cause blood flow injury of the femoral head mainly through coagulation dysfunction, endothelial dysfunction and impaired angiogenesis. Glucocorticoids may inhibit the formation of H-type vessels by reducing the expression of HIF-1α, PDGF-BB, VGEF and other factors, thus causing damage to the “angiogenesis-osteogenesis coupling” and reducing the ability of necrosis reconstruction and repair of the femoral head. Leads to the occurrence of hormonal femoral head necrosis. Therefore, this paper reviewed the progress in the study of the mechanism of hormone-induced femoral head necrosis based on microvascular blood flow at home and abroad, hoping to provide new ideas for the study of the mechanism of femoral head necrosis and provide references for clinical treatment of femoral head necrosis.
Literature
2.
go back to reference Singh S, Yadav SK, Meena VK, et al. Orthopedic scaffolds: evaluation of structural strength and permeability of fluid flow via an open cell neovius structure for bone tissue engineering. ACS Biomater Sci Eng. 2023;9(10):5900–11.PubMedCrossRef Singh S, Yadav SK, Meena VK, et al. Orthopedic scaffolds: evaluation of structural strength and permeability of fluid flow via an open cell neovius structure for bone tissue engineering. ACS Biomater Sci Eng. 2023;9(10):5900–11.PubMedCrossRef
3.
go back to reference Jianxiong M, Weiwei H, Jie Z, et al. Recent progress in pathogenesis of femoral head necrosis. J Tissue Eng. 2017;21(27):4397–402 (in Chinese). Jianxiong M, Weiwei H, Jie Z, et al. Recent progress in pathogenesis of femoral head necrosis. J Tissue Eng. 2017;21(27):4397–402 (in Chinese).
4.
go back to reference Cohen-Rosenblum A, Cui Q. Osteonecrosis of the femoral head. Orthop Clin North Am. 2019;50(2):139–49.PubMedCrossRef Cohen-Rosenblum A, Cui Q. Osteonecrosis of the femoral head. Orthop Clin North Am. 2019;50(2):139–49.PubMedCrossRef
5.
go back to reference Lin Q, Ren Z. Research progress on the mechanism of action of Chinese medicine in the treatment of femoral head necrosis. Chin J Pharmacoeconomics;17:121–4 (in Chinese). Lin Q, Ren Z. Research progress on the mechanism of action of Chinese medicine in the treatment of femoral head necrosis. Chin J Pharmacoeconomics;17:121–4 (in Chinese).
6.
7.
go back to reference Mont MA, Salem HS, Piuzzi NS, et al. Nontraumatic osteonecrosis of the femoral head. J Bone Jt Surg. 2020;102:1084–99.CrossRef Mont MA, Salem HS, Piuzzi NS, et al. Nontraumatic osteonecrosis of the femoral head. J Bone Jt Surg. 2020;102:1084–99.CrossRef
8.
go back to reference Zhao D, Zhang F, Wang B, et al. Guidelines for clinical diagnosis and treatment of osteonecrosis of the femoral head in adults. J Orthop Transl. 2020;21:100–10. Zhao D, Zhang F, Wang B, et al. Guidelines for clinical diagnosis and treatment of osteonecrosis of the femoral head in adults. J Orthop Transl. 2020;21:100–10.
9.
go back to reference Sadile F, Bernasconi A, Russo S, et al. Core decompression versus other joint preserving treatments for osteonecrosis of the femoral head: a meta-analysis. Br Med Bull. 2016;118(1):33–49.PubMedPubMedCentralCrossRef Sadile F, Bernasconi A, Russo S, et al. Core decompression versus other joint preserving treatments for osteonecrosis of the femoral head: a meta-analysis. Br Med Bull. 2016;118(1):33–49.PubMedPubMedCentralCrossRef
10.
go back to reference Wu CT, Shih-Hsiang Y, Lin PC, et al. Long-term outcomes of Phemister bone grafting for patients with non-traumatic osteonecrosis of the femoral head. Int Orthop. 2018;43(3):579–87.PubMedCrossRef Wu CT, Shih-Hsiang Y, Lin PC, et al. Long-term outcomes of Phemister bone grafting for patients with non-traumatic osteonecrosis of the femoral head. Int Orthop. 2018;43(3):579–87.PubMedCrossRef
11.
go back to reference Chen L, Hong G, Hong Z, et al. Optimizing indications of impacting bone allograft transplantation in osteonecrosis of the femoral head. Bone Jt J. 2020;102-B:838–44.CrossRef Chen L, Hong G, Hong Z, et al. Optimizing indications of impacting bone allograft transplantation in osteonecrosis of the femoral head. Bone Jt J. 2020;102-B:838–44.CrossRef
12.
go back to reference Wang C, Xie Q, Yang L, et al. A 3D printed porous titanium alloy rod with biogenic lamellar configuration for treatment of the early-stage femoral head osteonecrosis in sheep. J Mech Behav Biomed Mater. 2020;106:103738.PubMedCrossRef Wang C, Xie Q, Yang L, et al. A 3D printed porous titanium alloy rod with biogenic lamellar configuration for treatment of the early-stage femoral head osteonecrosis in sheep. J Mech Behav Biomed Mater. 2020;106:103738.PubMedCrossRef
13.
go back to reference Migliorini F, Maffulli N, Eschweiler J, et al. Core decompression isolated or combined with bone marrow-derived cell therapies for femoral head osteonecrosis. Expert Opin Biol Ther. 2021;21(3):423–30.PubMedCrossRef Migliorini F, Maffulli N, Eschweiler J, et al. Core decompression isolated or combined with bone marrow-derived cell therapies for femoral head osteonecrosis. Expert Opin Biol Ther. 2021;21(3):423–30.PubMedCrossRef
14.
go back to reference Quaranta M, Miranda L, Oliva F, et al. Osteotomies for avascular necrosis of the femoral head. Br Med Bull. 2021;137(1):98–111.PubMedCrossRef Quaranta M, Miranda L, Oliva F, et al. Osteotomies for avascular necrosis of the femoral head. Br Med Bull. 2021;137(1):98–111.PubMedCrossRef
15.
go back to reference Migliorini F, La Padula G, Oliva F, et al. Operative management of avascular necrosis of the femoral head in skeletally immature patients: a systematic review. Life. 2022;12(2):179.PubMedPubMedCentralCrossRef Migliorini F, La Padula G, Oliva F, et al. Operative management of avascular necrosis of the femoral head in skeletally immature patients: a systematic review. Life. 2022;12(2):179.PubMedPubMedCentralCrossRef
16.
go back to reference Migliorini F, Maffulli N, Baroncini A, et al. Prognostic factors in the management of osteonecrosis of the femoral head: a systematic review. Surgeon. 2023;21(2):85–98.PubMedCrossRef Migliorini F, Maffulli N, Baroncini A, et al. Prognostic factors in the management of osteonecrosis of the femoral head: a systematic review. Surgeon. 2023;21(2):85–98.PubMedCrossRef
17.
go back to reference Shibin Li, Lai Yu, Yi Z, et al. The pathogenesis of hormone-induced femur head necrosis and the target effect of related signaling pathways. J Tissue Eng. 2019;25(06):935–41 (in Chinese). Shibin Li, Lai Yu, Yi Z, et al. The pathogenesis of hormone-induced femur head necrosis and the target effect of related signaling pathways. J Tissue Eng. 2019;25(06):935–41 (in Chinese).
18.
go back to reference Weinstein RS. Clinical practice. Glucocorticoid-induced bone disease. N Engl J Med. 2011;365(1):62–70.PubMedCrossRef Weinstein RS. Clinical practice. Glucocorticoid-induced bone disease. N Engl J Med. 2011;365(1):62–70.PubMedCrossRef
19.
go back to reference Hines JT, Jo WL, Cui Q, et al. Osteonecrosis of the femoral head: an updated review of ARCO on pathogenesis, staging and treatment. J Korean Med Sci. 2021;36(24):e177.PubMedPubMedCentralCrossRef Hines JT, Jo WL, Cui Q, et al. Osteonecrosis of the femoral head: an updated review of ARCO on pathogenesis, staging and treatment. J Korean Med Sci. 2021;36(24):e177.PubMedPubMedCentralCrossRef
20.
go back to reference Timmermans S, Souffriau J, Libert C. A General introduction to glucocorticoid biology. Front Immunol. 2019;4(10):1545.CrossRef Timmermans S, Souffriau J, Libert C. A General introduction to glucocorticoid biology. Front Immunol. 2019;4(10):1545.CrossRef
21.
23.
go back to reference Kim KJ, Lee J, Wang W, et al. Austalide K from the fungus Penicillium rudallense prevents LPS-induced bone loss in mice by inhibiting osteoclast differentiation and promoting osteoblast differentiation. Int J Mol Sci. 2021;22:5493.PubMedPubMedCentralCrossRef Kim KJ, Lee J, Wang W, et al. Austalide K from the fungus Penicillium rudallense prevents LPS-induced bone loss in mice by inhibiting osteoclast differentiation and promoting osteoblast differentiation. Int J Mol Sci. 2021;22:5493.PubMedPubMedCentralCrossRef
24.
go back to reference Zheng ZW, Chen YH, Wu DY, et al. Development of an accurate and proactive immunomodulatory strategy to improve bone substitute material-mediated osteogenesis and angiogenesis. Theranostics. 2018;8(19):5482–500.PubMedPubMedCentralCrossRef Zheng ZW, Chen YH, Wu DY, et al. Development of an accurate and proactive immunomodulatory strategy to improve bone substitute material-mediated osteogenesis and angiogenesis. Theranostics. 2018;8(19):5482–500.PubMedPubMedCentralCrossRef
26.
go back to reference Grosso A, Burger MG, Lunger A, et al. It takes two to tango: coupling of angiogenesis and osteogenesis for bone regeneration. Front Bioeng Biotechnol. 2017;5:68.PubMedPubMedCentralCrossRef Grosso A, Burger MG, Lunger A, et al. It takes two to tango: coupling of angiogenesis and osteogenesis for bone regeneration. Front Bioeng Biotechnol. 2017;5:68.PubMedPubMedCentralCrossRef
27.
go back to reference Wang Q, Zhou J, Wang X, et al. Coupling induction of osteogenesis and type H vessels by pulsed electromagnetic fields in ovariectomy-induced osteoporosis in mice. Bone. 2022;154:116211.PubMedCrossRef Wang Q, Zhou J, Wang X, et al. Coupling induction of osteogenesis and type H vessels by pulsed electromagnetic fields in ovariectomy-induced osteoporosis in mice. Bone. 2022;154:116211.PubMedCrossRef
29.
go back to reference Song W, Tao Z, Xinlong Ma, et al. Research progress on the role of biomechanical factors in the occurrence and development of femoral head necrosis. Shandong Med. 2015;55(11):89–91 (in Chinese). Song W, Tao Z, Xinlong Ma, et al. Research progress on the role of biomechanical factors in the occurrence and development of femoral head necrosis. Shandong Med. 2015;55(11):89–91 (in Chinese).
30.
go back to reference Inoue T, Shoji T, Kato Y, et al. Investigating the subchondral trabecular bone microstructure in patients with osteonecrosis of the femoral head using multi-detector row computed tomography. Mod Rheumatol. 2023;33(6):1190–6.PubMedCrossRef Inoue T, Shoji T, Kato Y, et al. Investigating the subchondral trabecular bone microstructure in patients with osteonecrosis of the femoral head using multi-detector row computed tomography. Mod Rheumatol. 2023;33(6):1190–6.PubMedCrossRef
31.
go back to reference Pascart T, Falgayrac G, Cortet B, et al. Subchondral involvement in osteonecrosis of the femoral head: insight on local composition, microstructure and vascularization. Osteoarthr Cartil. 2022;30(8):1103–15.CrossRef Pascart T, Falgayrac G, Cortet B, et al. Subchondral involvement in osteonecrosis of the femoral head: insight on local composition, microstructure and vascularization. Osteoarthr Cartil. 2022;30(8):1103–15.CrossRef
32.
go back to reference Baba S, Motomura G, Ikemura S, et al. Quantitative evaluation of bone-resorptive lesion volume in osteonecrosis of the femoral head using micro-computed tomography. Jt Bone Spine. 2020;87(1):75–80.CrossRef Baba S, Motomura G, Ikemura S, et al. Quantitative evaluation of bone-resorptive lesion volume in osteonecrosis of the femoral head using micro-computed tomography. Jt Bone Spine. 2020;87(1):75–80.CrossRef
33.
go back to reference Gao Y, Fu Y, Xin Z, et al. Prediction of mechanical properties and collapse risk of avascular necrotic femoral head under walking exercise [J/OL]. Chin Tissue Eng Res. 2024. Gao Y, Fu Y, Xin Z, et al. Prediction of mechanical properties and collapse risk of avascular necrotic femoral head under walking exercise [J/OL]. Chin Tissue Eng Res. 2024.
34.
go back to reference Grüneboom A, Kling L, Christiansen S, et al. Next-generation imaging of the skeletal system and its blood supply. Nat Rev Rheumatol. 2019;15:533–49.PubMedCrossRef Grüneboom A, Kling L, Christiansen S, et al. Next-generation imaging of the skeletal system and its blood supply. Nat Rev Rheumatol. 2019;15:533–49.PubMedCrossRef
35.
go back to reference Grüneboom A, Hawwari I, Weidner D, et al. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat Metab. 2019;1:236–50.PubMedPubMedCentralCrossRef Grüneboom A, Hawwari I, Weidner D, et al. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat Metab. 2019;1:236–50.PubMedPubMedCentralCrossRef
36.
go back to reference Shujuan W, Liao M, Xuzhong Z, Yan L. Assessment of local blood supply during femoral neck fracture: advances in anatomical studies and clinical applications. 36(3):294–8 (2023). Shujuan W, Liao M, Xuzhong Z, Yan L. Assessment of local blood supply during femoral neck fracture: advances in anatomical studies and clinical applications. 36(3):294–8 (2023).
37.
go back to reference Kawasaki Y, Kinose S, Kato K, et al. Anatomic characterization of the femoral nutrient artery: application to fracture and surgery of the femur. Clin Anat. 2020;33(4):479–87.PubMedCrossRef Kawasaki Y, Kinose S, Kato K, et al. Anatomic characterization of the femoral nutrient artery: application to fracture and surgery of the femur. Clin Anat. 2020;33(4):479–87.PubMedCrossRef
38.
go back to reference Rajani SJ, Ravat MK, Rajani JK, et al. Cadaveric study of profunda femoris artery with some unique variations. J Clin Diagn Res. 2015;9:AC01–3.PubMedPubMedCentral Rajani SJ, Ravat MK, Rajani JK, et al. Cadaveric study of profunda femoris artery with some unique variations. J Clin Diagn Res. 2015;9:AC01–3.PubMedPubMedCentral
39.
go back to reference Zhao D, Qiu X, Wang B, et al. Epiphyseal arterial network and inferior retinacular artery seem critical to femoral head perfusion in adults with femoral neck fractures. Clin Orthop Relat Res. 2017;475:2011–23.PubMedPubMedCentralCrossRef Zhao D, Qiu X, Wang B, et al. Epiphyseal arterial network and inferior retinacular artery seem critical to femoral head perfusion in adults with femoral neck fractures. Clin Orthop Relat Res. 2017;475:2011–23.PubMedPubMedCentralCrossRef
40.
41.
go back to reference Qiu X, Cheng LL, Wang BJ, Liu BY, Yang L, Yu M, Gu G, Zhao DW. Micro perfusion and quantitative analysis of the femoral head intraosseous artery. Orthop Surg. 2018;10(1):69–74.PubMedPubMedCentralCrossRef Qiu X, Cheng LL, Wang BJ, Liu BY, Yang L, Yu M, Gu G, Zhao DW. Micro perfusion and quantitative analysis of the femoral head intraosseous artery. Orthop Surg. 2018;10(1):69–74.PubMedPubMedCentralCrossRef
42.
go back to reference Xu Z, Kusumbe AP, Cai H, et al. Type H blood vessels in coupling angiogenesis-osteogenesis and its application in bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2023;111:1434–46.PubMedCrossRef Xu Z, Kusumbe AP, Cai H, et al. Type H blood vessels in coupling angiogenesis-osteogenesis and its application in bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2023;111:1434–46.PubMedCrossRef
45.
go back to reference Joshi AA, Padhye AM, Gupta HS. Platelet derived growth factor-BB levels in gingival crevicular fluid of localized intrabony defect sites treated with platelet rich fibrin membrane or collagen membrane containing recombinant human platelet derived growth factor-BB: a randomized clinical and biochemical study. J Periodontol. 2019;90(7):701–8.PubMedCrossRef Joshi AA, Padhye AM, Gupta HS. Platelet derived growth factor-BB levels in gingival crevicular fluid of localized intrabony defect sites treated with platelet rich fibrin membrane or collagen membrane containing recombinant human platelet derived growth factor-BB: a randomized clinical and biochemical study. J Periodontol. 2019;90(7):701–8.PubMedCrossRef
47.
go back to reference Yang Z, Huang Y, Zhu L, et al. SIRT6 promotes angiogenesis and hemorrhage of carotid plaque via regulating HIF-1α and reactive oxygen species. Cell Death Dis. 2021;12(1):77.PubMedPubMedCentralCrossRef Yang Z, Huang Y, Zhu L, et al. SIRT6 promotes angiogenesis and hemorrhage of carotid plaque via regulating HIF-1α and reactive oxygen species. Cell Death Dis. 2021;12(1):77.PubMedPubMedCentralCrossRef
49.
go back to reference Riddle RC, Khatri R, Schipani E, et al. Role of hypoxia-inducible factor-1alpha in angiogenic-osteogenic coupling. J Mol Med. 2009;87(6):583–90.PubMedCrossRef Riddle RC, Khatri R, Schipani E, et al. Role of hypoxia-inducible factor-1alpha in angiogenic-osteogenic coupling. J Mol Med. 2009;87(6):583–90.PubMedCrossRef
51.
52.
go back to reference Ribatti D, d’Amati A. Bone angiocrine factors. Front Cell Dev Biol. 2023;3(11):1244372.CrossRef Ribatti D, d’Amati A. Bone angiocrine factors. Front Cell Dev Biol. 2023;3(11):1244372.CrossRef
53.
go back to reference Singh M, Singh B, Sharma K, et al. A molecular troika of angiogenesis, coagulopathy and endothelial dysfunction in the pathology of avascular necrosis of femoral head: a comprehensive review. Cells. 2023;12(18):2278.PubMedPubMedCentralCrossRef Singh M, Singh B, Sharma K, et al. A molecular troika of angiogenesis, coagulopathy and endothelial dysfunction in the pathology of avascular necrosis of femoral head: a comprehensive review. Cells. 2023;12(18):2278.PubMedPubMedCentralCrossRef
55.
go back to reference Arachchillage DJ, Mackillop L, Chandratheva A, et al. Thrombophilia testing: a British Society for Haematology guideline. Br J Haematol. 2022;198(3):443–58.PubMedPubMedCentralCrossRef Arachchillage DJ, Mackillop L, Chandratheva A, et al. Thrombophilia testing: a British Society for Haematology guideline. Br J Haematol. 2022;198(3):443–58.PubMedPubMedCentralCrossRef
56.
go back to reference Campello E, Spiezia L, Adamo A, et al. Thrombophilia, risk factors and prevention. Expert Rev Hematol. 2019;12(3):147–58.PubMedCrossRef Campello E, Spiezia L, Adamo A, et al. Thrombophilia, risk factors and prevention. Expert Rev Hematol. 2019;12(3):147–58.PubMedCrossRef
57.
go back to reference Zhang Q, Lv J, Jin L. Role of coagulopathy in glucocorticoid-induced osteonecrosis of the femoral head. J Int Med Res. 2018;46(6):2141–8.PubMedCrossRef Zhang Q, Lv J, Jin L. Role of coagulopathy in glucocorticoid-induced osteonecrosis of the femoral head. J Int Med Res. 2018;46(6):2141–8.PubMedCrossRef
58.
go back to reference Okada K, Okamoto T, Okumoto K, et al. PAI-1 is involved in delayed bone repair induced by glucocorticoids in mice. Bone. 2020;134:115310.PubMedCrossRef Okada K, Okamoto T, Okumoto K, et al. PAI-1 is involved in delayed bone repair induced by glucocorticoids in mice. Bone. 2020;134:115310.PubMedCrossRef
59.
go back to reference Li L, Wang Y, Yu X, et al. Bone marrow mesenchymal stem cell-derived exosomes promote plasminogen activator inhibitor 1 expression in vascular cells in the local microenvironment during rabbit osteonecrosis of the femoral head. Stem Cell Res Ther. 2020;11(1):480.PubMedPubMedCentralCrossRef Li L, Wang Y, Yu X, et al. Bone marrow mesenchymal stem cell-derived exosomes promote plasminogen activator inhibitor 1 expression in vascular cells in the local microenvironment during rabbit osteonecrosis of the femoral head. Stem Cell Res Ther. 2020;11(1):480.PubMedPubMedCentralCrossRef
60.
go back to reference Trimm E, Red-Horse K. Vascular endothelial cell development and diversity. Nat Rev Cardiol. 2023;20(3):197–210.PubMedCrossRef Trimm E, Red-Horse K. Vascular endothelial cell development and diversity. Nat Rev Cardiol. 2023;20(3):197–210.PubMedCrossRef
61.
go back to reference Pacinella G, Ciaccio AM, Tuttolomondo A. Endothelial dysfunction and chronic inflammation: the cornerstones of vascular alterations in age-related diseases. Int J Mol Sci. 2022;23(24):15722.PubMedPubMedCentralCrossRef Pacinella G, Ciaccio AM, Tuttolomondo A. Endothelial dysfunction and chronic inflammation: the cornerstones of vascular alterations in age-related diseases. Int J Mol Sci. 2022;23(24):15722.PubMedPubMedCentralCrossRef
63.
go back to reference Ma J, Shen M, Yue D, et al. Extracellular vesicles from BMSCs prevent glucocorticoid-induced BMECs injury by regulating autophagy via the PI3K/Akt/mTOR pathway. Cells. 2022;11(13):2104.PubMedPubMedCentralCrossRef Ma J, Shen M, Yue D, et al. Extracellular vesicles from BMSCs prevent glucocorticoid-induced BMECs injury by regulating autophagy via the PI3K/Akt/mTOR pathway. Cells. 2022;11(13):2104.PubMedPubMedCentralCrossRef
64.
go back to reference Huang X, Jie S, Li W, Li H, Ni J, Liu C. miR-122-5p targets GREM2 to protect against glucocorticoid-induced endothelial damage through the BMP signaling pathway. Mol Cell Endocrinol. 2022;15(544):111541.CrossRef Huang X, Jie S, Li W, Li H, Ni J, Liu C. miR-122-5p targets GREM2 to protect against glucocorticoid-induced endothelial damage through the BMP signaling pathway. Mol Cell Endocrinol. 2022;15(544):111541.CrossRef
65.
go back to reference Yu H, Liu P, Zuo W, et al. Decreased angiogenic and increased apoptotic activities of bone microvascular endothelial cells in patients with glucocorticoid-induced osteonecrosis of the femoral head. BMC Musculoskelet Disord. 2020;21(1):277.PubMedPubMedCentralCrossRef Yu H, Liu P, Zuo W, et al. Decreased angiogenic and increased apoptotic activities of bone microvascular endothelial cells in patients with glucocorticoid-induced osteonecrosis of the femoral head. BMC Musculoskelet Disord. 2020;21(1):277.PubMedPubMedCentralCrossRef
67.
go back to reference Kazerounian S, Lawler J. Integration of pro- and anti-angiogenic signals by endothelial cells. J Cell Commun Signal. 2018;12:171–9.PubMedCrossRef Kazerounian S, Lawler J. Integration of pro- and anti-angiogenic signals by endothelial cells. J Cell Commun Signal. 2018;12:171–9.PubMedCrossRef
68.
go back to reference Han Y, You X, Xing W, et al. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018;6:16.PubMedPubMedCentralCrossRef Han Y, You X, Xing W, et al. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018;6:16.PubMedPubMedCentralCrossRef
69.
go back to reference Kar S, Samii A, Bertalanffy H. PTEN/PI3K/Akt/VEGF signaling and the cross talk to KRIT1, CCM2, and PDCD10 proteins in cerebral cavernous malformations. Neurosurg Rev. 2015;38(2):229–37.PubMedCrossRef Kar S, Samii A, Bertalanffy H. PTEN/PI3K/Akt/VEGF signaling and the cross talk to KRIT1, CCM2, and PDCD10 proteins in cerebral cavernous malformations. Neurosurg Rev. 2015;38(2):229–37.PubMedCrossRef
70.
go back to reference Xu WN, Zheng HL, Yang RZ, et al. HIF-1α regulates glucocorticoid-induced osteoporosis through PDK1/AKT/mTOR signaling pathway. Front Endocrinol. 2020;28(10):922.CrossRef Xu WN, Zheng HL, Yang RZ, et al. HIF-1α regulates glucocorticoid-induced osteoporosis through PDK1/AKT/mTOR signaling pathway. Front Endocrinol. 2020;28(10):922.CrossRef
71.
go back to reference Liu X, Chai Y, Liu G, et al. Osteoclasts protect bone blood vessels against senescence through the angiogenin/plexin-B2 axis. Nat Commun. 2021;12(1):1832.PubMedPubMedCentralCrossRef Liu X, Chai Y, Liu G, et al. Osteoclasts protect bone blood vessels against senescence through the angiogenin/plexin-B2 axis. Nat Commun. 2021;12(1):1832.PubMedPubMedCentralCrossRef
72.
go back to reference Yang M, Liu H, Wang Y, et al. Hypoxia reduces the osteogenic differentiation of peripheral blood mesenchymal stem cells by upregulating Notch-1 expression. Connect Tissue Res. 2019;60(6):583–96.PubMedCrossRef Yang M, Liu H, Wang Y, et al. Hypoxia reduces the osteogenic differentiation of peripheral blood mesenchymal stem cells by upregulating Notch-1 expression. Connect Tissue Res. 2019;60(6):583–96.PubMedCrossRef
73.
go back to reference Weinstein RS, Hogan EA, Borrelli MJ, et al. The Pathophysiological sequence of glucocorticoid-induced osteonecrosis of the femoral head in male mice. Endocrinology. 2017;158(11):3817–31.PubMedPubMedCentralCrossRef Weinstein RS, Hogan EA, Borrelli MJ, et al. The Pathophysiological sequence of glucocorticoid-induced osteonecrosis of the femoral head in male mice. Endocrinology. 2017;158(11):3817–31.PubMedPubMedCentralCrossRef
74.
75.
go back to reference Marchi D, van Eeden FJM. Homeostatic regulation of glucocorticoid receptor activity by hypoxia-inducible factor 1: from physiology to clinic. Cells. 2021;10(12):3441.PubMedPubMedCentralCrossRef Marchi D, van Eeden FJM. Homeostatic regulation of glucocorticoid receptor activity by hypoxia-inducible factor 1: from physiology to clinic. Cells. 2021;10(12):3441.PubMedPubMedCentralCrossRef
76.
go back to reference Vanderhaeghen T, Beyaert R, Libert C. Bidirectional crosstalk between hypoxia inducible factors and glucocorticoid signalling in health and disease. Front Immunol. 2021;4(12):684085.CrossRef Vanderhaeghen T, Beyaert R, Libert C. Bidirectional crosstalk between hypoxia inducible factors and glucocorticoid signalling in health and disease. Front Immunol. 2021;4(12):684085.CrossRef
77.
go back to reference Wang Y, Wan C, Deng L, et al. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest. 2007;117:1616–26.PubMedPubMedCentralCrossRef Wang Y, Wan C, Deng L, et al. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest. 2007;117:1616–26.PubMedPubMedCentralCrossRef
78.
go back to reference Lane NE, Mohan G, Yao W, et al. Prevalence of glucocorticoid induced osteonecrosis in the mouse is not affected by treatments that maintain bone vascularity. Bone Rep. 2018;9:181–7.PubMedPubMedCentralCrossRef Lane NE, Mohan G, Yao W, et al. Prevalence of glucocorticoid induced osteonecrosis in the mouse is not affected by treatments that maintain bone vascularity. Bone Rep. 2018;9:181–7.PubMedPubMedCentralCrossRef
79.
go back to reference Yu Haiyang LU, Zengpeng WANGH, et al. Experimental study on the changes of Hif-1α/VEGF signal axis and H-type vessels in hormone-induced femoral head necrosis. Chin J Exp Anim Sci. 2019;30(06):759–66. Yu Haiyang LU, Zengpeng WANGH, et al. Experimental study on the changes of Hif-1α/VEGF signal axis and H-type vessels in hormone-induced femoral head necrosis. Chin J Exp Anim Sci. 2019;30(06):759–66.
80.
go back to reference Li S, Zhan X, Zhang Y, et al. Effect of high dose glucocorticoid on PDGF-BB secretion and H-type vascular growth in adult male mice. Chin J Osteoporos. 27(12):1752–6. Li S, Zhan X, Zhang Y, et al. Effect of high dose glucocorticoid on PDGF-BB secretion and H-type vascular growth in adult male mice. Chin J Osteoporos. 27(12):1752–6.
81.
go back to reference Peng Y, Lv S, Li Y, et al. Glucocorticoids disrupt skeletal angiogenesis through trans repression of NF-κB-Mediated preosteoclast Pdgfb transcription in young mice. J Bone Miner Res. 2020;35(6):1188–202.PubMedCrossRef Peng Y, Lv S, Li Y, et al. Glucocorticoids disrupt skeletal angiogenesis through trans repression of NF-κB-Mediated preosteoclast Pdgfb transcription in young mice. J Bone Miner Res. 2020;35(6):1188–202.PubMedCrossRef
82.
go back to reference Shangguan Y, Wu Z, Xie X, et al. Low-activity programming of the PDGFRβ/FAK pathway mediates H-type vessel dysplasia and high susceptibility to osteoporosis in female offspring rats after prenatal dexamethasone exposure. Biochem Pharmacol. 2021;185:114414.PubMedCrossRef Shangguan Y, Wu Z, Xie X, et al. Low-activity programming of the PDGFRβ/FAK pathway mediates H-type vessel dysplasia and high susceptibility to osteoporosis in female offspring rats after prenatal dexamethasone exposure. Biochem Pharmacol. 2021;185:114414.PubMedCrossRef
83.
go back to reference Yang P, Lv S, Wang Y, et al. Preservation of type H vessels and osteoblasts by enhanced preosteoclast platelet-derived growth factor type BB attenuates glucocorticoid-induced osteoporosis in growing mice. Bone. 2018;114:1–13.PubMedPubMedCentralCrossRef Yang P, Lv S, Wang Y, et al. Preservation of type H vessels and osteoblasts by enhanced preosteoclast platelet-derived growth factor type BB attenuates glucocorticoid-induced osteoporosis in growing mice. Bone. 2018;114:1–13.PubMedPubMedCentralCrossRef
84.
go back to reference Wang Y, et al. Angiogenin/ribonuclease 5 is an EGFR ligand and a serum biomarker for erlotinib sensitivity in pancreatic cancer. Cancer Cell. 2018;33:752–69.PubMedPubMedCentralCrossRef Wang Y, et al. Angiogenin/ribonuclease 5 is an EGFR ligand and a serum biomarker for erlotinib sensitivity in pancreatic cancer. Cancer Cell. 2018;33:752–69.PubMedPubMedCentralCrossRef
86.
go back to reference Bai R, Sun D, Chen M, et al. Myeloid cells protect intestinal epithelial barrier integrity through the angiogenin/plexin-B2 axis. EMBO J. 2020;39(13):e103325.PubMedPubMedCentralCrossRef Bai R, Sun D, Chen M, et al. Myeloid cells protect intestinal epithelial barrier integrity through the angiogenin/plexin-B2 axis. EMBO J. 2020;39(13):e103325.PubMedPubMedCentralCrossRef
87.
go back to reference Li S, Goncalves KA, Lyu B, et al. Chemo sensitization of prostate cancer stem cells in mice by angiogenin and plexin-B2 inhibitors. Commun Biol. 2020;3:26.PubMedPubMedCentralCrossRef Li S, Goncalves KA, Lyu B, et al. Chemo sensitization of prostate cancer stem cells in mice by angiogenin and plexin-B2 inhibitors. Commun Biol. 2020;3:26.PubMedPubMedCentralCrossRef
88.
go back to reference Vettori A, Greenald D, Wilson GK, et al. Glucocorticoids promote Von Hippel Lindau degradation and Hif-1α stabilization. Proc Natl Acad Sci USA. 2017;114(37):9948–53.PubMedPubMedCentralCrossRef Vettori A, Greenald D, Wilson GK, et al. Glucocorticoids promote Von Hippel Lindau degradation and Hif-1α stabilization. Proc Natl Acad Sci USA. 2017;114(37):9948–53.PubMedPubMedCentralCrossRef
89.
go back to reference Wagner AE, Huck G, Stiehl DP, Jelkmann W, Hellwig-Bürgel T. Dexamethasone impairs hypoxia-inducible factor-1 function. Biochem Biophys Res Commun. 2008;372:336–40.PubMedCrossRef Wagner AE, Huck G, Stiehl DP, Jelkmann W, Hellwig-Bürgel T. Dexamethasone impairs hypoxia-inducible factor-1 function. Biochem Biophys Res Commun. 2008;372:336–40.PubMedCrossRef
90.
go back to reference Gaber T, Schellmann S, Erekul KB, et al. Macrophage migration inhibitory factor counterregulates dexamethasone-mediated suppression of hypoxia-inducible factor-1α function and differentially influences human CD4+ T cell proliferation under hypoxia. J Immunol. 2010;186:764–74.PubMedCrossRef Gaber T, Schellmann S, Erekul KB, et al. Macrophage migration inhibitory factor counterregulates dexamethasone-mediated suppression of hypoxia-inducible factor-1α function and differentially influences human CD4+ T cell proliferation under hypoxia. J Immunol. 2010;186:764–74.PubMedCrossRef
91.
go back to reference Liao Z, Jin Y, Chu Y, et al. Single-cell transcriptome analysis reveals aberrant stromal cells and heterogeneous endothelial cells in alcohol-induced osteonecrosis of the femoral head. Commun Biol. 2022;5(1):324.PubMedPubMedCentralCrossRef Liao Z, Jin Y, Chu Y, et al. Single-cell transcriptome analysis reveals aberrant stromal cells and heterogeneous endothelial cells in alcohol-induced osteonecrosis of the femoral head. Commun Biol. 2022;5(1):324.PubMedPubMedCentralCrossRef
Metadata
Title
Research progress in the pathogenesis of hormone-induced femoral head necrosis based on microvessels: a systematic review
Authors
Tiancheng Ma
Yan Wang
Jianxiong Ma
Hongwei Cui
Xiaotian Feng
Xinlong Ma
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Glucocorticoid
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2024
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-024-04748-2

Other articles of this Issue 1/2024

Journal of Orthopaedic Surgery and Research 1/2024 Go to the issue