Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2023

Open Access 01-12-2023 | Glucocorticoid | Research

Biological effect of bone marrow mesenchymal stem cell- derived extracellular vesicles on the structure of alveolar bone in rats with glucocorticoid-induced osteoporosis

Authors: Aya S. Sedik, Khadiga Y. Kawana, Azza S. Koura, Radwa A. Mehanna

Published in: BMC Musculoskeletal Disorders | Issue 1/2023

Login to get access

Abstract

Background

Glucocorticoids are used for the treatment of autoimmune disorders; however, they can elicit several side effects such as osteoporosis. Several approaches can be made to treat glucocorticoid-induced osteoporosis, including the use of stem cells. However, the therapeutic effect of mesenchymal stem cells depends on its released factors, including extracellular vesicles. Extracellular vesicles have been recognized as important mediators of intercellular communication as they participate in many physiological processes. The present study was designed to investigate the effect of bone marrow mesenchymal stem cells derived extracellular vesicles on the structure of alveolar bone in rats with glucocorticoid-induced osteoporosis.

Methods

Thirty adult albino male rats were divided into 3 groups: control group (CG), glucocorticoid-induced osteoporosis (GOG) and extracellular vesicles treated group (ExTG). Rats in the GOG and ExTG groups were injected with methylprednisolone acetate (40 mg/kg) intramuscularly in the quadriceps muscle 3 times per week for three weeks in the early morning. Afterwards, the rats in GOG group received a single vehicle injection (PBS) while each rat in the ExTG group received a single injection of extracellular vesicles (400 μg/kg suspended in 0.2 ml PBS) in the tail vein. Rats were euthanized 1 month after injection. Mandibles were dissected and the molar segments were prepared for histological preparation, scanning electron microscopy (SEM), and energy dispersive x-ray (EDX).

Results

Histology and scanning electron microscopyof bone tissue showed alveolar bone loss and bone resorption in the GOG group. while in the ExTG group, alveolar bone demostrated normal bone architecture. EDX showed that calcium percentage in GOG group was lower than ExTG group,which showed no statistically significant difference from the control group.

Conclusions

Extracellular vesicles may be a promising treatment modality in the treatment of bone diseases and in bone regeneration. However, further research is needed before stating that extracellular vesicles s can be used to treat bone disorders especially when translating to humans.
Literature
1.
go back to reference Zhou DA, Zheng HX, Wang CW, Shi D, Li JJ. Influence of glucocorticoids on the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. BMC Musculoskelet Disord. 2014;15:239.PubMedPubMedCentralCrossRef Zhou DA, Zheng HX, Wang CW, Shi D, Li JJ. Influence of glucocorticoids on the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. BMC Musculoskelet Disord. 2014;15:239.PubMedPubMedCentralCrossRef
2.
go back to reference Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids–new mechanisms for old drugs. N Engl J Med. 2005;353(16):1711–23.PubMedCrossRef Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids–new mechanisms for old drugs. N Engl J Med. 2005;353(16):1711–23.PubMedCrossRef
3.
go back to reference Grad I, Picard D. The glucocorticoid responses are shaped by molecular chaperones. Mol Cell Endocrinol. 2007;275(1–2):2–12.PubMedCrossRef Grad I, Picard D. The glucocorticoid responses are shaped by molecular chaperones. Mol Cell Endocrinol. 2007;275(1–2):2–12.PubMedCrossRef
5.
go back to reference Biddie SC, John S, Sabo PJ, Thurman RE, Johnson TA, Schiltz RL, et al. Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol Cell. 2011;43(1):145–55.PubMedPubMedCentralCrossRef Biddie SC, John S, Sabo PJ, Thurman RE, Johnson TA, Schiltz RL, et al. Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol Cell. 2011;43(1):145–55.PubMedPubMedCentralCrossRef
6.
go back to reference Almawi WY, Melemedjian OK. Molecular mechanisms of glucocorticoid antiproliferative effects: antagonism of transcription factor activity by glucocorticoid receptor. J Leukoc Biol. 2002;71(1):9–15.PubMedCrossRef Almawi WY, Melemedjian OK. Molecular mechanisms of glucocorticoid antiproliferative effects: antagonism of transcription factor activity by glucocorticoid receptor. J Leukoc Biol. 2002;71(1):9–15.PubMedCrossRef
7.
go back to reference Ishaq M, DeGray G, Mou K, Aguilera A, Yang J, Lempicki RA, et al. Zap70 signaling pathway mediates glucocorticoid receptor-dependent transcriptional activation: role in the regulation of annexin 1 expression in T cells. J Immunol. 2007;179(6):3851–8.PubMedCrossRef Ishaq M, DeGray G, Mou K, Aguilera A, Yang J, Lempicki RA, et al. Zap70 signaling pathway mediates glucocorticoid receptor-dependent transcriptional activation: role in the regulation of annexin 1 expression in T cells. J Immunol. 2007;179(6):3851–8.PubMedCrossRef
8.
go back to reference Song IH, Gold R, Straub RH, Burmester GR, Buttgereit F. New glucocorticoids on the horizon: repress, don’t activate! J Rheumatol. 2005;32(7):1199–207.PubMed Song IH, Gold R, Straub RH, Burmester GR, Buttgereit F. New glucocorticoids on the horizon: repress, don’t activate! J Rheumatol. 2005;32(7):1199–207.PubMed
9.
go back to reference Schäcke H, Rehwinkel H, Asadullah K, Cato AC. Insight into the molecular mechanisms of glucocorticoid receptor action promotes identification of novel ligands with an improved therapeutic index. Exp Dermatol. 2006;15(8):565–73.PubMedCrossRef Schäcke H, Rehwinkel H, Asadullah K, Cato AC. Insight into the molecular mechanisms of glucocorticoid receptor action promotes identification of novel ligands with an improved therapeutic index. Exp Dermatol. 2006;15(8):565–73.PubMedCrossRef
10.
go back to reference Ericson-Neilsen W, Kaye AD. Steroids: pharmacology, complications, and practice delivery issues. Ochsner J. 2014;14(2):203–7.PubMedPubMedCentral Ericson-Neilsen W, Kaye AD. Steroids: pharmacology, complications, and practice delivery issues. Ochsner J. 2014;14(2):203–7.PubMedPubMedCentral
11.
go back to reference Pérez AV, Picotto G, Carpentieri AR, Rivoira MA, Peralta López ME, Tolosa de Talamoni NG. Emphasis on molecular mechanisms of transcellular pathway. Digestio. 2008;77(1):22–34.CrossRef Pérez AV, Picotto G, Carpentieri AR, Rivoira MA, Peralta López ME, Tolosa de Talamoni NG. Emphasis on molecular mechanisms of transcellular pathway. Digestio. 2008;77(1):22–34.CrossRef
12.
go back to reference Chrousos GP, Torpy DJ, Gold PW. Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications. Ann Intern Med. 1998;129(3):229–40.PubMedCrossRef Chrousos GP, Torpy DJ, Gold PW. Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications. Ann Intern Med. 1998;129(3):229–40.PubMedCrossRef
13.
go back to reference Cooper MS, Zhou H, Seibel MJ. Selective glucocorticoid receptor agonists: glucocorticoid therapy with no regrets? J Bone Miner Res. 2012;27(11):2238–41.PubMedCrossRef Cooper MS, Zhou H, Seibel MJ. Selective glucocorticoid receptor agonists: glucocorticoid therapy with no regrets? J Bone Miner Res. 2012;27(11):2238–41.PubMedCrossRef
15.
go back to reference Wang C, Meng H, Wang X, Zhao C, Peng J, Wang Y. Differentiation of Bone Marrow Mesenchymal Stem Cells in Osteoblasts and Adipocytes and its Role in Treatment of Osteoporosis. Med Sci Monit. 2016;22:226–33.PubMedPubMedCentralCrossRef Wang C, Meng H, Wang X, Zhao C, Peng J, Wang Y. Differentiation of Bone Marrow Mesenchymal Stem Cells in Osteoblasts and Adipocytes and its Role in Treatment of Osteoporosis. Med Sci Monit. 2016;22:226–33.PubMedPubMedCentralCrossRef
17.
go back to reference Choumerianou DM, Dimitriou H, Kalmanti M. Stem cells: promises versus limitations. Tissue Eng Part B Rev. 2008;14(1):53–60.PubMedCrossRef Choumerianou DM, Dimitriou H, Kalmanti M. Stem cells: promises versus limitations. Tissue Eng Part B Rev. 2008;14(1):53–60.PubMedCrossRef
18.
go back to reference Colter DC, Class R, DiGirolamo CM, Prockop DJ. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci U S A. 2000;97(7):3213–8.PubMedPubMedCentralCrossRef Colter DC, Class R, DiGirolamo CM, Prockop DJ. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci U S A. 2000;97(7):3213–8.PubMedPubMedCentralCrossRef
19.
go back to reference Silva WA Jr, Covas DT, Panepucci RA, Proto-Siqueira R, Siufi JL, Zanette DL, et al. The profile of gene expression of human marrow mesenchymal stem cells. Stem Cells. 2003;21(6):661–9.PubMedCrossRef Silva WA Jr, Covas DT, Panepucci RA, Proto-Siqueira R, Siufi JL, Zanette DL, et al. The profile of gene expression of human marrow mesenchymal stem cells. Stem Cells. 2003;21(6):661–9.PubMedCrossRef
20.
go back to reference Bronckers AL, Sasaguri K, Engelse MA. Transcription and immunolocalization of Runx2/Cbfa1/Pebp2alphaA in developing rodent and human craniofacial tissues: further evidence suggesting osteoclasts phagocytose osteocytes. Microsc Res Tech. 2003;61(6):540–8.PubMedCrossRef Bronckers AL, Sasaguri K, Engelse MA. Transcription and immunolocalization of Runx2/Cbfa1/Pebp2alphaA in developing rodent and human craniofacial tissues: further evidence suggesting osteoclasts phagocytose osteocytes. Microsc Res Tech. 2003;61(6):540–8.PubMedCrossRef
21.
go back to reference Karsenty G. Role of Cbfa1 in osteoblast differentiation and function. Semin Cell Dev Biol. 2000;11(5):343–6.PubMedCrossRef Karsenty G. Role of Cbfa1 in osteoblast differentiation and function. Semin Cell Dev Biol. 2000;11(5):343–6.PubMedCrossRef
22.
go back to reference Deng ZL, Sharff KA, Tang N, Song WX, Luo J, Luo X, et al. Regulation of osteogenic differentiation during skeletal development. Front Biosci. 2008;13:2001–21.PubMedCrossRef Deng ZL, Sharff KA, Tang N, Song WX, Luo J, Luo X, et al. Regulation of osteogenic differentiation during skeletal development. Front Biosci. 2008;13:2001–21.PubMedCrossRef
23.
go back to reference MeirellesLda S, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20(5–6):419–27.CrossRef MeirellesLda S, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20(5–6):419–27.CrossRef
24.
go back to reference Hofer HR, Tuan RS. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther. 2016;7(1):131.PubMedPubMedCentralCrossRef Hofer HR, Tuan RS. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther. 2016;7(1):131.PubMedPubMedCentralCrossRef
25.
go back to reference Castillo-Cardiel G, López-Echaury AC, Saucedo-Ortiz JA, Fuentes-Orozco C, Michel-Espinoza LR, Irusteta-Jiménez L, et al. Bone regeneration in mandibular fractures after the application of autologous mesenchymal stem cells, a randomized clinical trial. Dent Traumatol. 2017;33(1):38–44.PubMedCrossRef Castillo-Cardiel G, López-Echaury AC, Saucedo-Ortiz JA, Fuentes-Orozco C, Michel-Espinoza LR, Irusteta-Jiménez L, et al. Bone regeneration in mandibular fractures after the application of autologous mesenchymal stem cells, a randomized clinical trial. Dent Traumatol. 2017;33(1):38–44.PubMedCrossRef
26.
go back to reference Cho YJ, Song HS, Bhang S, Lee S, Kang BG, Lee JC, et al. Therapeutic effects of human adipose stem cell-conditioned medium on stroke. J Neurosci Res. 2012;90(9):1794–802.PubMedCrossRef Cho YJ, Song HS, Bhang S, Lee S, Kang BG, Lee JC, et al. Therapeutic effects of human adipose stem cell-conditioned medium on stroke. J Neurosci Res. 2012;90(9):1794–802.PubMedCrossRef
27.
go back to reference Rosner M, Pham HTT, Moriggl R, Hengstschläger M. Human stem cells alter the invasive properties of somatic cells via paracrine activation of mTORC1. Nat Commun. 2017;8(1):595.PubMedPubMedCentralCrossRef Rosner M, Pham HTT, Moriggl R, Hengstschläger M. Human stem cells alter the invasive properties of somatic cells via paracrine activation of mTORC1. Nat Commun. 2017;8(1):595.PubMedPubMedCentralCrossRef
29.
go back to reference Mayourian J, Ceholski DK, Gorski PA, Mathiyalagan P, Murphy JF, Salazar SI, et al. Exosomal microRNA-21-5p Mediates Mesenchymal Stem Cell Paracrine Effects on Human Cardiac Tissue Contractility. Circ Res. 2018;122(7):933–44.PubMedPubMedCentralCrossRef Mayourian J, Ceholski DK, Gorski PA, Mathiyalagan P, Murphy JF, Salazar SI, et al. Exosomal microRNA-21-5p Mediates Mesenchymal Stem Cell Paracrine Effects on Human Cardiac Tissue Contractility. Circ Res. 2018;122(7):933–44.PubMedPubMedCentralCrossRef
31.
go back to reference Simpson RJ, Jensen SS, Lim JW. Proteomic profiling of exosomes: current perspectives. Proteomics. 2008;8(19):4083–99.PubMedCrossRef Simpson RJ, Jensen SS, Lim JW. Proteomic profiling of exosomes: current perspectives. Proteomics. 2008;8(19):4083–99.PubMedCrossRef
32.
go back to reference Properzi F, Logozzi M, Fais S. Exosomes: the future of biomarkers in medicine. Biomark Med. 2013;7(5):769–78.PubMedCrossRef Properzi F, Logozzi M, Fais S. Exosomes: the future of biomarkers in medicine. Biomark Med. 2013;7(5):769–78.PubMedCrossRef
33.
go back to reference Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25(6):364–72.PubMedCrossRef Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25(6):364–72.PubMedCrossRef
34.
go back to reference Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 1999;94(11):3791–9.PubMedCrossRef Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 1999;94(11):3791–9.PubMedCrossRef
36.
go back to reference Narayanan R, Huang CC, Ravindran S. Hijacking the Cellular Mail: Exosome Mediated Differentiation of Mesenchymal Stem Cells. Stem Cells Int. 2016;2016:3808674.PubMedPubMedCentralCrossRef Narayanan R, Huang CC, Ravindran S. Hijacking the Cellular Mail: Exosome Mediated Differentiation of Mesenchymal Stem Cells. Stem Cells Int. 2016;2016:3808674.PubMedPubMedCentralCrossRef
37.
go back to reference Oz HS, Puleo DA. Animal models for periodontal disease. BioMed Research International. 2011;2011:754857. Oz HS, Puleo DA. Animal models for periodontal disease. BioMed Research International. 2011;2011:754857.
38.
go back to reference Efird J. Blocked randomization with randomly selected block sizes. Int J Environ Res Public Health. 2011;8(1):15–20.PubMedCrossRef Efird J. Blocked randomization with randomly selected block sizes. Int J Environ Res Public Health. 2011;8(1):15–20.PubMedCrossRef
39.
go back to reference Liu X, Li Q, Niu X, Hu B, Chen S, Song W, et al. Exosomes secreted from human-induced pluripotent stem cell-derived mesenchymal stem cells prevent osteonecrosis of the femoral head by promoting angiogenesis. Int J Biol Sci. 2017;13(2):232.PubMedPubMedCentralCrossRef Liu X, Li Q, Niu X, Hu B, Chen S, Song W, et al. Exosomes secreted from human-induced pluripotent stem cell-derived mesenchymal stem cells prevent osteonecrosis of the femoral head by promoting angiogenesis. Int J Biol Sci. 2017;13(2):232.PubMedPubMedCentralCrossRef
40.
go back to reference Thabet E, Yusuf A, Abdelmonsif DA, Nabil I, Mourad G, Mehanna RA. Extracellular vesicles miRNA-21: a potential therapeutic tool in premature ovarian dysfunction. Mol Hum Reprod. 2020;26(12):906–19.PubMedCrossRef Thabet E, Yusuf A, Abdelmonsif DA, Nabil I, Mourad G, Mehanna RA. Extracellular vesicles miRNA-21: a potential therapeutic tool in premature ovarian dysfunction. Mol Hum Reprod. 2020;26(12):906–19.PubMedCrossRef
41.
go back to reference Hu M, Cao Z, Jiang D. The effect of miRNA-modified exosomes in animal models of spinal cord injury: a meta-analysis. Front Bioeng Biotechnol. 2022;9:1362.CrossRef Hu M, Cao Z, Jiang D. The effect of miRNA-modified exosomes in animal models of spinal cord injury: a meta-analysis. Front Bioeng Biotechnol. 2022;9:1362.CrossRef
42.
go back to reference Abolgheit S, Abdelkader S, Aboushelib M, Omar E, Mehanna R. Bone marrow-derived mesenchymal stem cells and extracellular vesicles enriched collagen chitosan scaffold in skin wound healing (a rat model). J Biomater Appl. 2021;36(1):128–39. Abolgheit S, Abdelkader S, Aboushelib M, Omar E, Mehanna R. Bone marrow-derived mesenchymal stem cells and extracellular vesicles enriched collagen chitosan scaffold in skin wound healing (a rat model). J Biomater Appl. 2021;36(1):128–39.
43.
go back to reference Franken NA, Rodermond HM, Stap J, Haveman J, Van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315–9.PubMedCrossRef Franken NA, Rodermond HM, Stap J, Haveman J, Van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315–9.PubMedCrossRef
44.
go back to reference Smith PE, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano M, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150(1):76–85.PubMedCrossRef Smith PE, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano M, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150(1):76–85.PubMedCrossRef
45.
go back to reference Xu R, Greening DW, Zhu H-J, Takahashi N, Simpson RJ. Extracellular vesicle isolation and characterization: toward clinical application. J Clin Investig. 2016;126(4):1152–62.PubMedPubMedCentralCrossRef Xu R, Greening DW, Zhu H-J, Takahashi N, Simpson RJ. Extracellular vesicle isolation and characterization: toward clinical application. J Clin Investig. 2016;126(4):1152–62.PubMedPubMedCentralCrossRef
46.
go back to reference Ashour AA, El-Kamel AH, Mehanna RA, Mourad G, Heikal LA. Luteolin-loaded exosomes derived from bone marrow mesenchymal stem cells: a promising therapy for liver fibrosis. Drug Delivery. 2022;29(1):3270–80.PubMedPubMedCentralCrossRef Ashour AA, El-Kamel AH, Mehanna RA, Mourad G, Heikal LA. Luteolin-loaded exosomes derived from bone marrow mesenchymal stem cells: a promising therapy for liver fibrosis. Drug Delivery. 2022;29(1):3270–80.PubMedPubMedCentralCrossRef
47.
go back to reference Goldstein JI, Newbury DE, Michael JR, Ritchie NW, Scott JHJ, Joy DC. Scanning electron microscopy and X-ray microanalysis. 4th ed. Springer; 2017. Goldstein JI, Newbury DE, Michael JR, Ritchie NW, Scott JHJ, Joy DC. Scanning electron microscopy and X-ray microanalysis. 4th ed. Springer; 2017.
48.
go back to reference Kovacs JZ, Andresen K, Pauls JR, Garcia CP, Schossig M, Schulte K, et al. Analyzing the quality of carbon nanotube dispersions in polymers using scanning electron microscopy. Carbon. 2007;45(6):1279–88.CrossRef Kovacs JZ, Andresen K, Pauls JR, Garcia CP, Schossig M, Schulte K, et al. Analyzing the quality of carbon nanotube dispersions in polymers using scanning electron microscopy. Carbon. 2007;45(6):1279–88.CrossRef
49.
go back to reference Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009;6(3):267–83.PubMedCrossRef Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009;6(3):267–83.PubMedCrossRef
50.
51.
go back to reference van Niel G, Porto-Carreiro I, Simoes S, Raposo G. Exosomes: a common pathway for a specialized function. J Biochem. 2006;140(1):13–21.PubMedCrossRef van Niel G, Porto-Carreiro I, Simoes S, Raposo G. Exosomes: a common pathway for a specialized function. J Biochem. 2006;140(1):13–21.PubMedCrossRef
52.
53.
go back to reference Gomes PS, Fernandes MH. Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies. Lab Anim. 2011;45(1):14–24.PubMedCrossRef Gomes PS, Fernandes MH. Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies. Lab Anim. 2011;45(1):14–24.PubMedCrossRef
54.
go back to reference Bagi CM, Berryman E, Moalli MR. Comparative bone anatomy of commonly used laboratory animals: implications for drug discovery. Comp Med. 2011;61(1):76–85.PubMedPubMedCentral Bagi CM, Berryman E, Moalli MR. Comparative bone anatomy of commonly used laboratory animals: implications for drug discovery. Comp Med. 2011;61(1):76–85.PubMedPubMedCentral
56.
go back to reference Motomura G, Yamamoto T, Irisa T, Miyanishi K, Nishida K, Iwamoto Y. Dose effects of corticosteroids on the development of osteonecrosis in rabbits. J Rheumatol. 2008;35(12):2395–9.PubMedCrossRef Motomura G, Yamamoto T, Irisa T, Miyanishi K, Nishida K, Iwamoto Y. Dose effects of corticosteroids on the development of osteonecrosis in rabbits. J Rheumatol. 2008;35(12):2395–9.PubMedCrossRef
57.
go back to reference Liu X, Li Q, Niu X, Hu B, Chen S, Song W, et al. Exosomes Secreted from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Prevent Osteonecrosis of the Femoral Head by Promoting Angiogenesis. Int J Biol Sci. 2017;13(2):232–44.PubMedPubMedCentralCrossRef Liu X, Li Q, Niu X, Hu B, Chen S, Song W, et al. Exosomes Secreted from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Prevent Osteonecrosis of the Femoral Head by Promoting Angiogenesis. Int J Biol Sci. 2017;13(2):232–44.PubMedPubMedCentralCrossRef
58.
go back to reference Van Der Pol E, Hoekstra A, Sturk A, Otto C, Van Leeuwen T, Nieuwland R. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost. 2010;8(12):2596–607.PubMedCrossRef Van Der Pol E, Hoekstra A, Sturk A, Otto C, Van Leeuwen T, Nieuwland R. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost. 2010;8(12):2596–607.PubMedCrossRef
59.
go back to reference Stillwell W. An introduction to biological membranes: from bilayers to rafts: El Sevier, Newnes. 2013. Stillwell W. An introduction to biological membranes: from bilayers to rafts: El Sevier, Newnes. 2013.
60.
go back to reference Smyth TJ, Redzic JS, Graner MW, Anchordoquy TJ. Examination of the specificity of tumor cell derived exosomes with tumor cells in vitro. Biochim Biophysica Acta (BBA)-Biomembranes. 2014;1838(11):2954–6.CrossRef Smyth TJ, Redzic JS, Graner MW, Anchordoquy TJ. Examination of the specificity of tumor cell derived exosomes with tumor cells in vitro. Biochim Biophysica Acta (BBA)-Biomembranes. 2014;1838(11):2954–6.CrossRef
61.
go back to reference Khodashenas S, Khalili S, Forouzandeh MM. A cell ELISA based method for exosome detection in diagnostic and therapeutic applications. Biotechnol Lett. 2019;41(4):523–31.PubMedCrossRef Khodashenas S, Khalili S, Forouzandeh MM. A cell ELISA based method for exosome detection in diagnostic and therapeutic applications. Biotechnol Lett. 2019;41(4):523–31.PubMedCrossRef
62.
go back to reference Capulli M, Paone R, Rucci N. Osteoblast and osteocyte: games without frontiers. Arch Biochem Biophys. 2014;561:3–12.PubMedCrossRef Capulli M, Paone R, Rucci N. Osteoblast and osteocyte: games without frontiers. Arch Biochem Biophys. 2014;561:3–12.PubMedCrossRef
64.
go back to reference Yang YJ, Zhu Z, Wang DT, Zhang XL, Liu YY, Lai WX, et al. Tanshinol alleviates impaired bone formation by inhibiting adipogenesis via KLF15/PPARγ2 signaling in GIO rats. Acta Pharmacol Sin. 2018;39(4):633–41.PubMedPubMedCentralCrossRef Yang YJ, Zhu Z, Wang DT, Zhang XL, Liu YY, Lai WX, et al. Tanshinol alleviates impaired bone formation by inhibiting adipogenesis via KLF15/PPARγ2 signaling in GIO rats. Acta Pharmacol Sin. 2018;39(4):633–41.PubMedPubMedCentralCrossRef
65.
go back to reference Chotiyarnwong P, McCloskey EV. Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nat Rev Endocrinol. 2020;16(8):437–47.PubMedCrossRef Chotiyarnwong P, McCloskey EV. Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nat Rev Endocrinol. 2020;16(8):437–47.PubMedCrossRef
66.
go back to reference Weinstein RS. Glucocorticoid-induced osteoporosis and osteonecrosis. Endocrinol Metab Clin. 2012;41(3):595–611.CrossRef Weinstein RS. Glucocorticoid-induced osteoporosis and osteonecrosis. Endocrinol Metab Clin. 2012;41(3):595–611.CrossRef
67.
go back to reference Furuta T, Miyaki S, Ishitobi H, Ogura T, Kato Y, Kamei N, et al. Mesenchymal Stem Cell-Derived Exosomes Promote Fracture Healing in a Mouse Model. Stem Cells Transl Med. 2016;5(12):1620–30.PubMedPubMedCentralCrossRef Furuta T, Miyaki S, Ishitobi H, Ogura T, Kato Y, Kamei N, et al. Mesenchymal Stem Cell-Derived Exosomes Promote Fracture Healing in a Mouse Model. Stem Cells Transl Med. 2016;5(12):1620–30.PubMedPubMedCentralCrossRef
68.
go back to reference Takeuchi R, Katagiri W, Endo S, Kobayashi T. Exosomes from conditioned media of bone marrow-derived mesenchymal stem cells promote bone regeneration by enhancing angiogenesis. PLoS ONE. 2019;14(11):e0225472.PubMedPubMedCentralCrossRef Takeuchi R, Katagiri W, Endo S, Kobayashi T. Exosomes from conditioned media of bone marrow-derived mesenchymal stem cells promote bone regeneration by enhancing angiogenesis. PLoS ONE. 2019;14(11):e0225472.PubMedPubMedCentralCrossRef
69.
go back to reference Zhang L, Jiao G, Ren S, Zhang X, Li C, Wu W, et al. Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion. Stem Cell Res Ther. 2020;11(1):38.PubMedPubMedCentralCrossRef Zhang L, Jiao G, Ren S, Zhang X, Li C, Wu W, et al. Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion. Stem Cell Res Ther. 2020;11(1):38.PubMedPubMedCentralCrossRef
70.
go back to reference Zhou S, Yang Y, Ha N, Zhang P, Ma X, Gong X, et al. The specific morphological features of alveolar bone. J Craniofac Surg. 2018;29(5):1216–9.PubMedCrossRef Zhou S, Yang Y, Ha N, Zhang P, Ma X, Gong X, et al. The specific morphological features of alveolar bone. J Craniofac Surg. 2018;29(5):1216–9.PubMedCrossRef
71.
go back to reference Yoon H-Y, Won Y-Y, Chung Y-S. Poncirin prevents bone loss in glucocorticoid-induced osteoporosis in vivo and in vitro. J Bone Miner Metab. 2012;30(5):509–16.PubMedCrossRef Yoon H-Y, Won Y-Y, Chung Y-S. Poncirin prevents bone loss in glucocorticoid-induced osteoporosis in vivo and in vitro. J Bone Miner Metab. 2012;30(5):509–16.PubMedCrossRef
72.
go back to reference Yuan N, Ge Z, Ji W, Li J. Exosomes Secreted from Hypoxia-Preconditioned Mesenchymal Stem Cells Prevent Steroid-Induced Osteonecrosis of the Femoral Head by Promoting Angiogenesis in Rats. BioMed Res Int. 2021;2021:6655225.PubMedPubMedCentralCrossRef Yuan N, Ge Z, Ji W, Li J. Exosomes Secreted from Hypoxia-Preconditioned Mesenchymal Stem Cells Prevent Steroid-Induced Osteonecrosis of the Femoral Head by Promoting Angiogenesis in Rats. BioMed Res Int. 2021;2021:6655225.PubMedPubMedCentralCrossRef
73.
go back to reference Scimeca M, Bischetti S, Lamsira HK, Bonfiglio R, Bonanno E. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. Eur J Histochem: EJH. 2018;62(1):2841.PubMedPubMedCentral Scimeca M, Bischetti S, Lamsira HK, Bonfiglio R, Bonanno E. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. Eur J Histochem: EJH. 2018;62(1):2841.PubMedPubMedCentral
Metadata
Title
Biological effect of bone marrow mesenchymal stem cell- derived extracellular vesicles on the structure of alveolar bone in rats with glucocorticoid-induced osteoporosis
Authors
Aya S. Sedik
Khadiga Y. Kawana
Azza S. Koura
Radwa A. Mehanna
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2023
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-023-06276-2

Other articles of this Issue 1/2023

BMC Musculoskeletal Disorders 1/2023 Go to the issue