Skip to main content
Top
Published in: Diabetologia 11/2014

01-11-2014 | Article

Global DNA methylation levels in human adipose tissue are related to fat distribution and glucose homeostasis

Authors: Maria Keller, Susan Kralisch, Kerstin Rohde, Dorit Schleinitz, Arne Dietrich, Michael R. Schön, Daniel Gärtner, Tobias Lohmann, Miriam Dreßler, Anke Tönjes, Michael Stumvoll, Peter Kovacs, Mathias Fasshauer, Matthias Blüher, Yvonne Böttcher

Published in: Diabetologia | Issue 11/2014

Login to get access

Abstract

Aims/hypothesis

Epigenetic alterations may influence the metabolic pathways involved in human obesity. We hypothesised that global DNA methylation levels in adipose tissue might be associated with obesity and related phenotypes.

Methods

We measured global DNA methylation levels in paired samples of subcutaneous adipose tissue (SAT) and omental visceral adipose tissue (OVAT) from 51 individuals, and in leucocytes from 559 Sorbs, a population from Germany, using LUminometric Methylation Assay (LUMA). To further investigate the underlying mechanisms of the observed associations, we measured global methylation levels in 3T3-L1 adipocytes exposed to glucose, insulin and lipids.

Results

Global methylation levels (±SD) were significantly higher in OVAT (74.27% ± 2.2%) compared with SAT (71.97% ± 2.4%; paired t test, p < 1 × 10−9). Furthermore, global methylation levels in SAT were positive correlates of measures of fat distribution (waist measurement, WHR) and glucose homeostasis (HbA1c) (all p < 0.015 after accounting for multiple testing and covariates). Global methylation levels in the German Sorb cohort were associated with glucose homeostasis, but this association did not withstand adjustment for covariates. Exposure of 3T3-L1 adipocytes to insulin, palmitate and glucose decreased global methylation levels 1 h after treatment relative to controls.

Conclusions/interpretation

Our data suggest that the variability in global methylation in adipose tissue might be related to alterations in glucose metabolism.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wajchenberg BL (2000) Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 21:697–738PubMedCrossRef Wajchenberg BL (2000) Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 21:697–738PubMedCrossRef
2.
go back to reference Van Gaal LF, Mertens IL, de Block CE (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444:875–880PubMedCrossRef Van Gaal LF, Mertens IL, de Block CE (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444:875–880PubMedCrossRef
3.
go back to reference Kissebah AH (1997) Central obesity: measurement and metabolic effects. Diabetes Rev 5:8–20 Kissebah AH (1997) Central obesity: measurement and metabolic effects. Diabetes Rev 5:8–20
4.
5.
go back to reference Lavebratt C, Almgren M, Ekstrom TJ (2012) Epigenetic regulation in obesity. Int J Obes (Lond) 36:757–765CrossRef Lavebratt C, Almgren M, Ekstrom TJ (2012) Epigenetic regulation in obesity. Int J Obes (Lond) 36:757–765CrossRef
6.
go back to reference Pirola L, Balcerczyk A, Okabe J, El Osta A (2010) Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol 6:665–675PubMedCrossRef Pirola L, Balcerczyk A, Okabe J, El Osta A (2010) Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol 6:665–675PubMedCrossRef
7.
go back to reference Dick JK, Nelson CP, Tsaprouni L et al (2014) DNA methylation and body-mass index: a genome-wide analysis. Lancet 383:1990–1998PubMedCrossRef Dick JK, Nelson CP, Tsaprouni L et al (2014) DNA methylation and body-mass index: a genome-wide analysis. Lancet 383:1990–1998PubMedCrossRef
8.
go back to reference Barres R, Kirchner H, Rasmussen M et al (2013) Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep 3:1020–1027PubMedCrossRef Barres R, Kirchner H, Rasmussen M et al (2013) Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep 3:1020–1027PubMedCrossRef
9.
go back to reference Barres R, Yan J, Egan B et al (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15:405–411PubMedCrossRef Barres R, Yan J, Egan B et al (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15:405–411PubMedCrossRef
10.
go back to reference Rönn T, Volkov P, Davegårdh C et al (2013) A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet 9:e1003572PubMedCrossRefPubMedCentral Rönn T, Volkov P, Davegårdh C et al (2013) A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet 9:e1003572PubMedCrossRefPubMedCentral
11.
go back to reference Nilsson E, Jansson PA, Perfilyev A et al (2014) Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes. doi:10.2337/db13-1459 Nilsson E, Jansson PA, Perfilyev A et al (2014) Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes. doi:10.​2337/​db13-1459
12.
go back to reference Barres R, Zierath JR (2011) DNA methylation in metabolic disorders. Am J Clin Nutr 93:897–900CrossRef Barres R, Zierath JR (2011) DNA methylation in metabolic disorders. Am J Clin Nutr 93:897–900CrossRef
15.
go back to reference Yokomori N, Tawata M, Onaya T (1999) DNA demethylation during the differentiation of 3T3-L1 cells affects the expression of the mouse GLUT4 gene. Diabetes 48:685–690PubMedCrossRef Yokomori N, Tawata M, Onaya T (1999) DNA demethylation during the differentiation of 3T3-L1 cells affects the expression of the mouse GLUT4 gene. Diabetes 48:685–690PubMedCrossRef
16.
go back to reference Fujiki K, Kano F, Shiota K, Murata M (2009) Expression of the peroxisome proliferator activated receptor gamma gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes. BMC Biol 7:38PubMedCrossRefPubMedCentral Fujiki K, Kano F, Shiota K, Murata M (2009) Expression of the peroxisome proliferator activated receptor gamma gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes. BMC Biol 7:38PubMedCrossRefPubMedCentral
17.
go back to reference Feinberg AP, Irizarry RA, Fradin D et al (2010) Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Transl Med 2:49ra67PubMedCrossRefPubMedCentral Feinberg AP, Irizarry RA, Fradin D et al (2010) Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Transl Med 2:49ra67PubMedCrossRefPubMedCentral
19.
go back to reference Karimi M, Johansson S, Ekstrom TJ (2006) Using LUMA A luminometric-based assay for global DNA-methylation. Epigenetics 1:45–48PubMedCrossRef Karimi M, Johansson S, Ekstrom TJ (2006) Using LUMA A luminometric-based assay for global DNA-methylation. Epigenetics 1:45–48PubMedCrossRef
20.
go back to reference Karimi M, Luttropp K, Ekstrom TJ (2011) Global DNA Methylation analysis using the luminometric methylation assay. Methods Mol Biol 791:135–144PubMedCrossRef Karimi M, Luttropp K, Ekstrom TJ (2011) Global DNA Methylation analysis using the luminometric methylation assay. Methods Mol Biol 791:135–144PubMedCrossRef
21.
go back to reference Turcot V, Tchernof A, Deshaies Y et al (2012) LINE-1 methylation in visceral adipose tissue of severely obese individuals is associated with metabolic syndrome status and related phenotypes. Clin Epigenetics 4:10PubMedCrossRefPubMedCentral Turcot V, Tchernof A, Deshaies Y et al (2012) LINE-1 methylation in visceral adipose tissue of severely obese individuals is associated with metabolic syndrome status and related phenotypes. Clin Epigenetics 4:10PubMedCrossRefPubMedCentral
23.
go back to reference Zhu ZZ, Sparrow D, Hou L et al (2011) Repetitive element hypomethylation in blood leukocyte DNA and cancer incidence, prevalence, and mortality in elderly individuals: the Normative Aging Study. Cancer Causes Control 22:437–447PubMedCrossRefPubMedCentral Zhu ZZ, Sparrow D, Hou L et al (2011) Repetitive element hypomethylation in blood leukocyte DNA and cancer incidence, prevalence, and mortality in elderly individuals: the Normative Aging Study. Cancer Causes Control 22:437–447PubMedCrossRefPubMedCentral
24.
go back to reference Pearce MS, McConnell JC, Potter C et al (2012) Global LINE-1 DNA methylation is associated with blood glycaemic and lipid profiles. Int J Epidemiol 41:210–217PubMedCrossRefPubMedCentral Pearce MS, McConnell JC, Potter C et al (2012) Global LINE-1 DNA methylation is associated with blood glycaemic and lipid profiles. Int J Epidemiol 41:210–217PubMedCrossRefPubMedCentral
25.
go back to reference Zhu ZZ, Hou L, Bollati V et al (2012) Predictors of global methylation levels in blood DNA of healthy subjects: a combined analysis. Int J Epidemiol 41:126–139PubMedCrossRefPubMedCentral Zhu ZZ, Hou L, Bollati V et al (2012) Predictors of global methylation levels in blood DNA of healthy subjects: a combined analysis. Int J Epidemiol 41:126–139PubMedCrossRefPubMedCentral
26.
go back to reference Zhao J, Goldberg J, Bremner JD, Vaccarino V (2012) Global DNA methylation is associated with insulin resistance: a monozygotic twin study. Diabetes 61:542–546PubMedCrossRefPubMedCentral Zhao J, Goldberg J, Bremner JD, Vaccarino V (2012) Global DNA methylation is associated with insulin resistance: a monozygotic twin study. Diabetes 61:542–546PubMedCrossRefPubMedCentral
27.
go back to reference Rohde K, Keller M, Klös M et al (2014) Adipose tissue depot specific promoter methylation of TMEM18. J Mol Med (Berl) 92:881–888 Rohde K, Keller M, Klös M et al (2014) Adipose tissue depot specific promoter methylation of TMEM18. J Mol Med (Berl) 92:881–888
29.
go back to reference Gesta S, Blüher M, Yamamoto Y et al (2006) Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci U S A 103:6676–6681PubMedCrossRefPubMedCentral Gesta S, Blüher M, Yamamoto Y et al (2006) Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci U S A 103:6676–6681PubMedCrossRefPubMedCentral
30.
go back to reference Yamamoto Y, Gesta S, Lee KY, Tran TT, Saadatirad P, Kahn CR (2010) Adipose depots possess unique developmental gene signatures. Obesity (Silver Spring) 18:872–878CrossRef Yamamoto Y, Gesta S, Lee KY, Tran TT, Saadatirad P, Kahn CR (2010) Adipose depots possess unique developmental gene signatures. Obesity (Silver Spring) 18:872–878CrossRef
31.
go back to reference Klöting N, Fasshauer M, Dietrich A et al (2010) Insulin-sensitive obesity. Am J Physiol Endocrinol Metab 299:E506–E515PubMedCrossRef Klöting N, Fasshauer M, Dietrich A et al (2010) Insulin-sensitive obesity. Am J Physiol Endocrinol Metab 299:E506–E515PubMedCrossRef
32.
go back to reference Veeramah KR, Tönjes A, Kovacs P et al (2011) Genetic variation in the Sorbs of eastern Germany in the context of broader European genetic diversity. Eur J Hum Genet 19:995–1001PubMedCrossRefPubMedCentral Veeramah KR, Tönjes A, Kovacs P et al (2011) Genetic variation in the Sorbs of eastern Germany in the context of broader European genetic diversity. Eur J Hum Genet 19:995–1001PubMedCrossRefPubMedCentral
33.
go back to reference Böttcher Y, Unbehauen H, Klöting N et al (2009) Adipose tissue expression and genetic variants of the bone morphogenetic protein receptor 1A gene (BMPR1A) are associated with human obesity. Diabetes 58:2119–2128PubMedCrossRefPubMedCentral Böttcher Y, Unbehauen H, Klöting N et al (2009) Adipose tissue expression and genetic variants of the bone morphogenetic protein receptor 1A gene (BMPR1A) are associated with human obesity. Diabetes 58:2119–2128PubMedCrossRefPubMedCentral
34.
35.
go back to reference Kralisch S, Klein J, Lossner U et al (2005) Interleukin-6 is a negative regulator of visfatin gene expression in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 289:E586–E590PubMedCrossRef Kralisch S, Klein J, Lossner U et al (2005) Interleukin-6 is a negative regulator of visfatin gene expression in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 289:E586–E590PubMedCrossRef
36.
go back to reference Barres R, Osler ME, Yan J et al (2009) Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab 10:189–198PubMedCrossRef Barres R, Osler ME, Yan J et al (2009) Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab 10:189–198PubMedCrossRef
37.
go back to reference Yang BT, Dayeh TA, Volkov PA et al (2012) Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol 26:1203–1212PubMedCrossRef Yang BT, Dayeh TA, Volkov PA et al (2012) Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol 26:1203–1212PubMedCrossRef
38.
go back to reference Pilsner JR, Lazarus AL, Nam DH et al (2010) Mercury-associated DNA hypomethylation in polar bear brains via the LUminometric Methylation Assay: a sensitive method to study epigenetics in wildlife. Mol Ecol 19:307–314PubMedCrossRef Pilsner JR, Lazarus AL, Nam DH et al (2010) Mercury-associated DNA hypomethylation in polar bear brains via the LUminometric Methylation Assay: a sensitive method to study epigenetics in wildlife. Mol Ecol 19:307–314PubMedCrossRef
Metadata
Title
Global DNA methylation levels in human adipose tissue are related to fat distribution and glucose homeostasis
Authors
Maria Keller
Susan Kralisch
Kerstin Rohde
Dorit Schleinitz
Arne Dietrich
Michael R. Schön
Daniel Gärtner
Tobias Lohmann
Miriam Dreßler
Anke Tönjes
Michael Stumvoll
Peter Kovacs
Mathias Fasshauer
Matthias Blüher
Yvonne Böttcher
Publication date
01-11-2014
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 11/2014
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-014-3356-z

Other articles of this Issue 11/2014

Diabetologia 11/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine