Skip to main content
Top
Published in: BMC Immunology 1/2010

Open Access 01-12-2010 | Research article

Global characterization of interferon regulatory factor (IRF) genes in vertebrates: Glimpse of the diversification in evolution

Authors: Bei Huang, Zhi T Qi, Zhen Xu, Pin Nie

Published in: BMC Immunology | Issue 1/2010

Login to get access

Abstract

Background

Interferon regulatory factors (IRFs), which can be identified based on a unique helix-turn-helix DNA-binding domain (DBD) are a large family of transcription factors involved in host immune response, haemotopoietic differentiation and immunomodulation. Despite the identification of ten IRF family members in mammals, and some recent effort to identify these members in fish, relatively little is known in the composition of these members in other classes of vertebrates, and the evolution and probably the origin of the IRF family have not been investigated in vertebrates.

Results

Genome data mining has been performed to identify any possible IRF family members in human, mouse, dog, chicken, anole lizard, frog, and some teleost fish, mainly zebrafish and stickleback, and also in non-vertebrate deuterostomes including the hemichordate, cephalochordate, urochordate and echinoderm. In vertebrates, all ten IRF family members, i.e. IRF-1 to IRF-10 were identified, with two genes of IRF-4 and IRF-6 identified in fish and frog, respectively, except that in zebrafish exist three IRF-4 genes. Surprisingly, an additional member in the IRF family, IRF-11 was found in teleost fish. A range of two to ten IRF-like genes were detected in the non-vertebrate deuterostomes, and they had little similarity to those IRF family members in vertebrates as revealed in genomic structure and in phylogenetic analysis. However, the ten IRF family members, IRF-1 to IRF-10 showed certain degrees of conservation in terms of genomic structure and gene synteny. In particular, IRF-1, IRF-2, IRF-6, IRF-8 are quite conserved in their genomic structure in all vertebrates, and to a less degree, some IRF family members, such as IRF-5 and IRF-9 are comparable in the structure. Synteny analysis revealed that the gene loci for the ten IRF family members in vertebrates were also quite conservative, but in zebrafish conserved genes were distributed in a much longer distance in chromosomes. Furthermore, all ten different members are clustered in respectively different clades; but the IRF-11 was clustered with one in sea urchin.

Conclusions

In vertebrates, the ten well-characterized IRF family members shared a relatively high degree of similarity in genomic structure and syntenic gene arrangement, implying that they might have been evolved in a similar pattern and with similar selective pressure in different classes of vertebrates. Genome and/or gene duplication, and probably gene shuffling or gene loss might have occurred during the evolution of these IRF family members, but arrangement of chromosome or its segment might have taken place in zebrafish. However, the ten IRF family members in vertebrates and those IRF-like genes in non-vertebrate deuterostomes were quite different in those analyzed characters, as they might have undergone different patterns of evolution.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mamane Y, Heylbroeck C, Genin P, Algarte M, Servant MJ, LePage C, DeLuca C, Kwon H, Lin R, Hiscott J: Interferon regulatory factors: the next generation. Gene. 1999, 237: 1-14. 10.1016/S0378-1119(99)00262-0.CrossRefPubMed Mamane Y, Heylbroeck C, Genin P, Algarte M, Servant MJ, LePage C, DeLuca C, Kwon H, Lin R, Hiscott J: Interferon regulatory factors: the next generation. Gene. 1999, 237: 1-14. 10.1016/S0378-1119(99)00262-0.CrossRefPubMed
2.
go back to reference Colonna M: TLR pathways and IFN-regulatory factors: to each its own. Eur J Immunol. 2007, 37: 306-309. 10.1002/eji.200637009.CrossRefPubMed Colonna M: TLR pathways and IFN-regulatory factors: to each its own. Eur J Immunol. 2007, 37: 306-309. 10.1002/eji.200637009.CrossRefPubMed
3.
go back to reference Tamura T, Yanai H, Savitsky D, Taniguchi T: The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol. 2008, 26: 535-584. 10.1146/annurev.immunol.26.021607.090400.CrossRefPubMed Tamura T, Yanai H, Savitsky D, Taniguchi T: The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol. 2008, 26: 535-584. 10.1146/annurev.immunol.26.021607.090400.CrossRefPubMed
4.
go back to reference Taniguchi T, Ogasawara K, Takaoka A, Tanaka N: IRF family of transcription factors as regulators of host defense. Annu Rev Immunol. 2001, 19: 623-655. 10.1146/annurev.immunol.19.1.623.CrossRefPubMed Taniguchi T, Ogasawara K, Takaoka A, Tanaka N: IRF family of transcription factors as regulators of host defense. Annu Rev Immunol. 2001, 19: 623-655. 10.1146/annurev.immunol.19.1.623.CrossRefPubMed
5.
go back to reference Stellacci E, Testa U, Petrucci E, Benedetti E, Orsatti R, Feccia T, Stafsnes M, Coccia EM, Marziali G, Battistini A: Interferon regulatory factor-2 drives megakaryocytic differentiation. Biochem J. 2004, 377: 367-378. 10.1042/BJ20031166.PubMedCentralCrossRefPubMed Stellacci E, Testa U, Petrucci E, Benedetti E, Orsatti R, Feccia T, Stafsnes M, Coccia EM, Marziali G, Battistini A: Interferon regulatory factor-2 drives megakaryocytic differentiation. Biochem J. 2004, 377: 367-378. 10.1042/BJ20031166.PubMedCentralCrossRefPubMed
6.
go back to reference Battistini A: Interferon regulatory factors in hematopoietic cell differentiation and immune regulation. J Interferon Cytokine Res. 2009, 29: 765-780. 10.1089/jir.2009.0030.CrossRefPubMed Battistini A: Interferon regulatory factors in hematopoietic cell differentiation and immune regulation. J Interferon Cytokine Res. 2009, 29: 765-780. 10.1089/jir.2009.0030.CrossRefPubMed
7.
go back to reference Escalante CR, Yie J, Thanos D, Aggarwal AK: Structure of IRF-1 with bound DNA reveals determinants of interferon regulation. Nature. 1998, 391: 103-106. 10.1038/34224.CrossRefPubMed Escalante CR, Yie J, Thanos D, Aggarwal AK: Structure of IRF-1 with bound DNA reveals determinants of interferon regulation. Nature. 1998, 391: 103-106. 10.1038/34224.CrossRefPubMed
8.
go back to reference Fujita T, Sakakibara J, Sudo Y, Miyamoto M, Kimura Y, Taniguchi T: Evidence for a nuclear factor(s), IRF-1, mediating induction and silencing properties to human IFN-beta gene regulatory elements. EMBO J. 1988, 7: 3397-3405.PubMedCentralPubMed Fujita T, Sakakibara J, Sudo Y, Miyamoto M, Kimura Y, Taniguchi T: Evidence for a nuclear factor(s), IRF-1, mediating induction and silencing properties to human IFN-beta gene regulatory elements. EMBO J. 1988, 7: 3397-3405.PubMedCentralPubMed
9.
go back to reference Barnes B, Lubyova B, Pitha PM: On the role of IRF in host defense. J Interferon Cytokine Res. 2002, 22: 59-71. 10.1089/107999002753452665.CrossRefPubMed Barnes B, Lubyova B, Pitha PM: On the role of IRF in host defense. J Interferon Cytokine Res. 2002, 22: 59-71. 10.1089/107999002753452665.CrossRefPubMed
10.
go back to reference Nehyba J, Hrdlickova R, Burnside J, Bose HR: A novel interferon regulatory factor (IRF), IRF-10, has a unique role in immune defense and is induced by the v-Rel oncoprotein. Mol Cell Biol. 2002, 22: 3942-3957. 10.1128/MCB.22.11.3942-3957.2002.PubMedCentralCrossRefPubMed Nehyba J, Hrdlickova R, Burnside J, Bose HR: A novel interferon regulatory factor (IRF), IRF-10, has a unique role in immune defense and is induced by the v-Rel oncoprotein. Mol Cell Biol. 2002, 22: 3942-3957. 10.1128/MCB.22.11.3942-3957.2002.PubMedCentralCrossRefPubMed
11.
go back to reference Klein U, Casola S, Cattoretti G, Shen Q, Lia M, Mo T, Ludwig T, Rajewsky K, Dalla FR: Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol. 2006, 7: 773-782. 10.1038/ni1357.CrossRefPubMed Klein U, Casola S, Cattoretti G, Shen Q, Lia M, Mo T, Ludwig T, Rajewsky K, Dalla FR: Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol. 2006, 7: 773-782. 10.1038/ni1357.CrossRefPubMed
12.
go back to reference Honda K, Taniguchi T: IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol. 2006, 6: 644-658. 10.1038/nri1900.CrossRefPubMed Honda K, Taniguchi T: IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol. 2006, 6: 644-658. 10.1038/nri1900.CrossRefPubMed
13.
go back to reference Dougherty DC, Park HM, Sanders MM: Interferon regulatory factors (IRFs) repress transcription of the chicken ovalbumin gene. Gene. 2009, 439: 63-70. 10.1016/j.gene.2009.03.016.PubMedCentralCrossRefPubMed Dougherty DC, Park HM, Sanders MM: Interferon regulatory factors (IRFs) repress transcription of the chicken ovalbumin gene. Gene. 2009, 439: 63-70. 10.1016/j.gene.2009.03.016.PubMedCentralCrossRefPubMed
14.
go back to reference Sun BJ, Chang MX, Chen DL, Nie P: Gene structure and transcription of IRF-2 in the mandarin fish Siniperca chuatsi with the finding of alternative transcripts and microsatellite in the coding region. Immunogenetics. 2006, 58: 774-784. 10.1007/s00251-006-0129-y.CrossRefPubMed Sun BJ, Chang MX, Chen DL, Nie P: Gene structure and transcription of IRF-2 in the mandarin fish Siniperca chuatsi with the finding of alternative transcripts and microsatellite in the coding region. Immunogenetics. 2006, 58: 774-784. 10.1007/s00251-006-0129-y.CrossRefPubMed
15.
go back to reference Sun BJ, Chang MX, Song Y, Yao WJ, Nie P: Gene structure and transcription of IRF-1 and IRF-7 in the mandarin fish Siniperca chuatsi. Vet Immunol Immunopathol. 2007, 116: 26-36. 10.1016/j.vetimm.2007.01.001.CrossRefPubMed Sun BJ, Chang MX, Song Y, Yao WJ, Nie P: Gene structure and transcription of IRF-1 and IRF-7 in the mandarin fish Siniperca chuatsi. Vet Immunol Immunopathol. 2007, 116: 26-36. 10.1016/j.vetimm.2007.01.001.CrossRefPubMed
16.
go back to reference Zhang YB, Hu CY, Zhang J, Huang GP, Wei LH, Zhang QY, Gui JF: Molecular cloning and characterization of crucian carp (Carassius auratus L.) interferon regulatory factor 7. Fish Shellfish Immunol. 2003, 15: 453-466. 10.1016/S1050-4648(03)00025-1.CrossRefPubMed Zhang YB, Hu CY, Zhang J, Huang GP, Wei LH, Zhang QY, Gui JF: Molecular cloning and characterization of crucian carp (Carassius auratus L.) interferon regulatory factor 7. Fish Shellfish Immunol. 2003, 15: 453-466. 10.1016/S1050-4648(03)00025-1.CrossRefPubMed
17.
go back to reference Yabu T, Hirose H, Hirono I, Katagiri T, Aoki T, Yamamoto E: Molecular cloning of a novel interferon regulatory factor in Japanese flounder, Paralichthys olivaceus. Mol Mar Biol Biotechnol. 1998, 7: 138-144.PubMed Yabu T, Hirose H, Hirono I, Katagiri T, Aoki T, Yamamoto E: Molecular cloning of a novel interferon regulatory factor in Japanese flounder, Paralichthys olivaceus. Mol Mar Biol Biotechnol. 1998, 7: 138-144.PubMed
18.
go back to reference Holland JW, Bird S, Williamson B, Woudstra C, Mustafa A, Wang T, Zou J, Blaney SC, Collet B, Secombes CJ: Molecular characterization of IRF3 and IRF7 in rainbow trout, Oncorhynchus mykiss: functional analysis and transcriptional modulation. Mol Immunol. 2008, 46: 269-285. 10.1016/j.molimm.2008.08.265.CrossRefPubMed Holland JW, Bird S, Williamson B, Woudstra C, Mustafa A, Wang T, Zou J, Blaney SC, Collet B, Secombes CJ: Molecular characterization of IRF3 and IRF7 in rainbow trout, Oncorhynchus mykiss: functional analysis and transcriptional modulation. Mol Immunol. 2008, 46: 269-285. 10.1016/j.molimm.2008.08.265.CrossRefPubMed
19.
go back to reference Stein C, Caccamo M, Laird G, Leptin M: Conservation and divergence of gene families encoding components of innate immune response systems in zebrafish. Genome Biol. 2007, 8: R251-10.1186/gb-2007-8-11-r251.PubMedCentralCrossRefPubMed Stein C, Caccamo M, Laird G, Leptin M: Conservation and divergence of gene families encoding components of innate immune response systems in zebrafish. Genome Biol. 2007, 8: R251-10.1186/gb-2007-8-11-r251.PubMedCentralCrossRefPubMed
20.
go back to reference Jiang Y, Doolittle RF: The evolution of vertebrate blood coagulation as viewed from a comparison of puffer fish and sea squirt genomes. Proc Natl Acad Sci USA. 2003, 100: 7527-7532. 10.1073/pnas.0932632100.PubMedCentralCrossRefPubMed Jiang Y, Doolittle RF: The evolution of vertebrate blood coagulation as viewed from a comparison of puffer fish and sea squirt genomes. Proc Natl Acad Sci USA. 2003, 100: 7527-7532. 10.1073/pnas.0932632100.PubMedCentralCrossRefPubMed
21.
go back to reference Cannon JP, Haire RN, Litman GW: Identification of diversified genes that contain immunoglobulin-like variable regions in a protochordate. Nat Immunol. 2002, 3: 1200-1207. 10.1038/ni849.CrossRefPubMed Cannon JP, Haire RN, Litman GW: Identification of diversified genes that contain immunoglobulin-like variable regions in a protochordate. Nat Immunol. 2002, 3: 1200-1207. 10.1038/ni849.CrossRefPubMed
22.
go back to reference Huang S, Yuan S, Guo L, Yu Y, Li J, Wu T, Liu T, Yang M, Wu K, Liu H, et al.,: Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity. Genome Res. 2008, 18: 1112-1126. 10.1101/gr.069674.107.PubMedCentralCrossRefPubMed Huang S, Yuan S, Guo L, Yu Y, Li J, Wu T, Liu T, Yang M, Wu K, Liu H, et al.,: Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity. Genome Res. 2008, 18: 1112-1126. 10.1101/gr.069674.107.PubMedCentralCrossRefPubMed
23.
go back to reference Putnam NH, Butts T, Ferrier DEK, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, et al.,: The amphioxus genome and the evolution of the chordate karyotype. Nature. 2008, 453: 1064-1071. 10.1038/nature06967.CrossRefPubMed Putnam NH, Butts T, Ferrier DEK, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, et al.,: The amphioxus genome and the evolution of the chordate karyotype. Nature. 2008, 453: 1064-1071. 10.1038/nature06967.CrossRefPubMed
24.
go back to reference Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, Tomaso DA, Davidson B, Gregorio DA, Gelpke M, Goodstein DM, et al.,: The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science. 2002, 298: 2157-2167. 10.1126/science.1080049.CrossRefPubMed Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, Tomaso DA, Davidson B, Gregorio DA, Gelpke M, Goodstein DM, et al.,: The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science. 2002, 298: 2157-2167. 10.1126/science.1080049.CrossRefPubMed
25.
go back to reference Nehyba J, Hrdlickova R, Bose HR: Dynamic evolution of immune system regulators: the history of the interferon regulatory factor family. Mol Biol Evol. 2009, 26: 2539-2550. 10.1093/molbev/msp167.PubMedCentralCrossRefPubMed Nehyba J, Hrdlickova R, Bose HR: Dynamic evolution of immune system regulators: the history of the interferon regulatory factor family. Mol Biol Evol. 2009, 26: 2539-2550. 10.1093/molbev/msp167.PubMedCentralCrossRefPubMed
26.
go back to reference Wang W, Yu H, Long M: Duplication-degeneration as a mechanism of gene fission and the origin of new genes in Drosophila species. Nat Genet. 2004, 36: 523-527. 10.1038/ng1338.CrossRefPubMed Wang W, Yu H, Long M: Duplication-degeneration as a mechanism of gene fission and the origin of new genes in Drosophila species. Nat Genet. 2004, 36: 523-527. 10.1038/ng1338.CrossRefPubMed
27.
go back to reference Babushok DV, Ostertag EM, Kazazian HH: Current topics in genome evolution: molecular mechanisms of new gene formation. Cell Mol Life Sci. 2007, 64: 542-554. 10.1007/s00018-006-6453-4.CrossRefPubMed Babushok DV, Ostertag EM, Kazazian HH: Current topics in genome evolution: molecular mechanisms of new gene formation. Cell Mol Life Sci. 2007, 64: 542-554. 10.1007/s00018-006-6453-4.CrossRefPubMed
28.
go back to reference Zou J, Chang M, Nie P, Secombes CJ: Origin and evolution of the RIG-I like RNA helicase gene family. BMC Evol Biol. 2009, 9: 85-10.1186/1471-2148-9-85.PubMedCentralCrossRefPubMed Zou J, Chang M, Nie P, Secombes CJ: Origin and evolution of the RIG-I like RNA helicase gene family. BMC Evol Biol. 2009, 9: 85-10.1186/1471-2148-9-85.PubMedCentralCrossRefPubMed
29.
go back to reference Li G, Zhang J, Sun Y, Wang H, Wang Y: The evolutionarily dynamic IFN-inducible GTPase proteins play conserved immune functions in vertebrates and cephalochordates. Mol Biol Evol. 2009, 26: 1619-1630. 10.1093/molbev/msp074.CrossRefPubMed Li G, Zhang J, Sun Y, Wang H, Wang Y: The evolutionarily dynamic IFN-inducible GTPase proteins play conserved immune functions in vertebrates and cephalochordates. Mol Biol Evol. 2009, 26: 1619-1630. 10.1093/molbev/msp074.CrossRefPubMed
30.
go back to reference Qin BY, Liu C, Lam SS, Srinath H, Delston R, Correia JJ, Derynck R, Lin K: Crystal structure of IRF-3 reveals mechanism of autoinhibition and virus-induced phosphoactivation. Nat Struct Biol. 2003, 10: 913-921. 10.1038/nsb1002.CrossRefPubMed Qin BY, Liu C, Lam SS, Srinath H, Delston R, Correia JJ, Derynck R, Lin K: Crystal structure of IRF-3 reveals mechanism of autoinhibition and virus-induced phosphoactivation. Nat Struct Biol. 2003, 10: 913-921. 10.1038/nsb1002.CrossRefPubMed
31.
go back to reference Kasahara M: The 2R hypothesis: an update. Curr Opin Immunol. 2007, 19: 547-552. 10.1016/j.coi.2007.07.009.CrossRefPubMed Kasahara M: The 2R hypothesis: an update. Curr Opin Immunol. 2007, 19: 547-552. 10.1016/j.coi.2007.07.009.CrossRefPubMed
32.
go back to reference Yan Postlethwait YL, Gates MA, Horne S, Amores A, Brownlie A, Donovan A, Egan ES, Force A, Gong Z, et al.,: Vertebrate genome evolution and the zebrafish gene map. Nat Genet. 1998, 18: 345-349. 10.1038/ng0498-345.CrossRefPubMed Yan Postlethwait YL, Gates MA, Horne S, Amores A, Brownlie A, Donovan A, Egan ES, Force A, Gong Z, et al.,: Vertebrate genome evolution and the zebrafish gene map. Nat Genet. 1998, 18: 345-349. 10.1038/ng0498-345.CrossRefPubMed
33.
go back to reference Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, et al.,: Zebrafish hox clusters and vertebrate genome evolution. Science. 1998, 282: 1711-1714. 10.1126/science.282.5394.1711.CrossRefPubMed Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, et al.,: Zebrafish hox clusters and vertebrate genome evolution. Science. 1998, 282: 1711-1714. 10.1126/science.282.5394.1711.CrossRefPubMed
35.
go back to reference Eddy SR: Profile hidden Markov models. Bioinformatics (Oxford, England). 1998, 14: 755-763. 10.1093/bioinformatics/14.9.755.CrossRef Eddy SR: Profile hidden Markov models. Bioinformatics (Oxford, England). 1998, 14: 755-763. 10.1093/bioinformatics/14.9.755.CrossRef
36.
go back to reference Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000, 16: 276-277. 10.1016/S0168-9525(00)02024-2.CrossRefPubMed Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000, 16: 276-277. 10.1016/S0168-9525(00)02024-2.CrossRefPubMed
37.
go back to reference Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22: 4673-4680. 10.1093/nar/22.22.4673.PubMedCentralCrossRefPubMed Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22: 4673-4680. 10.1093/nar/22.22.4673.PubMedCentralCrossRefPubMed
38.
go back to reference Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007, 24: 1596-1599. 10.1093/molbev/msm092.CrossRefPubMed Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007, 24: 1596-1599. 10.1093/molbev/msm092.CrossRefPubMed
Metadata
Title
Global characterization of interferon regulatory factor (IRF) genes in vertebrates: Glimpse of the diversification in evolution
Authors
Bei Huang
Zhi T Qi
Zhen Xu
Pin Nie
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Immunology / Issue 1/2010
Electronic ISSN: 1471-2172
DOI
https://doi.org/10.1186/1471-2172-11-22

Other articles of this Issue 1/2010

BMC Immunology 1/2010 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine