Skip to main content
Top
Published in: Neuroradiology 8/2021

01-08-2021 | Glioma | Diagnostic Neuroradiology

Application of deep learning for automatic segmentation of brain tumors on magnetic resonance imaging: a heuristic approach in the clinical scenario

Authors: Antonio Di Ieva, Carlo Russo, Sidong Liu, Anne Jian, Michael Y. Bai, Yi Qian, John S. Magnussen

Published in: Neuroradiology | Issue 8/2021

Login to get access

Abstract

Purpose

Accurate brain tumor segmentation on magnetic resonance imaging (MRI) has wide-ranging applications such as radiosurgery planning. Advances in artificial intelligence, especially deep learning (DL), allow development of automatic segmentation that overcome the labor-intensive and operator-dependent manual segmentation. We aimed to evaluate the accuracy of the top-performing DL model from the 2018 Brain Tumor Segmentation (BraTS) challenge, the impact of missing MRI sequences, and whether a model trained on gliomas can accurately segment other brain tumor types.

Methods

We trained the model using Medical Decathlon dataset, applied it to the BraTS 2019 glioma dataset, and developed additional models using individual and multimodal MRI sequences. The Dice score was calculated to assess the model’s accuracy compared to ground truth labels by neuroradiologists on BraTS dataset. The model was then applied to a local dataset of 105 brain tumors, performance of which was qualitatively evaluated.

Results

The DL model using pre- and post-gadolinium contrast T1 and T2 FLAIR sequences performed best, with a Dice score 0.878 for whole tumor, 0.732 tumor core, and 0.699 active tumor. Lack of T1 or T2 sequences did not significantly degrade performance, but FLAIR and T1C were important contributors. All segmentations performed by the model in the local dataset, including non-glioma cases, were considered accurate by a pool of specialists.

Conclusion

The DL model could use available MRI sequences to optimize glioma segmentation and adopt transfer learning to segment non-glioma tumors, thereby serving as a useful tool to improve treatment planning and personalized surveillance of patients.
Literature
9.
go back to reference Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R, Lanczi L, Gerstner E, Weber MA, Arbel T, Avants BB, Ayache N, Buendia P, Collins DL, Cordier N, Corso JJ, Criminisi A, Das T, Delingette H, Demiralp C, Durst CR, Dojat M, Doyle S, Festa J, Forbes F, Geremia E, Glocker B, Golland P, Guo X, Hamamci A, Iftekharuddin KM, Jena R, John NM, Konukoglu E, Lashkari D, Mariz JA, Meier R, Pereira S, Precup D, Price SJ, Raviv TR, Reza SMS, Ryan M, Sarikaya D, Schwartz L, Shin HC, Shotton J, Silva CA, Sousa N, Subbanna NK, Szekely G, Taylor TJ, Thomas OM, Tustison NJ, Unal G, Vasseur F, Wintermark M, Ye DH, Zhao L, Zhao B, Zikic D, Prastawa M, Reyes M, van Leemput K (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34:1993–2024. https://doi.org/10.1109/TMI.2014.2377694CrossRefPubMed Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R, Lanczi L, Gerstner E, Weber MA, Arbel T, Avants BB, Ayache N, Buendia P, Collins DL, Cordier N, Corso JJ, Criminisi A, Das T, Delingette H, Demiralp C, Durst CR, Dojat M, Doyle S, Festa J, Forbes F, Geremia E, Glocker B, Golland P, Guo X, Hamamci A, Iftekharuddin KM, Jena R, John NM, Konukoglu E, Lashkari D, Mariz JA, Meier R, Pereira S, Precup D, Price SJ, Raviv TR, Reza SMS, Ryan M, Sarikaya D, Schwartz L, Shin HC, Shotton J, Silva CA, Sousa N, Subbanna NK, Szekely G, Taylor TJ, Thomas OM, Tustison NJ, Unal G, Vasseur F, Wintermark M, Ye DH, Zhao L, Zhao B, Zikic D, Prastawa M, Reyes M, van Leemput K (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34:1993–2024. https://​doi.​org/​10.​1109/​TMI.​2014.​2377694CrossRefPubMed
10.
go back to reference Bakas S, Reyes M, Jakab A et al (2018) Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge Bakas S, Reyes M, Jakab A et al (2018) Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
14.
go back to reference Simpson AL, Antonelli M, Bakas S et al (2019) A large annotated medical image dataset for the development and evaluation of segmentation algorithms Simpson AL, Antonelli M, Bakas S et al (2019) A large annotated medical image dataset for the development and evaluation of segmentation algorithms
15.
go back to reference Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, Lijmer JG, Moher D, Rennie D, de Vet HCW, Kressel HY, Rifai N, Golub RM, Altman DG, Hooft L, Korevaar DA, Cohen JF (2015) STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ 351:1–9. https://doi.org/10.1136/bmj.h5527CrossRef Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, Lijmer JG, Moher D, Rennie D, de Vet HCW, Kressel HY, Rifai N, Golub RM, Altman DG, Hooft L, Korevaar DA, Cohen JF (2015) STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ 351:1–9. https://​doi.​org/​10.​1136/​bmj.​h5527CrossRef
16.
go back to reference Chang K, Beers AL, Bai HX, Brown JM, Ly KI, Li X, Senders JT, Kavouridis VK, Boaro A, Su C, Bi WL, Rapalino O, Liao W, Shen Q, Zhou H, Xiao B, Wang Y, Zhang PJ, Pinho MC, Wen PY, Batchelor TT, Boxerman JL, Arnaout O, Rosen BR, Gerstner ER, Yang L, Huang RY, Kalpathy-Cramer J (2019) Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement. Neuro-Oncology 21:1412–1422. https://doi.org/10.1093/neuonc/noz106CrossRefPubMedPubMedCentral Chang K, Beers AL, Bai HX, Brown JM, Ly KI, Li X, Senders JT, Kavouridis VK, Boaro A, Su C, Bi WL, Rapalino O, Liao W, Shen Q, Zhou H, Xiao B, Wang Y, Zhang PJ, Pinho MC, Wen PY, Batchelor TT, Boxerman JL, Arnaout O, Rosen BR, Gerstner ER, Yang L, Huang RY, Kalpathy-Cramer J (2019) Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement. Neuro-Oncology 21:1412–1422. https://​doi.​org/​10.​1093/​neuonc/​noz106CrossRefPubMedPubMedCentral
27.
30.
33.
go back to reference Kickingereder P, Isensee F, Tursunova I, Petersen J, Neuberger U, Bonekamp D, Brugnara G, Schell M, Kessler T, Foltyn M, Harting I, Sahm F, Prager M, Nowosielski M, Wick A, Nolden M, Radbruch A, Debus J, Schlemmer HP, Heiland S, Platten M, von Deimling A, van den Bent MJ, Gorlia T, Wick W, Bendszus M, Maier-Hein KH (2019) Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol 20:728–740. https://doi.org/10.1016/S1470-2045(19)30098-1CrossRefPubMed Kickingereder P, Isensee F, Tursunova I, Petersen J, Neuberger U, Bonekamp D, Brugnara G, Schell M, Kessler T, Foltyn M, Harting I, Sahm F, Prager M, Nowosielski M, Wick A, Nolden M, Radbruch A, Debus J, Schlemmer HP, Heiland S, Platten M, von Deimling A, van den Bent MJ, Gorlia T, Wick W, Bendszus M, Maier-Hein KH (2019) Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol 20:728–740. https://​doi.​org/​10.​1016/​S1470-2045(19)30098-1CrossRefPubMed
Metadata
Title
Application of deep learning for automatic segmentation of brain tumors on magnetic resonance imaging: a heuristic approach in the clinical scenario
Authors
Antonio Di Ieva
Carlo Russo
Sidong Liu
Anne Jian
Michael Y. Bai
Yi Qian
John S. Magnussen
Publication date
01-08-2021
Publisher
Springer Berlin Heidelberg
Published in
Neuroradiology / Issue 8/2021
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-021-02649-3

Other articles of this Issue 8/2021

Neuroradiology 8/2021 Go to the issue