Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Glioma | Research

High expression of RTEL1 predicates worse progression in gliomas and promotes tumorigenesis through JNK/ELK1 cascade

Authors: Guanjie Wang, Xiaojuan Ren, Jianying Li, Rongrong Cui, Xumin Zhao, Fang Sui, Juan Liu, Pu Chen, Qi Yang, Meiju Ji, Peng Hou, Ke Gao, Yiping Qu

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Gliomas are the most common primary intracranial tumor worldwide. The maintenance of telomeres serves as an important biomarker of some subtypes of glioma. In order to investigate the biological role of RTEL1 in glioma. Relative telomere length (RTL) and RTEL1 mRNA was explored and regression analysis was performed to further examine the relationship of the RTL and the expression of RTEL1 with clinicopathological characteristics of glioma patients. We observed that high expression of RTEL1 is positively correlated with telomere length in glioma tissue, and serve as a poor prognostic factor in TERT wild-type patients. Further in vitro studies demonstrate that RTEL1 promoted proliferation, formation, migration and invasion ability of glioma cells. In addition, in vivo studies also revealed the oncogene role of RTEL1 in glioma. Further study using RNA sequence and phospho-specific antibody microarray assays identified JNK/ELK1 signaling was up-regulated by RTEL1 in glioma cells through ROS. In conclusion, our results suggested that RTEL1 promotes glioma tumorigenesis through JNK/ELK1 cascade and indicate that RTEL1 may be a prognostic biomarker in gliomas.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, et al. The epidemiology of glioma in adults: a state of the science review. Neurooncology. 2014;16(7):896–913. Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, et al. The epidemiology of glioma in adults: a state of the science review. Neurooncology. 2014;16(7):896–913.
2.
go back to reference Grochans S, Cybulska AM, Simińska D, Korbecki J, Kojder K, Chlubek D, Baranowska-Bosiacka I. Epidemiology of glioblastoma multiforme-literature review. Cancers. 2022;14(10). Grochans S, Cybulska AM, Simińska D, Korbecki J, Kojder K, Chlubek D, Baranowska-Bosiacka I. Epidemiology of glioblastoma multiforme-literature review. Cancers. 2022;14(10).
3.
go back to reference Turner KJ, Vasu V, Griffin DK. Telomere biology and human phenotype. Cells. 2019;8(1). Turner KJ, Vasu V, Griffin DK. Telomere biology and human phenotype. Cells. 2019;8(1).
5.
go back to reference Wang C, Gu Y, Zhou J, Zang J, Ling X, Li H, Hu L, Xu B, Zhang B, Qin N, et al. Leukocyte telomere length in children born following blastocyst-stage embryo transfer. Nat Med. 2022;28(12):2646–53.PubMedCrossRef Wang C, Gu Y, Zhou J, Zang J, Ling X, Li H, Hu L, Xu B, Zhang B, Qin N, et al. Leukocyte telomere length in children born following blastocyst-stage embryo transfer. Nat Med. 2022;28(12):2646–53.PubMedCrossRef
6.
go back to reference Bouillon AS, Ventura Ferreira MS, Awad SA, Richter J, Hochhaus A, Kunzmann V, Dengler J, Janssen J, Ossenkoppele G, Westerweel PE, et al. Telomere shortening correlates with leukemic stem cell burden at diagnosis of chronic myeloid leukemia. Blood Adv. 2018;2(13):1572–9.PubMedPubMedCentralCrossRef Bouillon AS, Ventura Ferreira MS, Awad SA, Richter J, Hochhaus A, Kunzmann V, Dengler J, Janssen J, Ossenkoppele G, Westerweel PE, et al. Telomere shortening correlates with leukemic stem cell burden at diagnosis of chronic myeloid leukemia. Blood Adv. 2018;2(13):1572–9.PubMedPubMedCentralCrossRef
7.
go back to reference Saunders CN, Kinnersley B, Culliford R, Cornish AJ, Law PJ, Houlston RS. Relationship between genetically determined telomere length and glioma risk. Neurooncology. 2022;24(2):171–81. Saunders CN, Kinnersley B, Culliford R, Cornish AJ, Law PJ, Houlston RS. Relationship between genetically determined telomere length and glioma risk. Neurooncology. 2022;24(2):171–81.
8.
go back to reference Kim ES, Ye Y, Vaporciyan AA, Xing J, Huang M, Gu J, Roth JA, Lippman SM, Wu X. Telomere length and recurrence risk after curative resection in patients with early-stage non-small-cell lung cancer: a prospective cohort study. J Thorac Oncology: Official Publication Int Association Study Lung Cancer. 2015;10(2):302–8.CrossRef Kim ES, Ye Y, Vaporciyan AA, Xing J, Huang M, Gu J, Roth JA, Lippman SM, Wu X. Telomere length and recurrence risk after curative resection in patients with early-stage non-small-cell lung cancer: a prospective cohort study. J Thorac Oncology: Official Publication Int Association Study Lung Cancer. 2015;10(2):302–8.CrossRef
9.
go back to reference Ohali A, Avigad S, Ash S, Goshen Y, Luria D, Feinmesser M, Zaizov R, Yaniv I. Telomere length is a prognostic factor in neuroblastoma. Cancer. 2006;107(6):1391–9.PubMedCrossRef Ohali A, Avigad S, Ash S, Goshen Y, Luria D, Feinmesser M, Zaizov R, Yaniv I. Telomere length is a prognostic factor in neuroblastoma. Cancer. 2006;107(6):1391–9.PubMedCrossRef
10.
go back to reference Fernandez-Gomez J, Escaf Barmadah S, Gosalbez D, Rodriguez-Faba O, Jalon A, Gonzalez R, Garcia Miralles T, Calas A. Telomere length on bladder washing samples from patients with bladder cancer correlates with tumor characteristics flow cytometry method for quantitative fluorescence in situ hybridization (flow-FISH technique). Eur Urol. 2005;48(3):432–7.PubMedCrossRef Fernandez-Gomez J, Escaf Barmadah S, Gosalbez D, Rodriguez-Faba O, Jalon A, Gonzalez R, Garcia Miralles T, Calas A. Telomere length on bladder washing samples from patients with bladder cancer correlates with tumor characteristics flow cytometry method for quantitative fluorescence in situ hybridization (flow-FISH technique). Eur Urol. 2005;48(3):432–7.PubMedCrossRef
11.
go back to reference Rachakonda S, Kong H, Srinivas N, Garcia-Casado Z, Requena C, Fallah M, Heidenreich B, Planelles D, Traves V, Schadendorf D, et al. Telomere length, telomerase reverse transcriptase promoter mutations, and melanoma risk. Genes Chromosomes Cancer. 2018;57(11):564–72.PubMedCrossRef Rachakonda S, Kong H, Srinivas N, Garcia-Casado Z, Requena C, Fallah M, Heidenreich B, Planelles D, Traves V, Schadendorf D, et al. Telomere length, telomerase reverse transcriptase promoter mutations, and melanoma risk. Genes Chromosomes Cancer. 2018;57(11):564–72.PubMedCrossRef
12.
go back to reference Rachakonda S, Srinivas N, Mahmoudpour SH, Garcia-Casado Z, Requena C, Traves V, Soriano V, Cardelli M, Pjanova D, Molven A, et al. Telomere length and survival in primary cutaneous melanoma patients. Sci Rep. 2018;8(1):10947.PubMedPubMedCentralCrossRef Rachakonda S, Srinivas N, Mahmoudpour SH, Garcia-Casado Z, Requena C, Traves V, Soriano V, Cardelli M, Pjanova D, Molven A, et al. Telomere length and survival in primary cutaneous melanoma patients. Sci Rep. 2018;8(1):10947.PubMedPubMedCentralCrossRef
13.
go back to reference Ningarhari M, Caruso S, Hirsch TZ, Bayard Q, Franconi A, Védie AL, Noblet B, Blanc JF, Amaddeo G, Ganne N, et al. Telomere length is key to hepatocellular carcinoma diversity and telomerase addiction is an actionable therapeutic target. J Hepatol. 2021;74(5):1155–66.PubMedCrossRef Ningarhari M, Caruso S, Hirsch TZ, Bayard Q, Franconi A, Védie AL, Noblet B, Blanc JF, Amaddeo G, Ganne N, et al. Telomere length is key to hepatocellular carcinoma diversity and telomerase addiction is an actionable therapeutic target. J Hepatol. 2021;74(5):1155–66.PubMedCrossRef
14.
go back to reference Matsuda Y, Ye J, Yamakawa K, Mukai Y, Azuma K, Wu L, Masutomi K, Yamashita T, Daigo Y, Miyagi Y, et al. Association of longer telomere length in cancer cells and cancer-associated fibroblasts with worse prognosis. J Natl Cancer Inst. 2023;115(2):208–18.PubMedCrossRef Matsuda Y, Ye J, Yamakawa K, Mukai Y, Azuma K, Wu L, Masutomi K, Yamashita T, Daigo Y, Miyagi Y, et al. Association of longer telomere length in cancer cells and cancer-associated fibroblasts with worse prognosis. J Natl Cancer Inst. 2023;115(2):208–18.PubMedCrossRef
15.
go back to reference Gao J, Pickett HA. Targeting telomeres: advances in telomere maintenance mechanism-specific cancer therapies. Nat Rev Cancer. 2022;22(9):515–32.PubMedCrossRef Gao J, Pickett HA. Targeting telomeres: advances in telomere maintenance mechanism-specific cancer therapies. Nat Rev Cancer. 2022;22(9):515–32.PubMedCrossRef
16.
go back to reference Tsatsakis A, Oikonomopoulou T, Nikolouzakis TK, Vakonaki E, Tzatzarakis M, Flamourakis M, Renieri E, Fragkiadaki P, Iliaki E, Bachlitzanaki M et al. Role of telomere length in human carcinogenesis (review). Int J Oncol. 2023;63(1). Tsatsakis A, Oikonomopoulou T, Nikolouzakis TK, Vakonaki E, Tzatzarakis M, Flamourakis M, Renieri E, Fragkiadaki P, Iliaki E, Bachlitzanaki M et al. Role of telomere length in human carcinogenesis (review). Int J Oncol. 2023;63(1).
17.
go back to reference Xu X, Qu K, Pang Q, Wang Z, Zhou Y, Liu C. Association between telomere length and survival in cancer patients: a meta-analysis and review of literature. Front Med. 2016;10(2):191–203.PubMedCrossRef Xu X, Qu K, Pang Q, Wang Z, Zhou Y, Liu C. Association between telomere length and survival in cancer patients: a meta-analysis and review of literature. Front Med. 2016;10(2):191–203.PubMedCrossRef
18.
go back to reference Haycock PC, Burgess S, Nounu A, Zheng J, Okoli GN, Bowden J, Wade KH, Timpson NJ, Evans DM, Willeit P, et al. Association between telomere length and risk of cancer and non-neoplastic diseases: a Mendelian randomization study. JAMA Oncol. 2017;3(5):636–51.PubMedCrossRef Haycock PC, Burgess S, Nounu A, Zheng J, Okoli GN, Bowden J, Wade KH, Timpson NJ, Evans DM, Willeit P, et al. Association between telomere length and risk of cancer and non-neoplastic diseases: a Mendelian randomization study. JAMA Oncol. 2017;3(5):636–51.PubMedCrossRef
19.
go back to reference Zhao Z, Pan X, Liu L, Liu N. Telomere length maintenance, shortening, and lengthening. J Cell Physiol. 2014;229(10):1323–9.PubMedCrossRef Zhao Z, Pan X, Liu L, Liu N. Telomere length maintenance, shortening, and lengthening. J Cell Physiol. 2014;229(10):1323–9.PubMedCrossRef
20.
go back to reference De Vitis M, Berardinelli F, Sgura A. Telomere length maintenance in cancer: at the crossroad between telomerase and alternative lengthening of telomeres (ALT). Int J Mol Sci. 2018;19(2). De Vitis M, Berardinelli F, Sgura A. Telomere length maintenance in cancer: at the crossroad between telomerase and alternative lengthening of telomeres (ALT). Int J Mol Sci. 2018;19(2).
21.
go back to reference Uringa EJ, Youds JL, Lisaingo K, Lansdorp PM, Boulton SJ. RTEL1: an essential helicase for telomere maintenance and the regulation of homologous recombination. Nucleic Acids Res. 2011;39(5):1647–55.PubMedCrossRef Uringa EJ, Youds JL, Lisaingo K, Lansdorp PM, Boulton SJ. RTEL1: an essential helicase for telomere maintenance and the regulation of homologous recombination. Nucleic Acids Res. 2011;39(5):1647–55.PubMedCrossRef
22.
go back to reference Sarek G, Vannier JB, Panier S, Petrini JHJ, Boulton SJ. TRF2 recruits RTEL1 to telomeres in S phase to promote t-loop unwinding. Mol Cell. 2015;57(4):622–35.PubMedPubMedCentralCrossRef Sarek G, Vannier JB, Panier S, Petrini JHJ, Boulton SJ. TRF2 recruits RTEL1 to telomeres in S phase to promote t-loop unwinding. Mol Cell. 2015;57(4):622–35.PubMedPubMedCentralCrossRef
23.
go back to reference Takedachi A, Despras E, Scaglione S, Guérois R, Guervilly JH, Blin M, Audebert S, Camoin L, Hasanova Z, Schertzer M, et al. SLX4 interacts with RTEL1 to prevent transcription-mediated DNA replication perturbations. Nat Struct Mol Biol. 2020;27(5):438–49.PubMedCrossRef Takedachi A, Despras E, Scaglione S, Guérois R, Guervilly JH, Blin M, Audebert S, Camoin L, Hasanova Z, Schertzer M, et al. SLX4 interacts with RTEL1 to prevent transcription-mediated DNA replication perturbations. Nat Struct Mol Biol. 2020;27(5):438–49.PubMedCrossRef
24.
go back to reference Kotsantis P, Segura-Bayona S, Margalef P, Marzec P, Ruis P, Hewitt G, Bellelli R, Patel H, Goldstone R, Poetsch AR, et al. RTEL1 regulates G4/R-loops to avert replication-transcription collisions. Cell Rep. 2020;33(12):108546.PubMedPubMedCentralCrossRef Kotsantis P, Segura-Bayona S, Margalef P, Marzec P, Ruis P, Hewitt G, Bellelli R, Patel H, Goldstone R, Poetsch AR, et al. RTEL1 regulates G4/R-loops to avert replication-transcription collisions. Cell Rep. 2020;33(12):108546.PubMedPubMedCentralCrossRef
25.
go back to reference Wu X, Sandhu S, Nabi Z, Ding H. Generation of a mouse model for studying the role of upregulated RTEL1 activity in tumorigenesis. Transgenic Res. 2012;21(5):1109–15.PubMedPubMedCentralCrossRef Wu X, Sandhu S, Nabi Z, Ding H. Generation of a mouse model for studying the role of upregulated RTEL1 activity in tumorigenesis. Transgenic Res. 2012;21(5):1109–15.PubMedPubMedCentralCrossRef
26.
go back to reference Le Guen T, Jullien L, Touzot F, Schertzer M, Gaillard L, Perderiset M, Carpentier W, Nitschke P, Picard C, Couillault G, et al. Human RTEL1 deficiency causes Hoyeraal-Hreidarsson syndrome with short telomeres and genome instability. Hum Mol Genet. 2013;22(16):3239–49.PubMedCrossRef Le Guen T, Jullien L, Touzot F, Schertzer M, Gaillard L, Perderiset M, Carpentier W, Nitschke P, Picard C, Couillault G, et al. Human RTEL1 deficiency causes Hoyeraal-Hreidarsson syndrome with short telomeres and genome instability. Hum Mol Genet. 2013;22(16):3239–49.PubMedCrossRef
27.
go back to reference Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, Simon M, Marie Y, Boisselier B, Delattre JY, et al. Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet. 2009;41(8):899–904.PubMedPubMedCentralCrossRef Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, Simon M, Marie Y, Boisselier B, Delattre JY, et al. Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet. 2009;41(8):899–904.PubMedPubMedCentralCrossRef
28.
go back to reference Wrensch M, Jenkins RB, Chang JS, Yeh RF, Xiao Y, Decker PA, Ballman KV, Berger M, Buckner JC, Chang S, et al. Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet. 2009;41(8):905–8.PubMedPubMedCentralCrossRef Wrensch M, Jenkins RB, Chang JS, Yeh RF, Xiao Y, Decker PA, Ballman KV, Berger M, Buckner JC, Chang S, et al. Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet. 2009;41(8):905–8.PubMedPubMedCentralCrossRef
29.
go back to reference Chen R, Smith-Cohn M, Cohen AL, Colman H. Glioma subclassifications and their clinical significance. Neurotherapeutics: J Am Soc Experimental Neurother. 2017;14(2):284–97.CrossRef Chen R, Smith-Cohn M, Cohen AL, Colman H. Glioma subclassifications and their clinical significance. Neurotherapeutics: J Am Soc Experimental Neurother. 2017;14(2):284–97.CrossRef
30.
go back to reference Sharma A, Graber JJ. Overview of prognostic factors in adult gliomas. Annals Palliat Med. 2021;10(1):863–74.CrossRef Sharma A, Graber JJ. Overview of prognostic factors in adult gliomas. Annals Palliat Med. 2021;10(1):863–74.CrossRef
31.
go back to reference Ware ML, Berger MS, Binder DK. Molecular biology of glioma tumorigenesis. Histol Histopathol. 2003;18(1):207–16.PubMed Ware ML, Berger MS, Binder DK. Molecular biology of glioma tumorigenesis. Histol Histopathol. 2003;18(1):207–16.PubMed
32.
go back to reference Aldape K, Zadeh G, Mansouri S, Reifenberger G, von Deimling A. Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol. 2015;129(6):829–48.PubMedCrossRef Aldape K, Zadeh G, Mansouri S, Reifenberger G, von Deimling A. Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol. 2015;129(6):829–48.PubMedCrossRef
33.
go back to reference Powter B, Jeffreys SA, Sareen H, Cooper A, Brungs D, Po J, Roberts T, Koh ES, Scott KF, Sajinovic M, et al. Human TERT promoter mutations as a prognostic biomarker in glioma. J Cancer Res Clin Oncol. 2021;147(4):1007–17.PubMedPubMedCentralCrossRef Powter B, Jeffreys SA, Sareen H, Cooper A, Brungs D, Po J, Roberts T, Koh ES, Scott KF, Sajinovic M, et al. Human TERT promoter mutations as a prognostic biomarker in glioma. J Cancer Res Clin Oncol. 2021;147(4):1007–17.PubMedPubMedCentralCrossRef
34.
go back to reference Terzi NK, Yilmaz I, Oz AB. The place and prognostic value of TERT promoter mutation in molecular classification in Grade II-III glial tumors and primary glioblastomas. Turk Patoloji Dergisi. 2022;38(2):90–8.PubMed Terzi NK, Yilmaz I, Oz AB. The place and prognostic value of TERT promoter mutation in molecular classification in Grade II-III glial tumors and primary glioblastomas. Turk Patoloji Dergisi. 2022;38(2):90–8.PubMed
35.
36.
go back to reference Jin TB, Zhang JY, Li G, Du SL, Geng TT, Gao J, Liu QP, Gao GD, Kang LL, Chen C, et al. RTEL1 and TERT polymorphisms are associated with astrocytoma risk in the Chinese Han population. Tumour Biology: J Int Soc Oncodevelopmental Biology Med. 2013;34(6):3659–66.CrossRef Jin TB, Zhang JY, Li G, Du SL, Geng TT, Gao J, Liu QP, Gao GD, Kang LL, Chen C, et al. RTEL1 and TERT polymorphisms are associated with astrocytoma risk in the Chinese Han population. Tumour Biology: J Int Soc Oncodevelopmental Biology Med. 2013;34(6):3659–66.CrossRef
37.
go back to reference Song X, Zhou K, Zhao Y, Huai C, Zhao Y, Yu H, Chen Y, Chen G, Chen H, Fan W, et al. Fine mapping analysis of a region of 20q13.33 identified five independent susceptibility loci for glioma in a Chinese Han population. Carcinogenesis. 2012;33(5):1065–71.PubMedCrossRef Song X, Zhou K, Zhao Y, Huai C, Zhao Y, Yu H, Chen Y, Chen G, Chen H, Fan W, et al. Fine mapping analysis of a region of 20q13.33 identified five independent susceptibility loci for glioma in a Chinese Han population. Carcinogenesis. 2012;33(5):1065–71.PubMedCrossRef
38.
go back to reference Chen H, Chen Y, Zhao Y, Fan W, Zhou K, Liu Y, Zhou L, Mao Y, Wei Q, Xu J, et al. Association of sequence variants on chromosomes 20, 11, and 5 (20q13.33, 11q23.3, and 5p15.33) with glioma susceptibility in a Chinese population. Am J Epidemiol. 2011;173(8):915–22.PubMedCrossRef Chen H, Chen Y, Zhao Y, Fan W, Zhou K, Liu Y, Zhou L, Mao Y, Wei Q, Xu J, et al. Association of sequence variants on chromosomes 20, 11, and 5 (20q13.33, 11q23.3, and 5p15.33) with glioma susceptibility in a Chinese population. Am J Epidemiol. 2011;173(8):915–22.PubMedCrossRef
39.
go back to reference Tuli HS, Kaur J, Vashishth K, Sak K, Sharma U, Choudhary R, Behl T, Singh T, Sharma S, Saini AK, et al. Molecular mechanisms behind ROS regulation in cancer: a balancing act between augmented tumorigenesis and cell apoptosis. Arch Toxicol. 2023;97(1):103–20.PubMedCrossRef Tuli HS, Kaur J, Vashishth K, Sak K, Sharma U, Choudhary R, Behl T, Singh T, Sharma S, Saini AK, et al. Molecular mechanisms behind ROS regulation in cancer: a balancing act between augmented tumorigenesis and cell apoptosis. Arch Toxicol. 2023;97(1):103–20.PubMedCrossRef
40.
go back to reference Acquaviva J, Wong R, Charest A. The multifaceted roles of the receptor tyrosine kinase ROS in development and cancer. Biochim Biophys Acta. 2009;1795(1):37–52.PubMed Acquaviva J, Wong R, Charest A. The multifaceted roles of the receptor tyrosine kinase ROS in development and cancer. Biochim Biophys Acta. 2009;1795(1):37–52.PubMed
41.
go back to reference Liu X, Zhao P, Wang X, Wang L, Zhu Y, Song Y, Gao W. Celastrol mediates autophagy and apoptosis via the ROS/JNK and Akt/mTOR signaling pathways in glioma cells. J Experimental Clin cancer Research: CR. 2019;38(1):184.PubMedPubMedCentralCrossRef Liu X, Zhao P, Wang X, Wang L, Zhu Y, Song Y, Gao W. Celastrol mediates autophagy and apoptosis via the ROS/JNK and Akt/mTOR signaling pathways in glioma cells. J Experimental Clin cancer Research: CR. 2019;38(1):184.PubMedPubMedCentralCrossRef
42.
go back to reference Wang J, Yi J. Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol Ther. 2008;7(12):1875–84.PubMedCrossRef Wang J, Yi J. Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol Ther. 2008;7(12):1875–84.PubMedCrossRef
43.
go back to reference Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol. 2018;80:50–64.PubMedCrossRef Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol. 2018;80:50–64.PubMedCrossRef
44.
go back to reference Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol. 2019;25:101084.PubMedCrossRef Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol. 2019;25:101084.PubMedCrossRef
45.
go back to reference Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett. 2017;387:95–105.PubMedCrossRef Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett. 2017;387:95–105.PubMedCrossRef
46.
go back to reference Khan AQ, Rashid K, AlAmodi AA, Agha MV, Akhtar S, Hakeem I, Raza SS, Uddin S. Reactive oxygen species (ROS) in cancer pathogenesis and therapy: an update on the role of ROS in anticancer action of benzophenanthridine alkaloids. Biomed Pharmacotherapy = Biomedecine Pharmacotherapie. 2021;143:112142.PubMedCrossRef Khan AQ, Rashid K, AlAmodi AA, Agha MV, Akhtar S, Hakeem I, Raza SS, Uddin S. Reactive oxygen species (ROS) in cancer pathogenesis and therapy: an update on the role of ROS in anticancer action of benzophenanthridine alkaloids. Biomed Pharmacotherapy = Biomedecine Pharmacotherapie. 2021;143:112142.PubMedCrossRef
Metadata
Title
High expression of RTEL1 predicates worse progression in gliomas and promotes tumorigenesis through JNK/ELK1 cascade
Authors
Guanjie Wang
Xiaojuan Ren
Jianying Li
Rongrong Cui
Xumin Zhao
Fang Sui
Juan Liu
Pu Chen
Qi Yang
Meiju Ji
Peng Hou
Ke Gao
Yiping Qu
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-024-12134-8

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine