Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Glioma | Research

Development of an integrated predictive model for postoperative glioma-related epilepsy using gene-signature and clinical data

Authors: Lianwang Li, Chuanbao Zhang, Zheng Wang, Yinyan Wang, Yuhao Guo, Chong Qi, Gan You, Zhong Zhang, Xing Fan, Tao Jiang

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Background

This study aimed to develop an integrated model for predicting the occurrence of postoperative seizures in patients with diffuse high-grade gliomas (DHGGs) using clinical and RNA-seq data.

Methods

Patients with DHGGs, who received prophylactic anti-epileptic drugs (AEDs) for three months following surgery, were enrolled into the study. The patients were assigned randomly into training (n = 166) and validation (n = 42) cohorts. Differentially expressed genes (DEGs) were identified based on preoperative glioma-related epilepsy (GRE) history. Least absolute shrinkage and selection operator (LASSO) logistic regression analysis was used to construct a predictive gene-signature for the occurrence of postoperative seizures. The final integrated prediction model was generated using the gene-signature and clinical data. Receiver operating characteristic analysis and calibration curve method were used to evaluate the accuracy of the gene-signature and prediction model using the training and validation cohorts.

Results

A seven-gene signature for predicting the occurrence of postoperative seizures was developed using LASSO logistic regression analysis of 623 DEGs. The gene-signature showed satisfactory predictive capacity in the training cohort [area under the curve (AUC) = 0.842] and validation cohort (AUC = 0.751). The final integrated prediction model included age, temporal lobe involvement, preoperative GRE history, and gene-signature-derived risk score. The AUCs of the integrated prediction model were 0.878 and 0.845 for the training and validation cohorts, respectively.

Conclusion

We developed an integrated prediction model for the occurrence of postoperative seizures in patients with DHGG using clinical and RNA-Seq data. The findings of this study may contribute to the development of personalized management strategies for patients with DHGGs and improve our understanding of the mechanisms underlying GRE in these patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Thijs RD, Surges R, O’Brien TJ, et al. Epilepsy in adults. Lancet. 2019;393:689–701.CrossRef Thijs RD, Surges R, O’Brien TJ, et al. Epilepsy in adults. Lancet. 2019;393:689–701.CrossRef
2.
go back to reference Goldstein ED, Feyissa AM. Brain tumor related-epilepsy. Neurol Neurochir Pol. 2018;52:436–47.CrossRef Goldstein ED, Feyissa AM. Brain tumor related-epilepsy. Neurol Neurochir Pol. 2018;52:436–47.CrossRef
3.
go back to reference Jiang T, Nam DH, Ram Z, et al. Clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett. 2021;499:60–72.CrossRef Jiang T, Nam DH, Ram Z, et al. Clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett. 2021;499:60–72.CrossRef
4.
go back to reference Liang S, Fan X, Zhao M, et al. Clinical practice guidelines for the diagnosis and treatment of adult diffuse glioma-related epilepsy. Cancer Med. 2019;8:4527–35.CrossRef Liang S, Fan X, Zhao M, et al. Clinical practice guidelines for the diagnosis and treatment of adult diffuse glioma-related epilepsy. Cancer Med. 2019;8:4527–35.CrossRef
5.
go back to reference Li L, Li G, Fang S, et al. New-onset postoperative seizures in patients with diffuse gliomas: a risk assessment analysis. Front Neurol. 2021;12: 682535.CrossRef Li L, Li G, Fang S, et al. New-onset postoperative seizures in patients with diffuse gliomas: a risk assessment analysis. Front Neurol. 2021;12: 682535.CrossRef
6.
go back to reference Avila EK, Chamberlain M, Schiff D, et al. Seizure control as a new metric in assessing efficacy of tumor treatment in low-grade glioma trials. Neuro Oncol. 2017;19:12–21.CrossRef Avila EK, Chamberlain M, Schiff D, et al. Seizure control as a new metric in assessing efficacy of tumor treatment in low-grade glioma trials. Neuro Oncol. 2017;19:12–21.CrossRef
7.
go back to reference Pallud J, McKhann GM. Diffuse low-grade glioma-related epilepsy. Neurosurg Clin N Am. 2019;30:43–54.CrossRef Pallud J, McKhann GM. Diffuse low-grade glioma-related epilepsy. Neurosurg Clin N Am. 2019;30:43–54.CrossRef
8.
go back to reference Shin JY, Kizilbash SH, Robinson SI, et al. Seizures in patients with primary brain tumors: what is their psychosocial impact? J Neurooncol. 2016;128:285–91.CrossRef Shin JY, Kizilbash SH, Robinson SI, et al. Seizures in patients with primary brain tumors: what is their psychosocial impact? J Neurooncol. 2016;128:285–91.CrossRef
9.
go back to reference Li L, Fang S, Li G, Glioma-related epilepsy in patients with diffuse high-grade glioma after the, et al. WHO update: seizure characteristics, risk factors, and clinical outcomes. J Neurosurg. 2016;2021:1–9. Li L, Fang S, Li G, Glioma-related epilepsy in patients with diffuse high-grade glioma after the, et al. WHO update: seizure characteristics, risk factors, and clinical outcomes. J Neurosurg. 2016;2021:1–9.
10.
go back to reference Wang Z, Yang P, You G, et al. Predicting the likelihood of postoperative seizure status based on mRNA sequencing in low-grade gliomas. Future Oncol. 2018;14:545–52.CrossRef Wang Z, Yang P, You G, et al. Predicting the likelihood of postoperative seizure status based on mRNA sequencing in low-grade gliomas. Future Oncol. 2018;14:545–52.CrossRef
11.
go back to reference Cheng Q, Duan W, He S, et al. Multi-omics data integration analysis of an immune-related gene signature in LGG patients with epilepsy. Front Cell Dev Biol. 2021;9: 686909.CrossRef Cheng Q, Duan W, He S, et al. Multi-omics data integration analysis of an immune-related gene signature in LGG patients with epilepsy. Front Cell Dev Biol. 2021;9: 686909.CrossRef
12.
go back to reference Yang P, Cai J, Yan W, et al. Classification based on mutations ofTERTpromoter andIDHcharacterizes subtypes in grade II/III gliomas. Neuro Oncol. 2016;18:1099–108.CrossRef Yang P, Cai J, Yan W, et al. Classification based on mutations ofTERTpromoter andIDHcharacterizes subtypes in grade II/III gliomas. Neuro Oncol. 2016;18:1099–108.CrossRef
13.
go back to reference Yan W, Zhang W, You G, et al. Correlation of IDH1 mutation with clinicopathologic factors and prognosis in primary glioblastoma: a report of 118 patients from China. PLoS ONE. 2012;7: e30339.CrossRef Yan W, Zhang W, You G, et al. Correlation of IDH1 mutation with clinicopathologic factors and prognosis in primary glioblastoma: a report of 118 patients from China. PLoS ONE. 2012;7: e30339.CrossRef
14.
go back to reference Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131:803–20.CrossRef Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131:803–20.CrossRef
15.
go back to reference Fan X, Wang Y, Zhang C, et al. ADAM9 expression is associate with Glioma Tumor Grade and Histological type, and acts as a prognostic factor in lower-grade Gliomas. Int J Mol Sci. 2016;17(9):1276.CrossRef Fan X, Wang Y, Zhang C, et al. ADAM9 expression is associate with Glioma Tumor Grade and Histological type, and acts as a prognostic factor in lower-grade Gliomas. Int J Mol Sci. 2016;17(9):1276.CrossRef
16.
go back to reference Zhao Z, Zhang KN, Wang Q, et al. Chinese Glioma Genome Atlas (CGGA): a comprehensive resource with functional genomic data from chinese glioma patients. Genomics Proteomics Bioinformatics. 2021;19:1–12.CrossRef Zhao Z, Zhang KN, Wang Q, et al. Chinese Glioma Genome Atlas (CGGA): a comprehensive resource with functional genomic data from chinese glioma patients. Genomics Proteomics Bioinformatics. 2021;19:1–12.CrossRef
17.
go back to reference Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.CrossRef Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.CrossRef
18.
go back to reference Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28:1947–51.CrossRef Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28:1947–51.CrossRef
19.
go back to reference Kanehisa M, Furumichi M, Sato Y, et al. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49:D545–51.CrossRef Kanehisa M, Furumichi M, Sato Y, et al. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49:D545–51.CrossRef
20.
go back to reference Dewan MC, Thompson RC, Kalkanis SN, et al. Prophylactic antiepileptic drug administration following brain tumor resection: results of a recent AANS/CNS Section on Tumors survey. J Neurosurg. 2017;126:1772–8.CrossRef Dewan MC, Thompson RC, Kalkanis SN, et al. Prophylactic antiepileptic drug administration following brain tumor resection: results of a recent AANS/CNS Section on Tumors survey. J Neurosurg. 2017;126:1772–8.CrossRef
21.
go back to reference Kim SK, Moon J, Cho JM, et al. A national consensus survey for current practice in brain tumor management i: antiepileptic drug and steroid usage. Brain Tumor Res Treat. 2020;8:1–10.CrossRef Kim SK, Moon J, Cho JM, et al. A national consensus survey for current practice in brain tumor management i: antiepileptic drug and steroid usage. Brain Tumor Res Treat. 2020;8:1–10.CrossRef
22.
go back to reference Wali AR, Rennert RC, Wang SG, et al. Prophylactic anticonvulsants in patients with primary glioblastoma. J Neurooncol. 2017;135:229–35.CrossRef Wali AR, Rennert RC, Wang SG, et al. Prophylactic anticonvulsants in patients with primary glioblastoma. J Neurooncol. 2017;135:229–35.CrossRef
23.
go back to reference Walbert T, Harrison RA, Schiff D, et al. SNO and EANO practice guideline update: Anticonvulsant prophylaxis in patients with newly diagnosed brain tumors. Neuro Oncol. 2021;23:1835–44.CrossRef Walbert T, Harrison RA, Schiff D, et al. SNO and EANO practice guideline update: Anticonvulsant prophylaxis in patients with newly diagnosed brain tumors. Neuro Oncol. 2021;23:1835–44.CrossRef
24.
go back to reference Chang EF, Potts MB, Keles GE, et al. Seizure characteristics and control following resection in 332 patients with low-grade gliomas. J Neurosurg. 2008;108:227–35.CrossRef Chang EF, Potts MB, Keles GE, et al. Seizure characteristics and control following resection in 332 patients with low-grade gliomas. J Neurosurg. 2008;108:227–35.CrossRef
25.
go back to reference You G, Sha ZY, Yan W, et al. Seizure characteristics and outcomes in 508 Chinese adult patients undergoing primary resection of low-grade gliomas: a clinicopathological study. Neuro Oncol. 2012;14:230–41.CrossRef You G, Sha ZY, Yan W, et al. Seizure characteristics and outcomes in 508 Chinese adult patients undergoing primary resection of low-grade gliomas: a clinicopathological study. Neuro Oncol. 2012;14:230–41.CrossRef
26.
go back to reference Shan X, Fan X, Liu X, et al. Clinical characteristics associated with postoperative seizure control in adult low-grade gliomas: a systematic review and meta-analysis. Neuro Oncol. 2018;20:324–31.CrossRef Shan X, Fan X, Liu X, et al. Clinical characteristics associated with postoperative seizure control in adult low-grade gliomas: a systematic review and meta-analysis. Neuro Oncol. 2018;20:324–31.CrossRef
27.
28.
go back to reference Bech KT, Seyedi JF, Schulz M, et al. The risk of developing seizures before and after primary brain surgery of low- and high-grade gliomas. Clin Neurol Neurosurg. 2018;169:185–91.CrossRef Bech KT, Seyedi JF, Schulz M, et al. The risk of developing seizures before and after primary brain surgery of low- and high-grade gliomas. Clin Neurol Neurosurg. 2018;169:185–91.CrossRef
29.
go back to reference Oyrer J, Maljevic S, Scheffer IE, et al. Ion channels in genetic epilepsy: from genes and mechanisms to disease-targeted therapies. Pharmacol Rev. 2018;70:142–73.CrossRef Oyrer J, Maljevic S, Scheffer IE, et al. Ion channels in genetic epilepsy: from genes and mechanisms to disease-targeted therapies. Pharmacol Rev. 2018;70:142–73.CrossRef
30.
go back to reference Takayasu T, Kurisu K, Esquenazi Y, et al. Ion channels and their role in the pathophysiology of gliomas. Mol Cancer Ther. 2020;19:1959–69.CrossRef Takayasu T, Kurisu K, Esquenazi Y, et al. Ion channels and their role in the pathophysiology of gliomas. Mol Cancer Ther. 2020;19:1959–69.CrossRef
31.
go back to reference Niday Z, Tzingounis AV. Potassium channel gain of function in epilepsy: an unresolved paradox. Neuroscientist. 2018;24:368–80.CrossRef Niday Z, Tzingounis AV. Potassium channel gain of function in epilepsy: an unresolved paradox. Neuroscientist. 2018;24:368–80.CrossRef
32.
go back to reference Lange, F., J. Hornschemeyer, and T. Kirschstein. Glutamatergic Mechanisms in Glioblastoma and Tumor-Associated Epilepsy. Cells, 2021; 10. Lange, F., J. Hornschemeyer, and T. Kirschstein. Glutamatergic Mechanisms in Glioblastoma and Tumor-Associated Epilepsy. Cells, 2021; 10.
33.
go back to reference Mertz C, Krarup S, Jensen CD, et al. Aspects of cAMP signaling in epileptogenesis and seizures and its potential as drug target. Neurochem Res. 2020;45:1247–55.CrossRef Mertz C, Krarup S, Jensen CD, et al. Aspects of cAMP signaling in epileptogenesis and seizures and its potential as drug target. Neurochem Res. 2020;45:1247–55.CrossRef
34.
go back to reference Vezzani A, Lang B, Aronica E. Immunity and inflammation in epilepsy. Cold Spring Harb Perspect Med. 2015;6: a022699.CrossRef Vezzani A, Lang B, Aronica E. Immunity and inflammation in epilepsy. Cold Spring Harb Perspect Med. 2015;6: a022699.CrossRef
35.
go back to reference Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: position paper of the ILAE commission for classification and terminology. Epilepsia. 2017;58:512–21.CrossRef Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: position paper of the ILAE commission for classification and terminology. Epilepsia. 2017;58:512–21.CrossRef
36.
go back to reference Zhong QY, Fan EX, Feng GY, et al. A gene expression-based study on immune cell subtypes and glioma prognosis. BMC Cancer. 2019;19:1116.CrossRef Zhong QY, Fan EX, Feng GY, et al. A gene expression-based study on immune cell subtypes and glioma prognosis. BMC Cancer. 2019;19:1116.CrossRef
37.
go back to reference Berendsen S, Varkila M, Kroonen J, et al. Prognostic relevance of epilepsy at presentation in glioblastoma patients. Neuro Oncol. 2016;18:700–6.CrossRef Berendsen S, Varkila M, Kroonen J, et al. Prognostic relevance of epilepsy at presentation in glioblastoma patients. Neuro Oncol. 2016;18:700–6.CrossRef
38.
go back to reference Olmi S, Petkoski S, Guye M, et al. Controlling seizure propagation in large-scale brain networks. PLoS Comput Biol. 2019;15: e1006805.CrossRef Olmi S, Petkoski S, Guye M, et al. Controlling seizure propagation in large-scale brain networks. PLoS Comput Biol. 2019;15: e1006805.CrossRef
39.
go back to reference Kanai Y, Clemencon B, Simonin A, et al. The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol Aspects Med. 2013;34:108–20.CrossRef Kanai Y, Clemencon B, Simonin A, et al. The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol Aspects Med. 2013;34:108–20.CrossRef
40.
go back to reference Weiss MD, Rossignol C, Sumners C, et al. A pH-dependent increase in neuronal glutamate efflux in vitro: possible involvement of ASCT1. Brain Res. 2005;1056:105–12.CrossRef Weiss MD, Rossignol C, Sumners C, et al. A pH-dependent increase in neuronal glutamate efflux in vitro: possible involvement of ASCT1. Brain Res. 2005;1056:105–12.CrossRef
41.
go back to reference Inyushin M, Kucheryavykh LY, Kucheryavykh YV, et al. Potassium channel activity and glutamate uptake are impaired in astrocytes of seizure-susceptible DBA/2 mice. Epilepsia. 2010;51:1707–13.CrossRef Inyushin M, Kucheryavykh LY, Kucheryavykh YV, et al. Potassium channel activity and glutamate uptake are impaired in astrocytes of seizure-susceptible DBA/2 mice. Epilepsia. 2010;51:1707–13.CrossRef
42.
go back to reference Nagao, Y., Y. Harada, T. Mukai, et al. Expressional analysis of the astrocytic Kir4.1 channel in a pilocarpine-induced temporal lobe epilepsy model. Front Cell Neurosci, 2013; 7: 104. Nagao, Y., Y. Harada, T. Mukai, et al. Expressional analysis of the astrocytic Kir4.1 channel in a pilocarpine-induced temporal lobe epilepsy model. Front Cell Neurosci, 2013; 7: 104.
Metadata
Title
Development of an integrated predictive model for postoperative glioma-related epilepsy using gene-signature and clinical data
Authors
Lianwang Li
Chuanbao Zhang
Zheng Wang
Yinyan Wang
Yuhao Guo
Chong Qi
Gan You
Zhong Zhang
Xing Fan
Tao Jiang
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-022-10385-x

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine