Skip to main content
Top
Published in: Cancer Cell International 1/2021

01-12-2021 | Glioblastoma | Review

The dysregulated expression and functional effect of CaMK2 in cancer

Authors: Qi He, Zhenyu Li

Published in: Cancer Cell International | Issue 1/2021

Login to get access

Abstract

CaMK2 (calcium/calmodulin-dependent protein kinase 2), a multifunctional serine/threonine-protein kinase involved in diverse cellular processes, is vital for the transduction of the Ca2+ signaling cascade. Recently, research has highlighted the involvement of CaMK2 in cancer development. However, the specific effects of CaMK2 on cancer have not been fully elucidated. In this review, we summarize not only the altered expression of CaMK2 in a range of cancers, as evidenced by bioinformatics analysis, but also the significant role of CaMK2 in regulating cancer progression, such as proliferation and metastasis. In addition, we described the functional influence of CaMK2 on cancer stemness and resistance. Understanding the critical effects and mechanisms of CaMK2 in cancer would facilitate the development of a promising therapeutic strategy for cancer treatment.
Literature
1.
go back to reference Hudmon A, Schulman H. Neuronal Ca2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem. 2002;71:473–510.PubMedCrossRef Hudmon A, Schulman H. Neuronal Ca2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem. 2002;71:473–510.PubMedCrossRef
2.
go back to reference Shonesy BC, et al. CaMKII: a molecular substrate for synaptic plasticity and memory. Prog Mol Biol Transl Sci. 2014;122:61–87.PubMedCrossRef Shonesy BC, et al. CaMKII: a molecular substrate for synaptic plasticity and memory. Prog Mol Biol Transl Sci. 2014;122:61–87.PubMedCrossRef
3.
go back to reference Skelding KA, Rostas JA, Verrills NM. Controlling the cell cycle: the role of calcium/calmodulin-stimulated protein kinases I and II. Cell Cycle. 2011;10(4):631–9.PubMedCrossRef Skelding KA, Rostas JA, Verrills NM. Controlling the cell cycle: the role of calcium/calmodulin-stimulated protein kinases I and II. Cell Cycle. 2011;10(4):631–9.PubMedCrossRef
4.
go back to reference Braun AP, Schulman H. The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu Rev Physiol. 1995;57:417–45.PubMedCrossRef Braun AP, Schulman H. The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu Rev Physiol. 1995;57:417–45.PubMedCrossRef
5.
go back to reference Brzozowski JS, Skelding KA. The multi-functional calcium/calmodulin stimulated protein kinase (CaMK) family: emerging targets for anti-cancer therapeutic intervention. Pharmaceuticals (Basel). 2019;12(1):8.CrossRef Brzozowski JS, Skelding KA. The multi-functional calcium/calmodulin stimulated protein kinase (CaMK) family: emerging targets for anti-cancer therapeutic intervention. Pharmaceuticals (Basel). 2019;12(1):8.CrossRef
6.
go back to reference Fong YL, et al. Studies of the regulatory mechanism of Ca2+/calmodulin-dependent protein kinase II. Mutation of threonine 286 to alanine and aspartate. J Biol Chem. 1989;264(28):16759–63.PubMedCrossRef Fong YL, et al. Studies of the regulatory mechanism of Ca2+/calmodulin-dependent protein kinase II. Mutation of threonine 286 to alanine and aspartate. J Biol Chem. 1989;264(28):16759–63.PubMedCrossRef
7.
go back to reference Meyer T, et al. Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science. 1992;256(5060):1199–202.PubMedCrossRef Meyer T, et al. Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science. 1992;256(5060):1199–202.PubMedCrossRef
8.
go back to reference Skelding KA, Rostas JA. Regulation of CaMKII in vivo: the importance of targeting and the intracellular microenvironment. Neurochem Res. 2009;34(10):1792–804.PubMedCrossRef Skelding KA, Rostas JA. Regulation of CaMKII in vivo: the importance of targeting and the intracellular microenvironment. Neurochem Res. 2009;34(10):1792–804.PubMedCrossRef
11.
12.
go back to reference Schworer CM, Colbran RJ, Soderling TR. Reversible generation of a Ca2+-independent form of Ca2+(calmodulin)-dependent protein kinase II by an autophosphorylation mechanism. J Biol Chem. 1986;261(19):8581–4.PubMedCrossRef Schworer CM, Colbran RJ, Soderling TR. Reversible generation of a Ca2+-independent form of Ca2+(calmodulin)-dependent protein kinase II by an autophosphorylation mechanism. J Biol Chem. 1986;261(19):8581–4.PubMedCrossRef
15.
go back to reference Coultrap SJ, Bayer KU. Nitric oxide induces Ca2+-independent activity of the Ca2+/calmodulin-dependent protein kinase II (CaMKII). J Biol Chem. 2014;289(28):19458–65.PubMedPubMedCentralCrossRef Coultrap SJ, Bayer KU. Nitric oxide induces Ca2+-independent activity of the Ca2+/calmodulin-dependent protein kinase II (CaMKII). J Biol Chem. 2014;289(28):19458–65.PubMedPubMedCentralCrossRef
16.
go back to reference Ducibella T, Schultz RM, Ozil JP. Role of calcium signals in early development. Semin Cell Dev Biol. 2006;17(2):324–32.PubMedCrossRef Ducibella T, Schultz RM, Ozil JP. Role of calcium signals in early development. Semin Cell Dev Biol. 2006;17(2):324–32.PubMedCrossRef
17.
go back to reference Zayzafoon M. Calcium/calmodulin signaling controls osteoblast growth and differentiation. J Cell Biochem. 2006;97(1):56–70.PubMedCrossRef Zayzafoon M. Calcium/calmodulin signaling controls osteoblast growth and differentiation. J Cell Biochem. 2006;97(1):56–70.PubMedCrossRef
18.
go back to reference Wang C, et al. A novel endogenous human CaMKII inhibitory protein suppresses tumor growth by inducing cell cycle arrest via p27 stabilization. J Biol Chem. 2008;283(17):11565–74.PubMedPubMedCentralCrossRef Wang C, et al. A novel endogenous human CaMKII inhibitory protein suppresses tumor growth by inducing cell cycle arrest via p27 stabilization. J Biol Chem. 2008;283(17):11565–74.PubMedPubMedCentralCrossRef
19.
go back to reference Ma S, et al. Endogenous human CaMKII inhibitory protein suppresses tumor growth by inducing cell cycle arrest and apoptosis through down-regulation of the phosphatidylinositide 3-kinase/Akt/HDM2 pathway. J Biol Chem. 2009;284(37):24773–82.PubMedPubMedCentralCrossRef Ma S, et al. Endogenous human CaMKII inhibitory protein suppresses tumor growth by inducing cell cycle arrest and apoptosis through down-regulation of the phosphatidylinositide 3-kinase/Akt/HDM2 pathway. J Biol Chem. 2009;284(37):24773–82.PubMedPubMedCentralCrossRef
20.
go back to reference Giese KP, et al. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science. 1998;279(5352):870–3.PubMedCrossRef Giese KP, et al. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science. 1998;279(5352):870–3.PubMedCrossRef
21.
go back to reference Miller S, et al. Disruption of dendritic translation of CaMKIIalpha impairs stabilization of synaptic plasticity and memory consolidation. Neuron. 2002;36(3):507–19.PubMedCrossRef Miller S, et al. Disruption of dendritic translation of CaMKIIalpha impairs stabilization of synaptic plasticity and memory consolidation. Neuron. 2002;36(3):507–19.PubMedCrossRef
22.
go back to reference Mercure MZ, Ginnan R, Singer HA. CaM kinase II delta2-dependent regulation of vascular smooth muscle cell polarization and migration. Am J Physiol Cell Physiol. 2008;294(6):C1465–75.PubMedCrossRef Mercure MZ, Ginnan R, Singer HA. CaM kinase II delta2-dependent regulation of vascular smooth muscle cell polarization and migration. Am J Physiol Cell Physiol. 2008;294(6):C1465–75.PubMedCrossRef
23.
go back to reference Cohen MB, Rokhlin OW. Mechanisms of prostate cancer cell survival after inhibition of AR expression. J Cell Biochem. 2009;106(3):363–71.PubMedCrossRef Cohen MB, Rokhlin OW. Mechanisms of prostate cancer cell survival after inhibition of AR expression. J Cell Biochem. 2009;106(3):363–71.PubMedCrossRef
24.
go back to reference Nitzki F, et al. Tumor stroma-derived Wnt5a induces differentiation of basal cell carcinoma of Ptch-mutant mice via CaMKII. Cancer Res. 2010;70(7):2739–48.PubMedCrossRef Nitzki F, et al. Tumor stroma-derived Wnt5a induces differentiation of basal cell carcinoma of Ptch-mutant mice via CaMKII. Cancer Res. 2010;70(7):2739–48.PubMedCrossRef
25.
go back to reference Minami H, Inoue S, Hidaka H. The effect of KN-62, Ca2+/calmodulin dependent protein kinase II inhibitor on cell cycle. Biochem Biophys Res Commun. 1994;199(1):241–8.PubMedCrossRef Minami H, Inoue S, Hidaka H. The effect of KN-62, Ca2+/calmodulin dependent protein kinase II inhibitor on cell cycle. Biochem Biophys Res Commun. 1994;199(1):241–8.PubMedCrossRef
26.
go back to reference Tombes RM, et al. G1 cell cycle arrest and apoptosis are induced in NIH 3T3 cells by KN-93, an inhibitor of CaMK-II (the multifunctional Ca2+/CaM kinase). Cell Growth Differ. 1995;6(9):1063–70.PubMed Tombes RM, et al. G1 cell cycle arrest and apoptosis are induced in NIH 3T3 cells by KN-93, an inhibitor of CaMK-II (the multifunctional Ca2+/CaM kinase). Cell Growth Differ. 1995;6(9):1063–70.PubMed
27.
go back to reference Hennig EE, et al. Comparative kinome analysis to identify putative colon tumor biomarkers. J Mol Med (Berl). 2012;90(4):447–56.CrossRef Hennig EE, et al. Comparative kinome analysis to identify putative colon tumor biomarkers. J Mol Med (Berl). 2012;90(4):447–56.CrossRef
28.
go back to reference Feng YY, et al. Alteration of microRNA-4474/4717 expression and CREB-binding protein in human colorectal cancer tissues infected with Fusobacterium nucleatum. PLoS ONE. 2019;14(4):e0215088.PubMedPubMedCentralCrossRef Feng YY, et al. Alteration of microRNA-4474/4717 expression and CREB-binding protein in human colorectal cancer tissues infected with Fusobacterium nucleatum. PLoS ONE. 2019;14(4):e0215088.PubMedPubMedCentralCrossRef
29.
go back to reference Li JN, et al. Differences in gene expression profiles and carcinogenesis pathways between colon and rectal cancer. J Dig Dis. 2012;13(1):24–32.PubMedCrossRef Li JN, et al. Differences in gene expression profiles and carcinogenesis pathways between colon and rectal cancer. J Dig Dis. 2012;13(1):24–32.PubMedCrossRef
30.
go back to reference Johansson FK, Goransson H, Westermark B. Expression analysis of genes involved in brain tumor progression driven by retroviral insertional mutagenesis in mice. Oncogene. 2005;24(24):3896–905.PubMedCrossRef Johansson FK, Goransson H, Westermark B. Expression analysis of genes involved in brain tumor progression driven by retroviral insertional mutagenesis in mice. Oncogene. 2005;24(24):3896–905.PubMedCrossRef
31.
go back to reference Xiong DD, et al. In silico analysis identified miRNAbased therapeutic agents against glioblastoma multiforme. Oncol Rep. 2019;41(4):2194–208.PubMedPubMedCentral Xiong DD, et al. In silico analysis identified miRNAbased therapeutic agents against glioblastoma multiforme. Oncol Rep. 2019;41(4):2194–208.PubMedPubMedCentral
32.
go back to reference van den Boom J, et al. Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction. Am J Pathol. 2003;163(3):1033–43.PubMedPubMedCentralCrossRef van den Boom J, et al. Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction. Am J Pathol. 2003;163(3):1033–43.PubMedPubMedCentralCrossRef
33.
go back to reference Zhang Y, Xu J, Zhu X. A 63 signature genes prediction system is effective for glioblastoma prognosis. Int J Mol Med. 2018;41(4):2070–8.PubMedPubMedCentral Zhang Y, Xu J, Zhu X. A 63 signature genes prediction system is effective for glioblastoma prognosis. Int J Mol Med. 2018;41(4):2070–8.PubMedPubMedCentral
34.
go back to reference Lian M, et al. Microarray gene expression analysis of chemosensitivity for docetaxel, cisplatin and 5-fluorouracil (TPF) combined chemotherapeutic regimen in hypopharyngeal squamous cell carcinoma. Chin J Cancer Res. 2017;29(3):204–12.PubMedPubMedCentralCrossRef Lian M, et al. Microarray gene expression analysis of chemosensitivity for docetaxel, cisplatin and 5-fluorouracil (TPF) combined chemotherapeutic regimen in hypopharyngeal squamous cell carcinoma. Chin J Cancer Res. 2017;29(3):204–12.PubMedPubMedCentralCrossRef
35.
go back to reference Shao B, et al. Plasma CAMK2A predicts chemotherapy resistance in metastatic triple negative breast cancer. Int J Clin Exp Pathol. 2018;11(2):650–63.PubMedPubMedCentral Shao B, et al. Plasma CAMK2A predicts chemotherapy resistance in metastatic triple negative breast cancer. Int J Clin Exp Pathol. 2018;11(2):650–63.PubMedPubMedCentral
36.
go back to reference Tang S, et al. Genome-wide association study of survival in early-stage non-small cell lung cancer. Ann Surg Oncol. 2015;22(2):630–5.PubMedCrossRef Tang S, et al. Genome-wide association study of survival in early-stage non-small cell lung cancer. Ann Surg Oncol. 2015;22(2):630–5.PubMedCrossRef
37.
go back to reference Kim JH, Kim TW, Kim SJ. Downregulation of ARFGEF1 and CAMK2B by promoter hypermethylation in breast cancer cells. BMB Rep. 2011;44(8):523–8.PubMedCrossRef Kim JH, Kim TW, Kim SJ. Downregulation of ARFGEF1 and CAMK2B by promoter hypermethylation in breast cancer cells. BMB Rep. 2011;44(8):523–8.PubMedCrossRef
39.
go back to reference Wang Z, et al. RNA sequencing of esophageal adenocarcinomas identifies novel fusion transcripts, including NPC1-MELK, arising from a complex chromosomal rearrangement. Cancer. 2017;123(20):3916–24.PubMedCrossRef Wang Z, et al. RNA sequencing of esophageal adenocarcinomas identifies novel fusion transcripts, including NPC1-MELK, arising from a complex chromosomal rearrangement. Cancer. 2017;123(20):3916–24.PubMedCrossRef
40.
go back to reference Jing Z, et al. SKF-96365 activates cytoprotective autophagy to delay apoptosis in colorectal cancer cells through inhibition of the calcium/CaMKIIgamma/AKT-mediated pathway. Cancer Lett. 2016;372(2):226–38.PubMedPubMedCentralCrossRef Jing Z, et al. SKF-96365 activates cytoprotective autophagy to delay apoptosis in colorectal cancer cells through inhibition of the calcium/CaMKIIgamma/AKT-mediated pathway. Cancer Lett. 2016;372(2):226–38.PubMedPubMedCentralCrossRef
41.
go back to reference Chen W, et al. Ca(2+)/calmodulin-dependent protein kinase II regulates colon cancer proliferation and migration via ERK1/2 and p38 pathways. World J Gastroenterol. 2017;23(33):6111–8.PubMedPubMedCentralCrossRef Chen W, et al. Ca(2+)/calmodulin-dependent protein kinase II regulates colon cancer proliferation and migration via ERK1/2 and p38 pathways. World J Gastroenterol. 2017;23(33):6111–8.PubMedPubMedCentralCrossRef
42.
go back to reference Britschgi A, et al. Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling. Proc Natl Acad Sci USA. 2013;110(11):E1026–34.PubMedPubMedCentralCrossRef Britschgi A, et al. Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling. Proc Natl Acad Sci USA. 2013;110(11):E1026–34.PubMedPubMedCentralCrossRef
43.
go back to reference Chi M, et al. Phosphorylation of calcium/calmodulin-stimulated protein kinase II at T286 enhances invasion and migration of human breast cancer cells. Sci Rep. 2016;6:33132.PubMedPubMedCentralCrossRef Chi M, et al. Phosphorylation of calcium/calmodulin-stimulated protein kinase II at T286 enhances invasion and migration of human breast cancer cells. Sci Rep. 2016;6:33132.PubMedPubMedCentralCrossRef
44.
go back to reference Hoffman A, et al. Dephosphorylation of CaMKII at T253 controls the metaphase–anaphase transition. Cell Signal. 2014;26(4):748–56.PubMedCrossRef Hoffman A, et al. Dephosphorylation of CaMKII at T253 controls the metaphase–anaphase transition. Cell Signal. 2014;26(4):748–56.PubMedCrossRef
45.
go back to reference Liu Z, et al. Calcium/calmodulindependent protein kinase II enhances metastasis of human gastric cancer by upregulating nuclear factorkappaB and Aktmediated matrix metalloproteinase9 production. Mol Med Rep. 2014;10(5):2459–64.PubMedCrossRef Liu Z, et al. Calcium/calmodulindependent protein kinase II enhances metastasis of human gastric cancer by upregulating nuclear factorkappaB and Aktmediated matrix metalloproteinase9 production. Mol Med Rep. 2014;10(5):2459–64.PubMedCrossRef
46.
go back to reference Dai L, et al. DAG/PKCdelta and IP3/Ca(2)(+)/CaMK IIbeta operate in parallel to each other in PLCgamma1-driven cell proliferation and migration of human gastric adenocarcinoma cells, through Akt/mTOR/S6 pathway. Int J Mol Sci. 2015;16(12):28510–22.PubMedPubMedCentralCrossRef Dai L, et al. DAG/PKCdelta and IP3/Ca(2)(+)/CaMK IIbeta operate in parallel to each other in PLCgamma1-driven cell proliferation and migration of human gastric adenocarcinoma cells, through Akt/mTOR/S6 pathway. Int J Mol Sci. 2015;16(12):28510–22.PubMedPubMedCentralCrossRef
47.
go back to reference Lee KH. CaMKII Inhibitor KN-62 Blunts tumor response to Hypoxia by inhibiting HIF-1alpha in hepatoma cells. Korean J Physiol Pharmacol. 2010;14(5):331–6.PubMedPubMedCentralCrossRef Lee KH. CaMKII Inhibitor KN-62 Blunts tumor response to Hypoxia by inhibiting HIF-1alpha in hepatoma cells. Korean J Physiol Pharmacol. 2010;14(5):331–6.PubMedPubMedCentralCrossRef
48.
go back to reference Meng Z, et al. Berbamine inhibits the growth of liver cancer cells and cancer-initiating cells by targeting Ca(2)(+)/calmodulin-dependent protein kinase II. Mol Cancer Ther. 2013;12(10):2067–77.PubMedCrossRef Meng Z, et al. Berbamine inhibits the growth of liver cancer cells and cancer-initiating cells by targeting Ca(2)(+)/calmodulin-dependent protein kinase II. Mol Cancer Ther. 2013;12(10):2067–77.PubMedCrossRef
49.
go back to reference Mamaeva OA, et al. Calcium/calmodulin-dependent kinase II regulates notch-1 signaling in prostate cancer cells. J Cell Biochem. 2009;106(1):25–32.PubMedCrossRef Mamaeva OA, et al. Calcium/calmodulin-dependent kinase II regulates notch-1 signaling in prostate cancer cells. J Cell Biochem. 2009;106(1):25–32.PubMedCrossRef
50.
go back to reference Rokhlin OW, et al. Calcium/calmodulin-dependent kinase II plays an important role in prostate cancer cell survival. Cancer Biol Ther. 2007;6(5):732–42.PubMedCrossRef Rokhlin OW, et al. Calcium/calmodulin-dependent kinase II plays an important role in prostate cancer cell survival. Cancer Biol Ther. 2007;6(5):732–42.PubMedCrossRef
51.
go back to reference Yu G, et al. Organelle-derived Acetyl-CoA promotes prostate cancer cell survival, migration, and metastasis via activation of calmodulin kinase II. Cancer Res. 2018;78(10):2490–502.PubMedPubMedCentralCrossRef Yu G, et al. Organelle-derived Acetyl-CoA promotes prostate cancer cell survival, migration, and metastasis via activation of calmodulin kinase II. Cancer Res. 2018;78(10):2490–502.PubMedPubMedCentralCrossRef
52.
go back to reference Rokhlin OW, et al. KN-93 inhibits androgen receptor activity and induces cell death irrespective of p53 and Akt status in prostate cancer. Cancer Biol Ther. 2010;9(3):224–35.PubMedCrossRef Rokhlin OW, et al. KN-93 inhibits androgen receptor activity and induces cell death irrespective of p53 and Akt status in prostate cancer. Cancer Biol Ther. 2010;9(3):224–35.PubMedCrossRef
53.
go back to reference Wang Q, Huang L, Yue J. Oxidative stress activates the TRPM2-Ca(2+)-CaMKII-ROS signaling loop to induce cell death in cancer cells. Biochim Biophys Acta Mol Cell Res. 2017;1864(6):957–67.PubMedCrossRef Wang Q, Huang L, Yue J. Oxidative stress activates the TRPM2-Ca(2+)-CaMKII-ROS signaling loop to induce cell death in cancer cells. Biochim Biophys Acta Mol Cell Res. 2017;1864(6):957–67.PubMedCrossRef
54.
55.
56.
go back to reference Si J, Collins SJ. Activated Ca2+/calmodulin-dependent protein kinase II gamma is a critical regulator of myeloid leukemia cell proliferation. Cancer Res. 2008;68(10):3733–42.PubMedPubMedCentralCrossRef Si J, Collins SJ. Activated Ca2+/calmodulin-dependent protein kinase II gamma is a critical regulator of myeloid leukemia cell proliferation. Cancer Res. 2008;68(10):3733–42.PubMedPubMedCentralCrossRef
57.
go back to reference Gu Y, et al. CaMKII gamma, a critical regulator of CML stem/progenitor cells, is a target of the natural product berbamine. Blood. 2012;120(24):4829–39.PubMedPubMedCentralCrossRef Gu Y, et al. CaMKII gamma, a critical regulator of CML stem/progenitor cells, is a target of the natural product berbamine. Blood. 2012;120(24):4829–39.PubMedPubMedCentralCrossRef
60.
go back to reference John S, Sivakumar KC, Mishra R. Bacoside a induces tumor cell death in human glioblastoma cell lines through catastrophic macropinocytosis. Front Mol Neurosci. 2017;10:171.PubMedPubMedCentralCrossRef John S, Sivakumar KC, Mishra R. Bacoside a induces tumor cell death in human glioblastoma cell lines through catastrophic macropinocytosis. Front Mol Neurosci. 2017;10:171.PubMedPubMedCentralCrossRef
61.
go back to reference Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10(6):717–28.PubMedCrossRef Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10(6):717–28.PubMedCrossRef
62.
go back to reference Clarke MF, et al. Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66(19):9339–44.PubMedCrossRef Clarke MF, et al. Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66(19):9339–44.PubMedCrossRef
63.
65.
go back to reference Meng Z, et al. CAMK2gamma antagonizes mTORC1 activation during hepatocarcinogenesis. Oncogene. 2017;36(17):2446–56.PubMedCrossRef Meng Z, et al. CAMK2gamma antagonizes mTORC1 activation during hepatocarcinogenesis. Oncogene. 2017;36(17):2446–56.PubMedCrossRef
66.
go back to reference Shin HJ, Lee S, Jung HJ. A curcumin derivative hydrazinobenzoylcurcumin suppresses stem-like features of glioblastoma cells by targeting Ca(2+)/calmodulin-dependent protein kinase II. J Cell Biochem. 2019;120(4):6741–52.PubMedCrossRef Shin HJ, Lee S, Jung HJ. A curcumin derivative hydrazinobenzoylcurcumin suppresses stem-like features of glioblastoma cells by targeting Ca(2+)/calmodulin-dependent protein kinase II. J Cell Biochem. 2019;120(4):6741–52.PubMedCrossRef
68.
go back to reference Park KC, et al. Survival of cancer stem-like cells under metabolic stress via CaMK2alpha-mediated upregulation of sarco/endoplasmic reticulum calcium ATPase expression. Clin Cancer Res. 2018;24(7):1677–90.PubMedCrossRef Park KC, et al. Survival of cancer stem-like cells under metabolic stress via CaMK2alpha-mediated upregulation of sarco/endoplasmic reticulum calcium ATPase expression. Clin Cancer Res. 2018;24(7):1677–90.PubMedCrossRef
69.
go back to reference Chai S, et al. Ca2+/calmodulin-dependent protein kinase IIgamma enhances stem-like traits and tumorigenicity of lung cancer cells. Oncotarget. 2015;6(18):16069–83.PubMedPubMedCentralCrossRef Chai S, et al. Ca2+/calmodulin-dependent protein kinase IIgamma enhances stem-like traits and tumorigenicity of lung cancer cells. Oncotarget. 2015;6(18):16069–83.PubMedPubMedCentralCrossRef
70.
go back to reference Riganti C, et al. Artemisinin induces doxorubicin resistance in human colon cancer cells via calcium-dependent activation of HIF-1alpha and P-glycoprotein overexpression. Br J Pharmacol. 2009;156(7):1054–66.PubMedPubMedCentralCrossRef Riganti C, et al. Artemisinin induces doxorubicin resistance in human colon cancer cells via calcium-dependent activation of HIF-1alpha and P-glycoprotein overexpression. Br J Pharmacol. 2009;156(7):1054–66.PubMedPubMedCentralCrossRef
71.
go back to reference Liu S, et al. c-Jun and Camk2a contribute to the drug resistance of induction docetaxel/cisplatin/5-fluorouracil in hypopharyngeal carcinoma. Int J Clin Exp Pathol. 2018;11(9):4605–13.PubMedPubMedCentral Liu S, et al. c-Jun and Camk2a contribute to the drug resistance of induction docetaxel/cisplatin/5-fluorouracil in hypopharyngeal carcinoma. Int J Clin Exp Pathol. 2018;11(9):4605–13.PubMedPubMedCentral
72.
go back to reference Xu X, et al. Overexpression of SMARCA2 or CAMK2D is associated with cisplatin resistance in human epithelial ovarian cancer. Oncol Lett. 2018;16(3):3796–804.PubMedPubMedCentral Xu X, et al. Overexpression of SMARCA2 or CAMK2D is associated with cisplatin resistance in human epithelial ovarian cancer. Oncol Lett. 2018;16(3):3796–804.PubMedPubMedCentral
Metadata
Title
The dysregulated expression and functional effect of CaMK2 in cancer
Authors
Qi He
Zhenyu Li
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2021
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-021-02030-7

Other articles of this Issue 1/2021

Cancer Cell International 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine