Skip to main content
Top
Published in: Radiation Oncology 1/2019

Open Access 01-12-2019 | Glioblastoma | Research

Prognostic value of subventricular zone involvement in relation to tumor volumes defined by fused MRI and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET imaging in glioblastoma multiforme

Authors: Maciej Harat, Bogdan Małkowski, Krzysztof Roszkowski

Published in: Radiation Oncology | Issue 1/2019

Login to get access

Abstract

Background

Subventricular zone (SVZ) involvement is associated with a dismal prognosis in patients with glioblastoma multiforme (GBM). Dual-time point (dtp) O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET/CT (PET) may be a time- and cost-effective alternative to dynamic FET PET, but its prognostic value, particularly with respect to SVZ involvement, is unknown.

Methods

Thirty-five patients had two scans 5–15 and 50–60 min after i.v. FET injection to define tumor volumes and SVZ involvement before starting radiotherapy. Associations between clinical progression markers, MRI- and dtp FET PET-based tumor volumes, or SVZ involvement and progression-free (PFS) and overall survival (OS) were assessed in univariable and multivariable analyses.

Results

The extent of resection was not related to outcomes. Albeit non-significant, dtp FET PET detected more SVZ infiltration than MRI (60% vs. 51%, p = 0.25) and was significantly associated with poor survival (p < 0.03), but PET-T1-Gad volumes were larger in this group (p < 0.002). Survival was shorter in patients with larger MRI tumor volumes, larger PET tumor volumes, and worse Karnofsky performance status (KPS), with fused PET-T1-Gad and KPS significant in multivariable analysis (p < 0.03). Uptake kinetics was not associated with treatment outcomes.

Conclusions

FET PET-based tumor volumes may be useful for predicting worse prognosis glioblastoma. Although the presence of SVZ infiltration is linked to higher PET/MRI-based tumor volumes, the independent value of dtp FET PET parameters and SVZ infiltration as prognostic markers pre-irradiation has not been confirmed.
Appendix
Available only for authorised users
Literature
12.
go back to reference Parkinson JF, Wheeler HR, Clarkson A, McKenzie CA, Biggs MT, Little NS, et al. Variation of O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation in serial samples in glioblastoma. J Neuro-Oncol. 2008;87(1):71–8.CrossRef Parkinson JF, Wheeler HR, Clarkson A, McKenzie CA, Biggs MT, Little NS, et al. Variation of O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation in serial samples in glioblastoma. J Neuro-Oncol. 2008;87(1):71–8.CrossRef
23.
25.
go back to reference Pöpperl G, Kreth FW, Mehrkens JH, Herms J, Seelos K, Koch W, et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging. 2007;34(12):1933–42.CrossRefPubMed Pöpperl G, Kreth FW, Mehrkens JH, Herms J, Seelos K, Koch W, et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging. 2007;34(12):1933–42.CrossRefPubMed
29.
go back to reference Ellingson BM, Wen PY, Cloughesy TF. Modified criteria for radiographic response assessment in glioblastoma clinical trials. Neurotherapeutics. 2017;14(2):307–20.CrossRefPubMedPubMedCentral Ellingson BM, Wen PY, Cloughesy TF. Modified criteria for radiographic response assessment in glioblastoma clinical trials. Neurotherapeutics. 2017;14(2):307–20.CrossRefPubMedPubMedCentral
30.
go back to reference Hamacher K, Coenen HH. Efficient routine production of the 18F-labelled amino acid O-2-18F fluoroethyl-L-tyrosine. Appl Radiat Isot. 2002;57:853–6.CrossRefPubMed Hamacher K, Coenen HH. Efficient routine production of the 18F-labelled amino acid O-2-18F fluoroethyl-L-tyrosine. Appl Radiat Isot. 2002;57:853–6.CrossRefPubMed
31.
go back to reference Langen K-J, Stoffels G, Filß C, Heinzel A, Stegmayr C, Lohmann P, Willuweit A, Neumaier B, Mottaghy FM, Galldiks N. Imaging of amino acid transport in brain tumours: positron emission tomography with O-(2-[(18)F]fluoroethyl)-l-tyrosine (FET) Methods San Diego Calif; 2017. Langen K-J, Stoffels G, Filß C, Heinzel A, Stegmayr C, Lohmann P, Willuweit A, Neumaier B, Mottaghy FM, Galldiks N. Imaging of amino acid transport in brain tumours: positron emission tomography with O-(2-[(18)F]fluoroethyl)-l-tyrosine (FET) Methods San Diego Calif; 2017.
35.
go back to reference Galldiks N, Dunkl V, Kracht LW, Vollmar S, Jacobs AH, Fink GR, et al. Volumetry of [11C]-methionine positron emission tomographic uptake as a prognostic marker before treatment of patients with malignant glioma. Mol Imaging. 2012;11(6):516–27.CrossRefPubMed Galldiks N, Dunkl V, Kracht LW, Vollmar S, Jacobs AH, Fink GR, et al. Volumetry of [11C]-methionine positron emission tomographic uptake as a prognostic marker before treatment of patients with malignant glioma. Mol Imaging. 2012;11(6):516–27.CrossRefPubMed
37.
Metadata
Title
Prognostic value of subventricular zone involvement in relation to tumor volumes defined by fused MRI and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET imaging in glioblastoma multiforme
Authors
Maciej Harat
Bogdan Małkowski
Krzysztof Roszkowski
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2019
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1241-0

Other articles of this Issue 1/2019

Radiation Oncology 1/2019 Go to the issue