Skip to main content
Top
Published in: Cancer Cell International 1/2022

Open Access 01-12-2022 | Glioblastoma | Research

Pancancer landscape analysis of the thymosin family identified TMSB10 as a potential prognostic biomarker and immunotherapy target in glioma

Authors: Ye Xiong, Yanhua Qi, Ziwen Pan, Shaobo Wang, Boyan Li, Bowen Feng, Hao Xue, Rongrong Zhao, Gang Li

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

Background

Thymosin family genes (TMSs), biologically important peptides with diverse intracellular and extracellular functions, have been shown to promote the progression of multiple cancers. However, multiomics characterization of TMSs and their role in human cancer prognosis has not been systematically performed.

Methods

We performed a comprehensive analysis of TMSs and thymosin β10 (TMSB10) using multiomics data from more than 10,000 tumor samples of 33 cancer types from The Cancer Genome Atlas (TCGA). We used single-sample gene set enrichment analysis (ssGSEA) and the gene set variation analysis (GSVA) algorithm to investigate the differences in tumor microenvironment (TME) cell infiltration and functional annotation for individual tumor samples, respectively. The role of TMSB10 in the malignant progression of glioma, the promotion of macrophage infiltration,and immunosuppressive polarization, and the combination drug efficacy were assessed via biological function assays.

Results

We comprehensively assessed genomic mutations, expression dysregulation, prognosis and immunotherapeutic response across 33 human cancer samples and showed that TMSB10 is specifically overexpressed in almost all types of cancer tissues. Further pan-cancer analysis showed that TMSB10 is closely related to the biological function, immune regulation and prognosis of glioma. Similar results were also found in several public glioma cohorts and our Qilu local cohort. Further integration with other biological experiments revealed the key roles of TMSB10 in the malignant progression of glioma, the promotion of macrophage infiltration and immunosuppressive polarization. We also identified multiple drugs targeting cells with high TMSB10 expression and validated that knockdown of TMSB10 improved the efficacy of selumetinib (a MEK1/2 inhibitor approved by the FDA for the treatment of neurofibromatosis-associated tumors) and anti-PD1 treatment in glioma.

Conclusion

These results indicate that TMSB10 holds promise as a novel prognostic marker and therapeutic target, providing a theoretical basis for the development of more effective and targeted clinical treatment strategies for glioma patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hall AK, Chen SC, Hempstead JL, Morgan JI. Retinoic acid regulates thymosin beta 10 levels in rat neuroblastoma cells. J Neurochem. 1991;56(2):462–8.CrossRef Hall AK, Chen SC, Hempstead JL, Morgan JI. Retinoic acid regulates thymosin beta 10 levels in rat neuroblastoma cells. J Neurochem. 1991;56(2):462–8.CrossRef
2.
go back to reference Erickson-Viitanen S, Horecker BL. Thymosin β11: a peptide from trout liver homologous to thymosin β4. Arch Biochem Biophys. 1984;233(2):815–20.CrossRef Erickson-Viitanen S, Horecker BL. Thymosin β11: a peptide from trout liver homologous to thymosin β4. Arch Biochem Biophys. 1984;233(2):815–20.CrossRef
3.
go back to reference Chen C, Li M, Yang H, Chai H, Fisher W, Yao Q. Roles of thymosins in cancers and other organ systems. World J Surg. 2005;29(3):264–70.CrossRef Chen C, Li M, Yang H, Chai H, Fisher W, Yao Q. Roles of thymosins in cancers and other organ systems. World J Surg. 2005;29(3):264–70.CrossRef
4.
go back to reference Cha HJ, Jeong MJ, Kleinman HK. Role of thymosin beta4 in tumor metastasis and angiogenesis. J Natl Cancer Inst. 2003;95(22):1674–80.CrossRef Cha HJ, Jeong MJ, Kleinman HK. Role of thymosin beta4 in tumor metastasis and angiogenesis. J Natl Cancer Inst. 2003;95(22):1674–80.CrossRef
5.
go back to reference Wirsching HG, Krishnan S, Florea AM, Frei K, Krayenbuhl N, Hasenbach K, Reifenberger G, Weller M, Tabatabai G. Thymosin beta 4 gene silencing decreases stemness and invasiveness in glioblastoma. Brain. 2014;137(Pt 2):433–48.CrossRef Wirsching HG, Krishnan S, Florea AM, Frei K, Krayenbuhl N, Hasenbach K, Reifenberger G, Weller M, Tabatabai G. Thymosin beta 4 gene silencing decreases stemness and invasiveness in glioblastoma. Brain. 2014;137(Pt 2):433–48.CrossRef
6.
go back to reference Tang M-C, Chan L-C, Yeh Y-C, Chen C-Y, Chou T-Y, Wang W-S, Su Y. Thymosin beta 4 induces colon cancer cell migration and clinical metastasis via enhancing ILK/IQGAP1/Rac1 signal transduction pathway. Cancer Lett. 2011;308(2):162–71.CrossRef Tang M-C, Chan L-C, Yeh Y-C, Chen C-Y, Chou T-Y, Wang W-S, Su Y. Thymosin beta 4 induces colon cancer cell migration and clinical metastasis via enhancing ILK/IQGAP1/Rac1 signal transduction pathway. Cancer Lett. 2011;308(2):162–71.CrossRef
7.
go back to reference Wang WS, Chen PM, Hsiao HL, Wang HS, Liang WY, Su Y. Overexpression of the thymosin beta-4 gene is associated with increased invasion of SW480 colon carcinoma cells and the distant metastasis of human colorectal carcinoma. Oncogene. 2004;23(39):6666–71.CrossRef Wang WS, Chen PM, Hsiao HL, Wang HS, Liang WY, Su Y. Overexpression of the thymosin beta-4 gene is associated with increased invasion of SW480 colon carcinoma cells and the distant metastasis of human colorectal carcinoma. Oncogene. 2004;23(39):6666–71.CrossRef
8.
go back to reference Oh JM, Ryoo IJ, Yang Y, Kim HS, Yang KH, Moon EY. Hypoxia-inducible transcription factor (HIF)-1 alpha stabilization by actin-sequestering protein, thymosin beta-4 (TB4) in Hela cervical tumor cells. Cancer Lett. 2008;264(1):29–35.CrossRef Oh JM, Ryoo IJ, Yang Y, Kim HS, Yang KH, Moon EY. Hypoxia-inducible transcription factor (HIF)-1 alpha stabilization by actin-sequestering protein, thymosin beta-4 (TB4) in Hela cervical tumor cells. Cancer Lett. 2008;264(1):29–35.CrossRef
9.
go back to reference Makowiecka A, Malek N, Mazurkiewicz E, Mrowczynska E, Nowak D, Mazur AJ. Thymosin beta4 regulates focal adhesion formation in human melanoma cells and affects their migration and invasion. Front Cell Dev Biol. 2019;7:304.CrossRef Makowiecka A, Malek N, Mazurkiewicz E, Mrowczynska E, Nowak D, Mazur AJ. Thymosin beta4 regulates focal adhesion formation in human melanoma cells and affects their migration and invasion. Front Cell Dev Biol. 2019;7:304.CrossRef
10.
go back to reference Ryu YK, Lee YS, Lee GH, Song KS, Kim YS, Moon EY. Regulation of glycogen synthase kinase-3 by thymosin beta-4 is associated with gastric cancer cell migration. Int J Cancer. 2012;131(9):2067–77.CrossRef Ryu YK, Lee YS, Lee GH, Song KS, Kim YS, Moon EY. Regulation of glycogen synthase kinase-3 by thymosin beta-4 is associated with gastric cancer cell migration. Int J Cancer. 2012;131(9):2067–77.CrossRef
11.
go back to reference Dopp AC, Mutchnick MG, Goldstein AL. Thymosin-dependent T-lymphocyte response in inflammatory bowel disease. Gastroenterology. 1980;79(2):276–82.CrossRef Dopp AC, Mutchnick MG, Goldstein AL. Thymosin-dependent T-lymphocyte response in inflammatory bowel disease. Gastroenterology. 1980;79(2):276–82.CrossRef
12.
go back to reference Zeng J, Yang X, Yang L, Li W, Zheng Y. Thymosin beta10 promotes tumor-associated macrophages M2 conversion and proliferation via the PI3K/Akt pathway in lung adenocarcinoma. Respir Res. 2020;21(1):328.CrossRef Zeng J, Yang X, Yang L, Li W, Zheng Y. Thymosin beta10 promotes tumor-associated macrophages M2 conversion and proliferation via the PI3K/Akt pathway in lung adenocarcinoma. Respir Res. 2020;21(1):328.CrossRef
13.
go back to reference Bowman R, Klemm F, Akkari L, Pyonteck S, Sevenich L, Quail D, Dhara S, Simpson K, Gardner E, Iacobuzio-Donahue C, et al. Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies. Cell Rep. 2016;17(9):2445–59.CrossRef Bowman R, Klemm F, Akkari L, Pyonteck S, Sevenich L, Quail D, Dhara S, Simpson K, Gardner E, Iacobuzio-Donahue C, et al. Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies. Cell Rep. 2016;17(9):2445–59.CrossRef
14.
go back to reference Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017;18(1):248–62.CrossRef Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017;18(1):248–62.CrossRef
15.
go back to reference Jia Q, Wu W, Wang Y, Alexander P, Sun C, Gong Z, Cheng J, Sun H, Guan Y, Xia X, et al. Local mutational diversity drives intratumoral immune heterogeneity in non-small cell lung cancer. Nat Commun. 2018;9(1):5361.CrossRef Jia Q, Wu W, Wang Y, Alexander P, Sun C, Gong Z, Cheng J, Sun H, Guan Y, Xia X, et al. Local mutational diversity drives intratumoral immune heterogeneity in non-small cell lung cancer. Nat Commun. 2018;9(1):5361.CrossRef
16.
go back to reference Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH, Thokala R, Sheikh S, Saxena D, Prokop S, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell. 2020;180(1):188-204 e122.CrossRef Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH, Thokala R, Sheikh S, Saxena D, Prokop S, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell. 2020;180(1):188-204 e122.CrossRef
17.
go back to reference Wang Fyf Wang-gou, Sy, Cao H, Jiang N, Yang Q, Huang Q, Huang Ch, Li XJ. Proteomics identifies EGF‐like domain multiple 7 as a potential therapeutic target for epidermal growth factor receptor‐positive glioma. Cancer Commun. 2020;40(10):518–30.CrossRef Wang Fyf Wang-gou, Sy, Cao H, Jiang N, Yang Q, Huang Q, Huang Ch, Li XJ. Proteomics identifies EGF‐like domain multiple 7 as a potential therapeutic target for epidermal growth factor receptor‐positive glioma. Cancer Commun. 2020;40(10):518–30.CrossRef
18.
go back to reference Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA, et al. The immune landscape of cancer. Immunity 2018;48(4):812–30.CrossRef Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA, et al. The immune landscape of cancer. Immunity 2018;48(4):812–30.CrossRef
19.
go back to reference Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi A, Tanaseichuk O, Benner C, Chanda S. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.CrossRef Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi A, Tanaseichuk O, Benner C, Chanda S. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.CrossRef
20.
go back to reference Pan J, Hu S, Shi D, Cai M, Li Y, Zou Q, Ji Z. PaGenBase: a pattern gene database for the global and dynamic understanding of gene function. PLoS ONE. 2013;8(12):e80747.CrossRef Pan J, Hu S, Shi D, Cai M, Li Y, Zou Q, Ji Z. PaGenBase: a pattern gene database for the global and dynamic understanding of gene function. PLoS ONE. 2013;8(12):e80747.CrossRef
21.
go back to reference Lah TT, Novak M, Breznik B. Brain malignancies: glioblastoma and brain metastases. Sem Cancer Biol. 2020;60:262–73.CrossRef Lah TT, Novak M, Breznik B. Brain malignancies: glioblastoma and brain metastases. Sem Cancer Biol. 2020;60:262–73.CrossRef
22.
go back to reference Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, Richman AR, Silverbush D, Shaw ML, Hebert CM, et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 2019;178(4):835–49.CrossRef Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, Richman AR, Silverbush D, Shaw ML, Hebert CM, et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 2019;178(4):835–49.CrossRef
23.
go back to reference Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, deCarvalho AC, Lyu S, Li P, Li Y, et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 2017;32(1):42–56.CrossRef Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, deCarvalho AC, Lyu S, Li P, Li Y, et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 2017;32(1):42–56.CrossRef
24.
go back to reference Chen P, Zhao D, Li J, Liang X, Li J, Chang A, Henry VK, Lan Z, Spring DJ, Rao G, et al. Symbiotic macrophage-glioma cell interactions reveal synthetic lethality in PTEN-null glioma. Cancer Cell. 2019;35(6):868–84.CrossRef Chen P, Zhao D, Li J, Liang X, Li J, Chang A, Henry VK, Lan Z, Spring DJ, Rao G, et al. Symbiotic macrophage-glioma cell interactions reveal synthetic lethality in PTEN-null glioma. Cancer Cell. 2019;35(6):868–84.CrossRef
25.
go back to reference Friebel E, Kapolou K, Unger S, Núñez NG, Utz S, Rushing EJ, Regli L, Weller M, Greter M, Tugues S, et al. Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading leukocytes. Cell. 2020;181(7):1626–42.CrossRef Friebel E, Kapolou K, Unger S, Núñez NG, Utz S, Rushing EJ, Regli L, Weller M, Greter M, Tugues S, et al. Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading leukocytes. Cell. 2020;181(7):1626–42.CrossRef
26.
go back to reference Klemm F, Maas RR, Bowman RL, Kornete M, Soukup K, Nassiri S, Brouland J-P, Iacobuzio-Donahue CA, Brennan C, Tabar V, et al. Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells. Cell. 2020;181(7):1643–60.CrossRef Klemm F, Maas RR, Bowman RL, Kornete M, Soukup K, Nassiri S, Brouland J-P, Iacobuzio-Donahue CA, Brennan C, Tabar V, et al. Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells. Cell. 2020;181(7):1643–60.CrossRef
27.
go back to reference Szulzewsky F, Schwendinger N, Güneykaya D, Cimino PJ, Hambardzumyan D, Synowitz M, Holland EC, Kettenmann H. Loss of host-derived osteopontin creates a glioblastoma-promoting microenvironment. Neurooncology. 2018;20(3):355–66. Szulzewsky F, Schwendinger N, Güneykaya D, Cimino PJ, Hambardzumyan D, Synowitz M, Holland EC, Kettenmann H. Loss of host-derived osteopontin creates a glioblastoma-promoting microenvironment. Neurooncology. 2018;20(3):355–66.
28.
go back to reference Wei J, Marisetty A, Schrand B, Gabrusiewicz K, Hashimoto Y, Ott M, Grami Z, Kong L-Y, Ling X, Caruso H, et al. Osteopontin mediates glioblastoma-associated macrophage infiltration and is a potential therapeutic target. J Clin Investig. 2019;129(1):137–49.CrossRef Wei J, Marisetty A, Schrand B, Gabrusiewicz K, Hashimoto Y, Ott M, Grami Z, Kong L-Y, Ling X, Caruso H, et al. Osteopontin mediates glioblastoma-associated macrophage infiltration and is a potential therapeutic target. J Clin Investig. 2019;129(1):137–49.CrossRef
29.
go back to reference Lim M, Xia Y, Bettegowda C, Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–42.CrossRef Lim M, Xia Y, Bettegowda C, Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–42.CrossRef
30.
go back to reference Markham A, Keam SJ. Selumetinib: first approval. Drugs. 2020;80(9):931–7.CrossRef Markham A, Keam SJ. Selumetinib: first approval. Drugs. 2020;80(9):931–7.CrossRef
31.
go back to reference Zhao J, Chen A, Gartrell R, Silverman A, Aparicio L, Chu T, Bordbar D, Shan D, Samanamud J, Mahajan A, et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med. 2019;25(3):462–9.CrossRef Zhao J, Chen A, Gartrell R, Silverman A, Aparicio L, Chu T, Bordbar D, Shan D, Samanamud J, Mahajan A, et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med. 2019;25(3):462–9.CrossRef
32.
go back to reference Georgoudaki A, Prokopec K, Boura V, Hellqvist E, Sohn S, Östling J, Dahan R, Harris R, Rantalainen M, Klevebring D, et al. Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep. 2016;15(9):2000–11.CrossRef Georgoudaki A, Prokopec K, Boura V, Hellqvist E, Sohn S, Östling J, Dahan R, Harris R, Rantalainen M, Klevebring D, et al. Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep. 2016;15(9):2000–11.CrossRef
33.
go back to reference Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH, Thokala R, Sheikh S, Saxena D, Prokop S, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell. 2020;180(1):188.CrossRef Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH, Thokala R, Sheikh S, Saxena D, Prokop S, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell. 2020;180(1):188.CrossRef
34.
go back to reference Neal J, Li X, Zhu J, Giangarra V, Grzeskowiak C, Ju J, Liu I, Chiou S, Salahudeen A, Smith A, et al. Organoid modeling of the tumor immune microenvironment. Cell. 2018;175(7):1972–88 e1916.CrossRef Neal J, Li X, Zhu J, Giangarra V, Grzeskowiak C, Ju J, Liu I, Chiou S, Salahudeen A, Smith A, et al. Organoid modeling of the tumor immune microenvironment. Cell. 2018;175(7):1972–88 e1916.CrossRef
35.
go back to reference Yuki K, Cheng N, Nakano M, Kuo C. Organoid models of tumor immunology. Trends Immunol. 2020;41(8):652–64.CrossRef Yuki K, Cheng N, Nakano M, Kuo C. Organoid models of tumor immunology. Trends Immunol. 2020;41(8):652–64.CrossRef
36.
go back to reference Wirsching H-G, Krishnan S, Florea A-M, Frei K, Krayenbühl N, Hasenbach K, Reifenberger G, Weller M, Tabatabai G. Thymosin β 4 gene silencing decreases stemness and invasiveness in glioblastoma. Brain. 2014;137(Pt 2):433–48.CrossRef Wirsching H-G, Krishnan S, Florea A-M, Frei K, Krayenbühl N, Hasenbach K, Reifenberger G, Weller M, Tabatabai G. Thymosin β 4 gene silencing decreases stemness and invasiveness in glioblastoma. Brain. 2014;137(Pt 2):433–48.CrossRef
37.
go back to reference Costantini C, Bellet M, Pariano M, Renga G, Stincardini C, Goldstein A, Garaci E, Romani L. A reappraisal of thymosin alpha1 in cancer therapy. Front Oncol. 2019;9:873.CrossRef Costantini C, Bellet M, Pariano M, Renga G, Stincardini C, Goldstein A, Garaci E, Romani L. A reappraisal of thymosin alpha1 in cancer therapy. Front Oncol. 2019;9:873.CrossRef
38.
go back to reference Vasilopoulou E, Riley P, Long D. Thymosin-β4: a key modifier of renal disease. Expert Opin Biol Ther. 2018;18:185–92.CrossRef Vasilopoulou E, Riley P, Long D. Thymosin-β4: a key modifier of renal disease. Expert Opin Biol Ther. 2018;18:185–92.CrossRef
39.
go back to reference Ioannou K, Samara P, Livaniou E, Derhovanessian E, Tsitsilonis O. Prothymosin alpha: a ubiquitous polypeptide with potential use in cancer diagnosis and therapy. Cancer Immunol Immunother. 2012;61(5):599–614.CrossRef Ioannou K, Samara P, Livaniou E, Derhovanessian E, Tsitsilonis O. Prothymosin alpha: a ubiquitous polypeptide with potential use in cancer diagnosis and therapy. Cancer Immunol Immunother. 2012;61(5):599–614.CrossRef
Metadata
Title
Pancancer landscape analysis of the thymosin family identified TMSB10 as a potential prognostic biomarker and immunotherapy target in glioma
Authors
Ye Xiong
Yanhua Qi
Ziwen Pan
Shaobo Wang
Boyan Li
Bowen Feng
Hao Xue
Rongrong Zhao
Gang Li
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02698-5

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine