Skip to main content
Top
Published in: BMC Cancer 1/2021

Open Access 01-12-2021 | Glioblastoma | Research article

Identification and validation of a five-lncRNA prognostic signature related to Glioma using bioinformatics analysis

Authors: Chunyu Zhang, Haitao Liu, Pengfei Xu, Yinqiu Tan, Yang Xu, Long Wang, Baohui Liu, Qianxue Chen, Daofeng Tian

Published in: BMC Cancer | Issue 1/2021

Login to get access

Abstract

Background

To accurately predict the prognosis of glioma patients.

Methods

A total of 541 samples from the TCGA cohort, 181 observations from the CGGA database and 91 samples from our cohort were included in our study. Long non-coding RNAs (LncRNAs) associated with glioma WHO grade were evaluated by weighted gene co-expression network analysis (WGCNA). Five lncRNA features were selected out to construct prognostic signatures based on the Cox regression model.

Results

By weighted gene co-expression network analysis (WGCNA), 14 lncRNAs related to glioma grade were identified. Using univariate and multivariate Cox analysis, five lncRNAs (CYTOR, MIR155HG, LINC00641, AC120036.4 and PWAR6) were selected to develop the prognostic signature. The Kaplan-Meier curve depicted that the patients in high risk group had poor prognosis in all cohorts. The areas under the receiver operating characteristic curve of the signature in predicting the survival of glioma patients at 1, 3, and 5 years were 0.84, 0.92, 0.90 in the CGGA cohort; 0.8, 0.85 and 0.77 in the TCGA set and 0.72, 0.90 and 0.86 in our own cohort. Multivariate Cox analysis demonstrated that the five-lncRNA signature was an independent prognostic indicator in the three sets (CGGA set: HR = 2.002, p < 0.001; TCGA set: HR = 1.243, p = 0.007; Our cohort: HR = 4.457, p = 0.008, respectively). A nomogram including the lncRNAs signature and clinical covariates was constructed and demonstrated high predictive accuracy in predicting 1-, 3- and 5-year survival probability of glioma patients.

Conclusion

We established a five-lncRNA signature as a potentially reliable tool for survival prediction of glioma patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister SM, Nishikawa R, Rosenthal M, Wen PY, Stupp R, et al. Glioma. Nat Rev Dis Primers. 2015;16:1–15017. Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister SM, Nishikawa R, Rosenthal M, Wen PY, Stupp R, et al. Glioma. Nat Rev Dis Primers. 2015;16:1–15017.
2.
go back to reference Lapointe S, Perry A, Butowski NA: Primary brain tumours in adults. Lancet (London, England) 2018, 392(10145):432–446. Lapointe S, Perry A, Butowski NA: Primary brain tumours in adults. Lancet (London, England) 2018, 392(10145):432–446.
3.
go back to reference Aldape K, Brindle KM, Chesler L, Chopra R, Gajjar A, Gilbert MR, Gottardo N, Gutmann DH, Hargrave D, Holland EC, et al. Challenges to curing primary brain tumours. Nat Rev Clin Oncol. 2019;6:509–20.CrossRef Aldape K, Brindle KM, Chesler L, Chopra R, Gajjar A, Gilbert MR, Gottardo N, Gutmann DH, Hargrave D, Holland EC, et al. Challenges to curing primary brain tumours. Nat Rev Clin Oncol. 2019;6:509–20.CrossRef
4.
go back to reference Sultan M, Marcel H. Schulz2, Richard2 H, Magen1 a, Klingenhoff4 a, Scherf M: a global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science. 2008;321(5891):956–60.CrossRef Sultan M, Marcel H. Schulz2, Richard2 H, Magen1 a, Klingenhoff4 a, Scherf M: a global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science. 2008;321(5891):956–60.CrossRef
5.
go back to reference Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.CrossRef Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.CrossRef
6.
go back to reference Peng Z, Liu C, Wu M. New insights into long noncoding RNAs and their roles in glioma. Mol Cancer. 2018;17(1):61.CrossRef Peng Z, Liu C, Wu M. New insights into long noncoding RNAs and their roles in glioma. Mol Cancer. 2018;17(1):61.CrossRef
7.
go back to reference Long Y, Wang X, Youmans DT, Cech TR: How do lncRNAs regulate transcription? Sci Adv 2017, 3(9):eaao2110. Long Y, Wang X, Youmans DT, Cech TR: How do lncRNAs regulate transcription? Sci Adv 2017, 3(9):eaao2110.
8.
go back to reference Yang D, Qiao J, Wang G, Lan Y, Li G, Guo X, Xi J, Ye D, Zhu S, Chen W, et al. N6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential. Nucleic Acids Res. 2018;46(8):3906–20.CrossRef Yang D, Qiao J, Wang G, Lan Y, Li G, Guo X, Xi J, Ye D, Zhu S, Chen W, et al. N6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential. Nucleic Acids Res. 2018;46(8):3906–20.CrossRef
9.
go back to reference Arun G, Diermeier SD, Spector DL. Therapeutic targeting of Long non-coding RNAs in Cancer. Trends Mol Med. 2018;24(3):257–77.CrossRef Arun G, Diermeier SD, Spector DL. Therapeutic targeting of Long non-coding RNAs in Cancer. Trends Mol Med. 2018;24(3):257–77.CrossRef
10.
go back to reference Jiao ZY, Tian Q, Li N, Wang HB, Li KZ. Plasma long non-coding RNAs (lncRNAs) serve as potential biomarkers for predicting breast cancer. Eur Rev Med Pharmacol Sci. 2018;22(7):1994–9.PubMed Jiao ZY, Tian Q, Li N, Wang HB, Li KZ. Plasma long non-coding RNAs (lncRNAs) serve as potential biomarkers for predicting breast cancer. Eur Rev Med Pharmacol Sci. 2018;22(7):1994–9.PubMed
11.
go back to reference Dastmalchi N, Safaralizadeh R, Nargesi MM. LncRNAs: potential novel prognostic and diagnostic biomarkers in colorectal Cancer. Curr Med Chem. 2019. Dastmalchi N, Safaralizadeh R, Nargesi MM. LncRNAs: potential novel prognostic and diagnostic biomarkers in colorectal Cancer. Curr Med Chem. 2019.
12.
go back to reference Han Y, Wu Z, Wu T, Huang Y, Cheng Z, Li X, Sun T, Xie X, Zhou Y, Du Z. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by downregulation of MMP2 and inactivation of ERK/MAPK signaling. Cell Death Dis. 2016;7:e2123.CrossRef Han Y, Wu Z, Wu T, Huang Y, Cheng Z, Li X, Sun T, Xie X, Zhou Y, Du Z. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by downregulation of MMP2 and inactivation of ERK/MAPK signaling. Cell Death Dis. 2016;7:e2123.CrossRef
13.
go back to reference Chen Q, Cai J, Wang Q, Wang Y, Liu M, Yang J, Zhou J, Kang C, Li M, Jiang C. Long Noncoding RNA, Regulated by the EGFR Pathway, Contributes to Glioblastoma Progression Through the WNT/−Catenin Pathway by Scaffolding EZH2. Clin Cancer Res. 2018;24(3):684–95.CrossRef Chen Q, Cai J, Wang Q, Wang Y, Liu M, Yang J, Zhou J, Kang C, Li M, Jiang C. Long Noncoding RNA, Regulated by the EGFR Pathway, Contributes to Glioblastoma Progression Through the WNT/−Catenin Pathway by Scaffolding EZH2. Clin Cancer Res. 2018;24(3):684–95.CrossRef
14.
go back to reference Li J, Han L, Roebuck P, Diao L, Liu L, Yuan Y, Weinstein JN, Liang H. TANRIC: an interactive open platform to explore the function of lncRNAs in Cancer. Cancer Res. 2015;75(18):3728–37.CrossRef Li J, Han L, Roebuck P, Diao L, Liu L, Yuan Y, Weinstein JN, Liang H. TANRIC: an interactive open platform to explore the function of lncRNAs in Cancer. Cancer Res. 2015;75(18):3728–37.CrossRef
15.
go back to reference Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics. 2008;9:559.CrossRef Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics. 2008;9:559.CrossRef
16.
go back to reference Park SY. Nomogram: an analogue tool to deliver digital knowledge. J Thorac Cardiovasc Surg. 2018;155(4):1793.CrossRef Park SY. Nomogram: an analogue tool to deliver digital knowledge. J Thorac Cardiovasc Surg. 2018;155(4):1793.CrossRef
17.
go back to reference Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.CrossRef Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.CrossRef
18.
go back to reference Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell. 2011;146(3):353–8.CrossRef Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell. 2011;146(3):353–8.CrossRef
19.
go back to reference Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92–7.CrossRef Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92–7.CrossRef
20.
go back to reference Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, Huang WC, Sun TH, Tu SJ, Lee WH, et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018;46(D1):D296–d302.CrossRef Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, Huang WC, Sun TH, Tu SJ, Lee WH, et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018;46(D1):D296–d302.CrossRef
21.
go back to reference Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4.
22.
go back to reference Liu W, Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 2019;20(1):18.CrossRef Liu W, Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 2019;20(1):18.CrossRef
23.
go back to reference Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16(5):284–7.CrossRef Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16(5):284–7.CrossRef
24.
go back to reference Zhang J-X, Song W, Chen Z-H, Wei J-H, Liao Y-J, Lei J, Hu M, Chen G-Z, Liao B, Lu J, et al. Prognostic and predictive value of a microRNA signature in stage II colon cancer: a microRNA expression analysis. The Lancet Oncol. 2013;14(13):1295–306.CrossRef Zhang J-X, Song W, Chen Z-H, Wei J-H, Liao Y-J, Lei J, Hu M, Chen G-Z, Liao B, Lu J, et al. Prognostic and predictive value of a microRNA signature in stage II colon cancer: a microRNA expression analysis. The Lancet Oncol. 2013;14(13):1295–306.CrossRef
25.
go back to reference Zhou Z, Cheng Y, Jiang Y, Liu S, Zhang M, Liu J, Zhao Q. Ten hub genes associated with progression and prognosis of pancreatic carcinoma identified by co-expression analysis. Int J Biol Sci. 2018;14(2):124–36.CrossRef Zhou Z, Cheng Y, Jiang Y, Liu S, Zhang M, Liu J, Zhao Q. Ten hub genes associated with progression and prognosis of pancreatic carcinoma identified by co-expression analysis. Int J Biol Sci. 2018;14(2):124–36.CrossRef
26.
go back to reference Guo X, Xiao H, Guo S, Dong L, Chen J. Identification of breast cancer mechanism based on weighted gene coexpression network analysis. Cancer Gene Ther. 2017;24(8):333–41.CrossRef Guo X, Xiao H, Guo S, Dong L, Chen J. Identification of breast cancer mechanism based on weighted gene coexpression network analysis. Cancer Gene Ther. 2017;24(8):333–41.CrossRef
27.
go back to reference Wang Z, Tang W, Yuan J, Qiang B, Han W, Peng X. Integrated Analysis of RNA-Binding Proteins in Glioma. Cancers. 2020:12(4). Wang Z, Tang W, Yuan J, Qiang B, Han W, Peng X. Integrated Analysis of RNA-Binding Proteins in Glioma. Cancers. 2020:12(4).
28.
go back to reference Lin S, Xu H, Zhang A, Ni Y, Xu Y, Meng T, Wang M, Lou M. Prognosis analysis and validation of mA signature and tumor immune microenvironment in Glioma. Front Oncol. 2020;10:541401.CrossRef Lin S, Xu H, Zhang A, Ni Y, Xu Y, Meng T, Wang M, Lou M. Prognosis analysis and validation of mA signature and tumor immune microenvironment in Glioma. Front Oncol. 2020;10:541401.CrossRef
29.
go back to reference Zou SF, Yang XY, Li JB, Ding H, Bao YY, Xu J. UPF1 alleviates the progression of glioma via targeting lncRNA CYTOR. Eur Rev Med Pharmacol Sci. 2019;23(22):10005–12.PubMed Zou SF, Yang XY, Li JB, Ding H, Bao YY, Xu J. UPF1 alleviates the progression of glioma via targeting lncRNA CYTOR. Eur Rev Med Pharmacol Sci. 2019;23(22):10005–12.PubMed
30.
go back to reference Wu X, Wang Y, Yu T, Nie E, Hu Q, Wu W, Zhi T, Jiang K, Wang X, Lu X, et al. Blocking MIR155HG/miR-155 axis inhibits mesenchymal transition in glioma. Neuro-oncology. 2017;19(9):1195–205.CrossRef Wu X, Wang Y, Yu T, Nie E, Hu Q, Wu W, Zhi T, Jiang K, Wang X, Lu X, et al. Blocking MIR155HG/miR-155 axis inhibits mesenchymal transition in glioma. Neuro-oncology. 2017;19(9):1195–205.CrossRef
31.
go back to reference Balasubramaniyan V, Bhat KP. Targeting MIR155HG in glioma: a novel approach. Neuro-oncology. 2017;19(9):1152–3.CrossRef Balasubramaniyan V, Bhat KP. Targeting MIR155HG in glioma: a novel approach. Neuro-oncology. 2017;19(9):1152–3.CrossRef
32.
go back to reference Lin X, Jiang T, Bai J, Li J, Wang T, Xiao J, Tian Y, Jin X, Shao T, Xu J, et al. Characterization of Transcriptome transition associates Long noncoding RNAs with Glioma progression. Mol Ther Nucleic Acids. 2018;13:620–32.CrossRef Lin X, Jiang T, Bai J, Li J, Wang T, Xiao J, Tian Y, Jin X, Shao T, Xu J, et al. Characterization of Transcriptome transition associates Long noncoding RNAs with Glioma progression. Mol Ther Nucleic Acids. 2018;13:620–32.CrossRef
33.
go back to reference Kiran M, Chatrath A, Tang X, Keenan DM, Dutta A. A prognostic signature for lower grade Gliomas based on expression of Long non-coding RNAs. Mol Neurobiol. 2019;56(7):4786–98.CrossRef Kiran M, Chatrath A, Tang X, Keenan DM, Dutta A. A prognostic signature for lower grade Gliomas based on expression of Long non-coding RNAs. Mol Neurobiol. 2019;56(7):4786–98.CrossRef
34.
go back to reference Liang R, Zhi Y, Zheng G, Zhang B, Zhu H, Wang M. Analysis of long non-coding RNAs in glioblastoma for prognosis prediction using weighted gene co-expression network analysis, cox regression, and L1-LASSO penalization. Onco Targets Ther. 2019;12:157–68.CrossRef Liang R, Zhi Y, Zheng G, Zhang B, Zhu H, Wang M. Analysis of long non-coding RNAs in glioblastoma for prognosis prediction using weighted gene co-expression network analysis, cox regression, and L1-LASSO penalization. Onco Targets Ther. 2019;12:157–68.CrossRef
35.
go back to reference Yang J, Yu D, Liu X, Changyong E, Yu S. LINC00641/miR-4262/NRGN axis confines cell proliferation in glioma. Cancer Biol Ther. 2020;21(8):758–66.CrossRef Yang J, Yu D, Liu X, Changyong E, Yu S. LINC00641/miR-4262/NRGN axis confines cell proliferation in glioma. Cancer Biol Ther. 2020;21(8):758–66.CrossRef
36.
go back to reference Chen L, Chen X-R, Chen F-F, Liu Y, Li P, Zhang R, Yan K, Yi Y-J, Xu Z-M, Jiang X-D. MicroRNA-107 inhibits U87 glioma stem cells growth and invasion. Cell Mol Neurobiol. 2013;33(5):651–7.CrossRef Chen L, Chen X-R, Chen F-F, Liu Y, Li P, Zhang R, Yan K, Yi Y-J, Xu Z-M, Jiang X-D. MicroRNA-107 inhibits U87 glioma stem cells growth and invasion. Cell Mol Neurobiol. 2013;33(5):651–7.CrossRef
37.
go back to reference Yang L, Li C, Liang F, Fan Y, Zhang S. MiRNA-155 promotes proliferation by targeting caudal-type homeobox 1 (CDX1) in glioma cells. Biomed Pharmacother. 2017;95:1759–64.CrossRef Yang L, Li C, Liang F, Fan Y, Zhang S. MiRNA-155 promotes proliferation by targeting caudal-type homeobox 1 (CDX1) in glioma cells. Biomed Pharmacother. 2017;95:1759–64.CrossRef
38.
go back to reference Yang X, Xiao Z, Du X, Huang L, Du G. Silencing of the long non-coding RNA NEAT1 suppresses glioma stem-like properties through modulation of the miR-107/CDK6 pathway. Oncol Rep. 2017;37(1):555–62.CrossRef Yang X, Xiao Z, Du X, Huang L, Du G. Silencing of the long non-coding RNA NEAT1 suppresses glioma stem-like properties through modulation of the miR-107/CDK6 pathway. Oncol Rep. 2017;37(1):555–62.CrossRef
39.
go back to reference Kratassiouk G, Pritchard LL, Cuvellier S, Vislovukh A, Meng Q, Groisman R, Degerny C, Deforzh E, Harel-Bellan A, Groisman I: The WEE1 regulators CPEB1 and miR-15b switch from inhibitor to activators at G2/M. Cell cycle (Georgetown, Tex) 2016, 15(5):667–677. Kratassiouk G, Pritchard LL, Cuvellier S, Vislovukh A, Meng Q, Groisman R, Degerny C, Deforzh E, Harel-Bellan A, Groisman I: The WEE1 regulators CPEB1 and miR-15b switch from inhibitor to activators at G2/M. Cell cycle (Georgetown, Tex) 2016, 15(5):667–677.
40.
go back to reference Ohgaki H, Kleihues P. Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci. 2009;100(12):2235–41.CrossRef Ohgaki H, Kleihues P. Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci. 2009;100(12):2235–41.CrossRef
Metadata
Title
Identification and validation of a five-lncRNA prognostic signature related to Glioma using bioinformatics analysis
Authors
Chunyu Zhang
Haitao Liu
Pengfei Xu
Yinqiu Tan
Yang Xu
Long Wang
Baohui Liu
Qianxue Chen
Daofeng Tian
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2021
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-021-07972-9

Other articles of this Issue 1/2021

BMC Cancer 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine