Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Glioblastoma | Research

Magnetic resonance imaging-guided intracranial resection of glioblastoma tumors in patient-derived orthotopic xenografts leads to clinically relevant tumor recurrence

Authors: Anais Oudin, Pilar M. Moreno-Sanchez, Virginie Baus, Simone P. Niclou, Anna Golebiewska

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Background

Preclinical in vivo cancer models are essential tools for investigating tumor progression and response to treatment prior to clinical trials. Although treatment modalities are regularly assessed in mice upon tumor growth in vivo, surgical resection remains challenging, particularly in the orthotopic site. Here, we report a successful surgical resection of glioblastoma (GBM) in patient-derived orthotopic xenografts (PDOXs).

Methods

We derived a cohort of 46 GBM PDOX models that faithfully recapitulate human disease in mice. We assessed the detection and quantification of intracranial tumors using magnetic resonance imaging (MRI).To evaluate feasibility of surgical resection in PDOXs, we selected two models representing histopathological features of GBM tumors, including diffuse growth into the mouse brain. Surgical resection in the mouse brains was performed based on MRI-guided coordinates. Survival study followed by MRI and immunohistochemistry-based evaluation of recurrent tumors allowed for assessment of clinically relevant parameters.

Results

We demonstrate the utility of MRI for the noninvasive assessment of in vivo tumor growth, preoperative programming of resection coordinates and follow-up of tumor recurrence. We report tumor detection by MRI in 90% of GBM PDOX models (36/40), of which 55% (22/40) can be reliably quantified during tumor growth. We show that a surgical resection protocol in mice carrying diffuse primary GBM tumors in the brain leads to clinically relevant outcomes. Similar to neurosurgery in patients, we achieved a near total to complete extent of tumor resection, and mice with resected tumors presented significantly increased survival. The remaining unresected GBM cells that invaded the normal mouse brain prior to surgery regrew tumors with similar histopathological features and tumor microenvironments to the primary tumors.

Conclusions

Our data positions GBM PDOXs developed in mouse brains as a valuable preclinical model for conducting therapeutic studies that involve surgical tumor resection. The high detectability of tumors by MRI across a substantial number of PDOX models in mice will allow for scalability of our approach toward specific tumor types for efficacy studies in precision medicine-oriented approaches. Additionally, these models hold promise for the development of enhanced image-guided surgery protocols.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gavin PR, Kraft SL, Wendling LR, Miller DL. Canine spontaneous brain tumors–a large animal model for BNCT. Strahlentherapie Und Onkologie: Organ Der Deutschen Rontgengesellschaft. 1989;165(2–3):225–8. Gavin PR, Kraft SL, Wendling LR, Miller DL. Canine spontaneous brain tumors–a large animal model for BNCT. Strahlentherapie Und Onkologie: Organ Der Deutschen Rontgengesellschaft. 1989;165(2–3):225–8.
2.
go back to reference Weber K, Garman RH, Germann PG, Hardisty JF, Krinke G, Millar P, Pardo ID. Classification of neural tumors in laboratory rodents, emphasizing the rat. Toxicol Pathol. 2011;39(1):129–51.CrossRefPubMed Weber K, Garman RH, Germann PG, Hardisty JF, Krinke G, Millar P, Pardo ID. Classification of neural tumors in laboratory rodents, emphasizing the rat. Toxicol Pathol. 2011;39(1):129–51.CrossRefPubMed
3.
go back to reference Dagle GE, Zwicker GM, Renne RA. Morphology of spontaneous brain tumors in the rat. Vet Pathol. 1979;16(3):318–24.CrossRefPubMed Dagle GE, Zwicker GM, Renne RA. Morphology of spontaneous brain tumors in the rat. Vet Pathol. 1979;16(3):318–24.CrossRefPubMed
4.
go back to reference Byrne AT, Alferez DG, Amant F, Annibali D, Arribas J, Biankin AV, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer. 2017;17(4):254–68.CrossRefPubMed Byrne AT, Alferez DG, Amant F, Annibali D, Arribas J, Biankin AV, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer. 2017;17(4):254–68.CrossRefPubMed
5.
go back to reference Huszthy PC, Daphu I, Niclou SP, Stieber D, Nigro JM, Sakariassen PO, et al. In vivo models of primary brain tumors: pitfalls and perspectives. Neurooncology. 2012;14(8):979–93. Huszthy PC, Daphu I, Niclou SP, Stieber D, Nigro JM, Sakariassen PO, et al. In vivo models of primary brain tumors: pitfalls and perspectives. Neurooncology. 2012;14(8):979–93.
6.
go back to reference Ren L, Huang S, Beck J, LeBlanc AK. Impact of limb amputation and cisplatin chemotherapy on metastatic progression in mouse models of osteosarcoma. Sci Rep. 2021;11(1):24435.CrossRefPubMedPubMedCentral Ren L, Huang S, Beck J, LeBlanc AK. Impact of limb amputation and cisplatin chemotherapy on metastatic progression in mouse models of osteosarcoma. Sci Rep. 2021;11(1):24435.CrossRefPubMedPubMedCentral
7.
go back to reference Gast CE, Shaw AK, Wong MH, Coussens LM. Surgical procedures and Methodology for a preclinical murine model of De Novo Mammary Cancer Metastasis. J Vis Exp. 2017(125). Gast CE, Shaw AK, Wong MH, Coussens LM. Surgical procedures and Methodology for a preclinical murine model of De Novo Mammary Cancer Metastasis. J Vis Exp. 2017(125).
8.
go back to reference Mallya K, Gautam SK, Aithal A, Batra SK, Jain M. Modeling Pancreatic cancer in mice for experimental therapeutics. Biochim Biophys Acta Rev Cancer. 2021;1876(1):188554.CrossRefPubMedPubMedCentral Mallya K, Gautam SK, Aithal A, Batra SK, Jain M. Modeling Pancreatic cancer in mice for experimental therapeutics. Biochim Biophys Acta Rev Cancer. 2021;1876(1):188554.CrossRefPubMedPubMedCentral
9.
go back to reference Linxweiler J, Hajili T, Zeuschner P, Menger MD, Stockle M, Junker K, Saar M. Primary Tumor resection decelerates Disease Progression in an Orthotopic Mouse Model of metastatic Prostate Cancer. Cancers (Basel). 2022;14(3). Linxweiler J, Hajili T, Zeuschner P, Menger MD, Stockle M, Junker K, Saar M. Primary Tumor resection decelerates Disease Progression in an Orthotopic Mouse Model of metastatic Prostate Cancer. Cancers (Basel). 2022;14(3).
10.
go back to reference Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the Central Nervous System: a summary. Neurooncology. 2021;23(8):1231–51. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the Central Nervous System: a summary. Neurooncology. 2021;23(8):1231–51.
11.
go back to reference Molinaro AM, Hervey-Jumper S, Morshed RA, Young J, Han SJ, Chunduru P, et al. Association of Maximal Extent of Resection of contrast-enhanced and non-contrast-enhanced Tumor with Survival within Molecular subgroups of patients with newly diagnosed Glioblastoma. JAMA Oncol. 2020;6(4):495–503.CrossRefPubMedPubMedCentral Molinaro AM, Hervey-Jumper S, Morshed RA, Young J, Han SJ, Chunduru P, et al. Association of Maximal Extent of Resection of contrast-enhanced and non-contrast-enhanced Tumor with Survival within Molecular subgroups of patients with newly diagnosed Glioblastoma. JAMA Oncol. 2020;6(4):495–503.CrossRefPubMedPubMedCentral
12.
go back to reference Rao G. Intraoperative MRI and maximizing extent of Resection. Neurosurg Clin North Am. 2017;28(4):477–85.CrossRef Rao G. Intraoperative MRI and maximizing extent of Resection. Neurosurg Clin North Am. 2017;28(4):477–85.CrossRef
13.
go back to reference Eseonu CI, Rincon-Torroella J, ReFaey K, Lee YM, Nangiana J, Vivas-Buitrago T, Quinones-Hinojosa A. Awake craniotomy vs craniotomy under General Anesthesia for Perirolandic Gliomas: evaluating Perioperative Complications and Extent of Resection. Neurosurgery. 2017;81(3):481–9.CrossRefPubMed Eseonu CI, Rincon-Torroella J, ReFaey K, Lee YM, Nangiana J, Vivas-Buitrago T, Quinones-Hinojosa A. Awake craniotomy vs craniotomy under General Anesthesia for Perirolandic Gliomas: evaluating Perioperative Complications and Extent of Resection. Neurosurgery. 2017;81(3):481–9.CrossRefPubMed
14.
go back to reference Coburger J, Hagel V, Wirtz CR, Konig R. Surgery for Glioblastoma: impact of the combined use of 5-Aminolevulinic acid and Intraoperative MRI on extent of Resection and Survival. PLoS ONE. 2015;10(6):e0131872.CrossRefPubMedPubMedCentral Coburger J, Hagel V, Wirtz CR, Konig R. Surgery for Glioblastoma: impact of the combined use of 5-Aminolevulinic acid and Intraoperative MRI on extent of Resection and Survival. PLoS ONE. 2015;10(6):e0131872.CrossRefPubMedPubMedCentral
15.
go back to reference Lara-Velazquez M, Al-Kharboosh R, Jeanneret S, Vazquez-Ramos C, Mahato D, Tavanaiepour D et al. Advances in Brain Tumor Surgery for Glioblastoma in adults. Brain Sci. 2017;7(12). Lara-Velazquez M, Al-Kharboosh R, Jeanneret S, Vazquez-Ramos C, Mahato D, Tavanaiepour D et al. Advances in Brain Tumor Surgery for Glioblastoma in adults. Brain Sci. 2017;7(12).
16.
go back to reference Otvos B, Alban TJ, Grabowski MM, Bayik D, Mulkearns-Hubert EE, Radivoyevitch T, et al. Preclinical modeling of Surgery and steroid therapy for Glioblastoma reveals changes in Immunophenotype that are Associated with Tumor Growth and Outcome. Clin Cancer Res. 2021;27(7):2038–49.CrossRefPubMedPubMedCentral Otvos B, Alban TJ, Grabowski MM, Bayik D, Mulkearns-Hubert EE, Radivoyevitch T, et al. Preclinical modeling of Surgery and steroid therapy for Glioblastoma reveals changes in Immunophenotype that are Associated with Tumor Growth and Outcome. Clin Cancer Res. 2021;27(7):2038–49.CrossRefPubMedPubMedCentral
17.
go back to reference Sheets KT, Bago JR, Paulk IL, Hingtgen SD. Image-guided resection of Glioblastoma and Intracranial Implantation of therapeutic stem cell-seeded scaffolds. J Vis Exp. 2018(137). Sheets KT, Bago JR, Paulk IL, Hingtgen SD. Image-guided resection of Glioblastoma and Intracranial Implantation of therapeutic stem cell-seeded scaffolds. J Vis Exp. 2018(137).
18.
go back to reference Sweeney KJ, Jarzabek MA, Dicker P, O’Brien DF, Callanan JJ, Byrne AT, Prehn JH. Validation of an imageable surgical resection animal model of Glioblastoma (GBM). J Neurosci Methods. 2014;233:99–104.CrossRefPubMed Sweeney KJ, Jarzabek MA, Dicker P, O’Brien DF, Callanan JJ, Byrne AT, Prehn JH. Validation of an imageable surgical resection animal model of Glioblastoma (GBM). J Neurosci Methods. 2014;233:99–104.CrossRefPubMed
19.
go back to reference Knudsen AM, Halle B, Cedile O, Burton M, Baun C, Thisgaard H, et al. Surgical resection of glioblastomas induces pleiotrophin-mediated self-renewal of glioblastoma stem cells in recurrent tumors. Neurooncology. 2022;24(7):1074–87. Knudsen AM, Halle B, Cedile O, Burton M, Baun C, Thisgaard H, et al. Surgical resection of glioblastomas induces pleiotrophin-mediated self-renewal of glioblastoma stem cells in recurrent tumors. Neurooncology. 2022;24(7):1074–87.
20.
go back to reference Pacioni S, D’Alessandris QG, Giannetti S, Della Pepa GM, Offi M, Giordano M et al. 5-Aminolevulinic acid (5-ALA)-Induced protoporphyrin IX fluorescence by glioma Cells-A fluorescence Microscopy Clinical Study. Cancers (Basel). 2022;14(12). Pacioni S, D’Alessandris QG, Giannetti S, Della Pepa GM, Offi M, Giordano M et al. 5-Aminolevulinic acid (5-ALA)-Induced protoporphyrin IX fluorescence by glioma Cells-A fluorescence Microscopy Clinical Study. Cancers (Basel). 2022;14(12).
21.
go back to reference Zhu H, Leiss L, Yang N, Rygh CB, Mitra SS, Cheshier SH, et al. Surgical debulking promotes recruitment of macrophages and triggers glioblastoma phagocytosis in combination with CD47 blocking immunotherapy. Oncotarget. 2017;8(7):12145–57.CrossRefPubMedPubMedCentral Zhu H, Leiss L, Yang N, Rygh CB, Mitra SS, Cheshier SH, et al. Surgical debulking promotes recruitment of macrophages and triggers glioblastoma phagocytosis in combination with CD47 blocking immunotherapy. Oncotarget. 2017;8(7):12145–57.CrossRefPubMedPubMedCentral
22.
go back to reference Oudin A, Baus V, Barthelemy V, Fabian C, Klein E, Dieterle M, et al. Protocol for derivation of organoids and patient-derived orthotopic xenografts from glioma patient tumors. STAR Protoc. 2021;2(2):100534.CrossRefPubMedPubMedCentral Oudin A, Baus V, Barthelemy V, Fabian C, Klein E, Dieterle M, et al. Protocol for derivation of organoids and patient-derived orthotopic xenografts from glioma patient tumors. STAR Protoc. 2021;2(2):100534.CrossRefPubMedPubMedCentral
23.
go back to reference Golebiewska A, Hau AC, Oudin A, Stieber D, Yabo YA, Baus V, et al. Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology. Acta Neuropathol. 2020;140(6):919–49.CrossRefPubMedPubMedCentral Golebiewska A, Hau AC, Oudin A, Stieber D, Yabo YA, Baus V, et al. Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology. Acta Neuropathol. 2020;140(6):919–49.CrossRefPubMedPubMedCentral
24.
go back to reference Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, et al. Guidelines for the welfare and use of animals in cancer research. Br J Cancer. 2010;102(11):1555–77.CrossRefPubMedPubMedCentral Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, et al. Guidelines for the welfare and use of animals in cancer research. Br J Cancer. 2010;102(11):1555–77.CrossRefPubMedPubMedCentral
25.
go back to reference Varghese F, Bukhari AB, Malhotra R, De A. IHC profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS ONE. 2014;9(5):e96801.CrossRefPubMedPubMedCentral Varghese F, Bukhari AB, Malhotra R, De A. IHC profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS ONE. 2014;9(5):e96801.CrossRefPubMedPubMedCentral
26.
go back to reference Bougnaud S, Golebiewska A, Oudin A, Keunen O, Harter PN, Mader L, et al. Molecular crosstalk between tumour and brain parenchyma instructs histopathological features in glioblastoma. Oncotarget. 2016;7(22):31955–71.CrossRefPubMedPubMedCentral Bougnaud S, Golebiewska A, Oudin A, Keunen O, Harter PN, Mader L, et al. Molecular crosstalk between tumour and brain parenchyma instructs histopathological features in glioblastoma. Oncotarget. 2016;7(22):31955–71.CrossRefPubMedPubMedCentral
27.
go back to reference Radaelli E, Ceruti R, Patton V, Russo M, Degrassi A, Croci V, et al. Immunohistopathological and neuroimaging characterization of murine orthotopic xenograft models of Glioblastoma Multiforme recapitulating the most salient features of human Disease. Histol Histopathol. 2009;24(7):879–91.PubMed Radaelli E, Ceruti R, Patton V, Russo M, Degrassi A, Croci V, et al. Immunohistopathological and neuroimaging characterization of murine orthotopic xenograft models of Glioblastoma Multiforme recapitulating the most salient features of human Disease. Histol Histopathol. 2009;24(7):879–91.PubMed
28.
go back to reference Stieber D, Golebiewska A, Evers L, Lenkiewicz E, Brons NH, Nicot N, et al. Glioblastomas are composed of genetically divergent clones with distinct tumourigenic potential and variable stem cell-associated phenotypes. Acta Neuropathol. 2014;127(2):203–19.CrossRefPubMed Stieber D, Golebiewska A, Evers L, Lenkiewicz E, Brons NH, Nicot N, et al. Glioblastomas are composed of genetically divergent clones with distinct tumourigenic potential and variable stem cell-associated phenotypes. Acta Neuropathol. 2014;127(2):203–19.CrossRefPubMed
29.
go back to reference Dirkse A, Golebiewska A, Buder T, Nazarov PV, Muller A, Poovathingal S, et al. Stem cell-associated heterogeneity in Glioblastoma results from intrinsic Tumor plasticity shaped by the microenvironment. Nat Commun. 2019;10(1):1787.CrossRefPubMedPubMedCentral Dirkse A, Golebiewska A, Buder T, Nazarov PV, Muller A, Poovathingal S, et al. Stem cell-associated heterogeneity in Glioblastoma results from intrinsic Tumor plasticity shaped by the microenvironment. Nat Commun. 2019;10(1):1787.CrossRefPubMedPubMedCentral
30.
go back to reference Golebiewska A, Bougnaud S, Stieber D, Brons NH, Vallar L, Hertel F, et al. Side population in human glioblastoma is non-tumorigenic and characterizes brain endothelial cells. Brain. 2013;136(Pt 5):1462–75.CrossRefPubMedPubMedCentral Golebiewska A, Bougnaud S, Stieber D, Brons NH, Vallar L, Hertel F, et al. Side population in human glioblastoma is non-tumorigenic and characterizes brain endothelial cells. Brain. 2013;136(Pt 5):1462–75.CrossRefPubMedPubMedCentral
31.
go back to reference Fack F, Tardito S, Hochart G, Oudin A, Zheng L, Fritah S, et al. Altered metabolic landscape in IDH-mutant gliomas affects phospholipid, energy, and oxidative stress pathways. EMBO Mol Med. 2017;9(12):1681–95.CrossRefPubMedPubMedCentral Fack F, Tardito S, Hochart G, Oudin A, Zheng L, Fritah S, et al. Altered metabolic landscape in IDH-mutant gliomas affects phospholipid, energy, and oxidative stress pathways. EMBO Mol Med. 2017;9(12):1681–95.CrossRefPubMedPubMedCentral
32.
go back to reference Yabo YA, Moreno-Sanchez PM, Pires-Afonso Y, Kaoma T, Kyriakis D, Grzyb K et al. Glioblastoma-instructed microglia transit to heterogeneous phenotypic states with phagocytic and dendritic cell-like features in patient tumors and patient-derived orthotopic xenografts. bioRxiv. 2023:2023.03.05.531162. Yabo YA, Moreno-Sanchez PM, Pires-Afonso Y, Kaoma T, Kyriakis D, Grzyb K et al. Glioblastoma-instructed microglia transit to heterogeneous phenotypic states with phagocytic and dendritic cell-like features in patient tumors and patient-derived orthotopic xenografts. bioRxiv. 2023:2023.03.05.531162.
33.
go back to reference Fack F, Espedal H, Keunen O, Golebiewska A, Obad N, Harter PN, et al. Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. Acta Neuropathol. 2015;129(1):115–31.CrossRefPubMed Fack F, Espedal H, Keunen O, Golebiewska A, Obad N, Harter PN, et al. Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. Acta Neuropathol. 2015;129(1):115–31.CrossRefPubMed
34.
go back to reference Abdul Rahim SA, Dirkse A, Oudin A, Schuster A, Bohler J, Barthelemy V, et al. Regulation of hypoxia-induced autophagy in glioblastoma involves ATG9A. Br J Cancer. 2017;117(6):813–25.CrossRefPubMedPubMedCentral Abdul Rahim SA, Dirkse A, Oudin A, Schuster A, Bohler J, Barthelemy V, et al. Regulation of hypoxia-induced autophagy in glioblastoma involves ATG9A. Br J Cancer. 2017;117(6):813–25.CrossRefPubMedPubMedCentral
35.
go back to reference Sheets KT, Bagó JR, Paulk IL, Hingtgen SD. Image-guided resection of Glioblastoma and Intracranial Implantation of therapeutic stem cell-seeded scaffolds. J Vis Exp. 2018(137). Sheets KT, Bagó JR, Paulk IL, Hingtgen SD. Image-guided resection of Glioblastoma and Intracranial Implantation of therapeutic stem cell-seeded scaffolds. J Vis Exp. 2018(137).
36.
go back to reference Tang B, Foss K, Lichtor T, Phillips H, Roy E. Resection of orthotopic murine brain glioma. Neuroimmunol Neuroinflammation. 2021;8(1):64–9. Tang B, Foss K, Lichtor T, Phillips H, Roy E. Resection of orthotopic murine brain glioma. Neuroimmunol Neuroinflammation. 2021;8(1):64–9.
37.
go back to reference Hingtgen S, Figueiredo JL, Farrar C, Duebgen M, Martinez-Quintanilla J, Bhere D, Shah K. Real-time multi-modality imaging of glioblastoma Tumor resection and recurrence. J Neurooncol. 2013;111(2):153–61.CrossRefPubMed Hingtgen S, Figueiredo JL, Farrar C, Duebgen M, Martinez-Quintanilla J, Bhere D, Shah K. Real-time multi-modality imaging of glioblastoma Tumor resection and recurrence. J Neurooncol. 2013;111(2):153–61.CrossRefPubMed
38.
go back to reference Kuhnt D, Becker A, Ganslandt O, Bauer M, Buchfelder M, Nimsky C. Correlation of the extent of Tumor volume resection and patient survival in Surgery of Glioblastoma Multiforme with high-field intraoperative MRI guidance. Neurooncology. 2011;13(12):1339–48. Kuhnt D, Becker A, Ganslandt O, Bauer M, Buchfelder M, Nimsky C. Correlation of the extent of Tumor volume resection and patient survival in Surgery of Glioblastoma Multiforme with high-field intraoperative MRI guidance. Neurooncology. 2011;13(12):1339–48.
39.
go back to reference De Bonis P, Anile C, Pompucci A, Fiorentino A, Balducci M, Chiesa S, et al. The influence of Surgery on recurrence pattern of glioblastoma. Clin Neurol Neurosurg. 2013;115(1):37–43.CrossRefPubMed De Bonis P, Anile C, Pompucci A, Fiorentino A, Balducci M, Chiesa S, et al. The influence of Surgery on recurrence pattern of glioblastoma. Clin Neurol Neurosurg. 2013;115(1):37–43.CrossRefPubMed
40.
go back to reference Kauer TM, Figueiredo JL, Hingtgen S, Shah K. Encapsulated therapeutic stem cells implanted in the Tumor resection cavity induce cell death in gliomas. Nat Neurosci. 2011;15(2):197–204.CrossRefPubMedPubMedCentral Kauer TM, Figueiredo JL, Hingtgen S, Shah K. Encapsulated therapeutic stem cells implanted in the Tumor resection cavity induce cell death in gliomas. Nat Neurosci. 2011;15(2):197–204.CrossRefPubMedPubMedCentral
41.
go back to reference Hoogstrate Y, Draaisma K, Ghisai SA, van Hijfte L, Barin N, de Heer I, et al. Transcriptome analysis reveals Tumor microenvironment changes in glioblastoma. Cancer Cell. 2023;41(4):678–92. e7.CrossRefPubMed Hoogstrate Y, Draaisma K, Ghisai SA, van Hijfte L, Barin N, de Heer I, et al. Transcriptome analysis reveals Tumor microenvironment changes in glioblastoma. Cancer Cell. 2023;41(4):678–92. e7.CrossRefPubMed
42.
go back to reference Varn FS, Johnson KC, Martinek J, Huse JT, Nasrallah MP, Wesseling P, et al. Glioma progression is shaped by genetic evolution and microenvironment interactions. Cell. 2022;185(12):2184–99e16.CrossRefPubMedPubMedCentral Varn FS, Johnson KC, Martinek J, Huse JT, Nasrallah MP, Wesseling P, et al. Glioma progression is shaped by genetic evolution and microenvironment interactions. Cell. 2022;185(12):2184–99e16.CrossRefPubMedPubMedCentral
43.
go back to reference Ennis SR, Novotny A, Xiang J, Shakui P, Masada T, Stummer W, et al. Transport of 5-aminolevulinic acid between blood and brain. Brain Res. 2003;959(2):226–34.CrossRefPubMed Ennis SR, Novotny A, Xiang J, Shakui P, Masada T, Stummer W, et al. Transport of 5-aminolevulinic acid between blood and brain. Brain Res. 2003;959(2):226–34.CrossRefPubMed
44.
go back to reference Yabo YA, Niclou SP, Golebiewska A. Cancer cell heterogeneity and plasticity: a paradigm shift in glioblastoma. Neurooncology. 2021. Yabo YA, Niclou SP, Golebiewska A. Cancer cell heterogeneity and plasticity: a paradigm shift in glioblastoma. Neurooncology. 2021.
Metadata
Title
Magnetic resonance imaging-guided intracranial resection of glioblastoma tumors in patient-derived orthotopic xenografts leads to clinically relevant tumor recurrence
Authors
Anais Oudin
Pilar M. Moreno-Sanchez
Virginie Baus
Simone P. Niclou
Anna Golebiewska
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11774-6

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine