Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2020

01-12-2020 | Glioblastoma | Research

Discovery of a dual inhibitor of NQO1 and GSTP1 for treating glioblastoma

Authors: Kecheng Lei, Xiaoxia Gu, Alvaro G. Alvarado, Yuhong Du, Shilin Luo, Eun Hee Ahn, Seong Su Kang, Bing Ji, Xia Liu, Hui Mao, Haian Fu, Harley I. Kornblum, Lingjing Jin, Hua Li, Keqiang Ye

Published in: Journal of Hematology & Oncology | Issue 1/2020

Login to get access

Abstract

Background

Glioblastoma (GBM) is a universally lethal tumor with frequently overexpressed or mutated epidermal growth factor receptor (EGFR). NADPH quinone oxidoreductase 1 (NQO1) and glutathione-S-transferase Pi 1 (GSTP1) are commonly upregulated in GBM. NQO1 and GSTP1 decrease the formation of reactive oxygen species (ROS), which mediates the oxidative stress and promotes GBM cell proliferation.

Methods

High-throughput screen was used for agents selectively active against GBM cells with EGFRvIII mutations. Co-crystal structures were revealed molecular details of target recognition. Pharmacological and gene knockdown/overexpression approaches were used to investigate the oxidative stress in vitro and in vivo.

Results

We identified a small molecular inhibitor, “MNPC,” that binds to both NQO1 and GSTP1 with high affinity and selectivity. MNPC inhibits NQO1 and GSTP1 enzymes and induces apoptosis in GBM, specifically inhibiting the growth of cell lines and primary GBM bearing the EGFRvIII mutation. Co-crystal structures between MNPC and NQO1, and molecular docking of MNPC with GSTP1 reveal that it binds the active sites and acts as a potent dual inhibitor. Inactivation of both NQO1 and GSTP1 with siRNA or MNPC results in imbalanced redox homeostasis, leading to apoptosis and mitigated cancer proliferation in vitro and in vivo.

Conclusions

Thus, MNPC, a dual inhibitor for both NQO1 and GSTP1, provides a novel lead compound for treating GBM via the exploitation of specific vulnerabilities created by mutant EGFR.
Appendix
Available only for authorised users
Literature
1.
go back to reference Appin Daniel CLJ. Glioblastoma with oligodendroglioma component: a review of clinical, morphologic, and molecular characteristics. Pathol Case Rev. 2016;18:231–6.CrossRef Appin Daniel CLJ. Glioblastoma with oligodendroglioma component: a review of clinical, morphologic, and molecular characteristics. Pathol Case Rev. 2016;18:231–6.CrossRef
2.
go back to reference Cohen-Inbar O, Zaaroor M. Glioblastoma multiforme targeted therapy: the Chlorotoxin story. J Clin Neurosci. 2016;33:52–8.PubMedCrossRef Cohen-Inbar O, Zaaroor M. Glioblastoma multiforme targeted therapy: the Chlorotoxin story. J Clin Neurosci. 2016;33:52–8.PubMedCrossRef
3.
go back to reference Liu L, Bäcklund LM, Bo RN, Dan G, Ichimura K, Goike HM, et al. Clinical significance of EGFR amplification and the aberrant EGFRvIII transcript in conventionally treated astrocytic gliomas. J Mol Med. 2005;83:917–26.PubMedCrossRef Liu L, Bäcklund LM, Bo RN, Dan G, Ichimura K, Goike HM, et al. Clinical significance of EGFR amplification and the aberrant EGFRvIII transcript in conventionally treated astrocytic gliomas. J Mol Med. 2005;83:917–26.PubMedCrossRef
4.
go back to reference Mellinghoff IK, Cloughesy TF, Mischel PS. PTEN-mediated resistance to epidermal growth factor receptor kinase inhibitors. Clin Cancer Res. 2007;13:378–81.PubMedCrossRef Mellinghoff IK, Cloughesy TF, Mischel PS. PTEN-mediated resistance to epidermal growth factor receptor kinase inhibitors. Clin Cancer Res. 2007;13:378–81.PubMedCrossRef
5.
go back to reference Gan HK, Kaye AH, Luwor RB. The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009;16:748–54.PubMedCrossRef Gan HK, Kaye AH, Luwor RB. The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009;16:748–54.PubMedCrossRef
6.
go back to reference Nitta M, Kozono D, Kennedy R, Stommel J, Ng K, Zinn PO, et al. Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy. PLoS ONE. 2010;5:e10767.PubMedPubMedCentralCrossRef Nitta M, Kozono D, Kennedy R, Stommel J, Ng K, Zinn PO, et al. Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy. PLoS ONE. 2010;5:e10767.PubMedPubMedCentralCrossRef
7.
go back to reference Sangar V, Funk CC, Kusebauch U, Campbell DS, Moritz RL, Price ND. Quantitative proteomic analysis reveals effects of epidermal growth factor receptor (EGFR) on invasion-promoting proteins secreted by glioblastoma cells. Mol Cell Proteom. 2014;13:2618–31.CrossRef Sangar V, Funk CC, Kusebauch U, Campbell DS, Moritz RL, Price ND. Quantitative proteomic analysis reveals effects of epidermal growth factor receptor (EGFR) on invasion-promoting proteins secreted by glioblastoma cells. Mol Cell Proteom. 2014;13:2618–31.CrossRef
8.
go back to reference Masayuki N, David K, Richard K, Jayne S, Kimberly N, Zinn PO, et al. Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy. PLoS ONE. 2010;5:e10767.CrossRef Masayuki N, David K, Richard K, Jayne S, Kimberly N, Zinn PO, et al. Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy. PLoS ONE. 2010;5:e10767.CrossRef
9.
go back to reference Zhang L, Pang S, Bo D, Qian L, Chen J, Zou J, et al. High glucose induces renal mesangial cell proliferation and fibronectin expression through JNK/NF-κB/NADPH oxidase/ROS pathway, which is inhibited by resveratrol. Int J Biochem Cell Biol. 2012;44:629–38.PubMedCrossRef Zhang L, Pang S, Bo D, Qian L, Chen J, Zou J, et al. High glucose induces renal mesangial cell proliferation and fibronectin expression through JNK/NF-κB/NADPH oxidase/ROS pathway, which is inhibited by resveratrol. Int J Biochem Cell Biol. 2012;44:629–38.PubMedCrossRef
10.
go back to reference Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahedeh J, Pyle AD, et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell. 2011;8:59–71.PubMedPubMedCentralCrossRef Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahedeh J, Pyle AD, et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell. 2011;8:59–71.PubMedPubMedCentralCrossRef
11.
go back to reference Hsu Y-C, Chen Y-L, Chang S-J, et al. Growth inhibition and apoptosis of neuroblastoma cells through;ROS-independent MEK/ERK activation by sulforaphane. Cell Biochem Biophys. 2013;66:765–74.PubMedCrossRef Hsu Y-C, Chen Y-L, Chang S-J, et al. Growth inhibition and apoptosis of neuroblastoma cells through;ROS-independent MEK/ERK activation by sulforaphane. Cell Biochem Biophys. 2013;66:765–74.PubMedCrossRef
12.
13.
go back to reference Shen J, Barrios RJ, Jaiswal AK. Delayed activation of p63/p53/p19/apoptosis increased sensitivity of NQO1 and NQO2 deficient Mice to Benzo(a)pyrene and Dimethylbenz(a)anthracene Induced Skin Tumors. Can Res. 2010;70:1006.CrossRef Shen J, Barrios RJ, Jaiswal AK. Delayed activation of p63/p53/p19/apoptosis increased sensitivity of NQO1 and NQO2 deficient Mice to Benzo(a)pyrene and Dimethylbenz(a)anthracene Induced Skin Tumors. Can Res. 2010;70:1006.CrossRef
14.
go back to reference Dehn DL, David S, Elizabeth S, Moody CJ, David R. Biochemical, cytotoxic, and genotoxic effects of ES936, a mechanism-based inhibitor of NAD(P)H:quinone oxidoreductase 1, in cellular systems. Mol Pharmacol. 2003;64:714.PubMedCrossRef Dehn DL, David S, Elizabeth S, Moody CJ, David R. Biochemical, cytotoxic, and genotoxic effects of ES936, a mechanism-based inhibitor of NAD(P)H:quinone oxidoreductase 1, in cellular systems. Mol Pharmacol. 2003;64:714.PubMedCrossRef
15.
go back to reference Gonzalez AD, Alcain FJ, Jodar L, Barbarroja N, Lopez PC, Villalba JM. ES936 stimulates DNA synthesis in HeLa cells independently on NAD(P)H:quinone oxidoreductase 1 inhibition, through a mechanism involving p38 MAPK. Chem Biol Interact. 2010;186:174–83.CrossRef Gonzalez AD, Alcain FJ, Jodar L, Barbarroja N, Lopez PC, Villalba JM. ES936 stimulates DNA synthesis in HeLa cells independently on NAD(P)H:quinone oxidoreductase 1 inhibition, through a mechanism involving p38 MAPK. Chem Biol Interact. 2010;186:174–83.CrossRef
16.
go back to reference Singh S, Okamura T, Ali-Osman F. Serine phosphorylation of glutathione S-transferase P1 (GSTP1) by PKCα enhances GSTP1-dependent cisplatin metabolism and resistance in human glioma cells. Biochem Pharmacol. 2010;80:1343–55.PubMedCrossRef Singh S, Okamura T, Ali-Osman F. Serine phosphorylation of glutathione S-transferase P1 (GSTP1) by PKCα enhances GSTP1-dependent cisplatin metabolism and resistance in human glioma cells. Biochem Pharmacol. 2010;80:1343–55.PubMedCrossRef
17.
go back to reference Cai Q, Wu T, Zhang W, Guo X, Shang Z, Jiang N, et al. Genetic polymorphisms in glutathione S-transferases P1 (GSTP1) Ile105Val and prostate cancer risk: a systematic review and meta-analysis. Tumour Biol J Int Soc Oncodev Biol Med. 2013a;34:3913–22.CrossRef Cai Q, Wu T, Zhang W, Guo X, Shang Z, Jiang N, et al. Genetic polymorphisms in glutathione S-transferases P1 (GSTP1) Ile105Val and prostate cancer risk: a systematic review and meta-analysis. Tumour Biol J Int Soc Oncodev Biol Med. 2013a;34:3913–22.CrossRef
18.
go back to reference Xie P, Liang Y, Liang G, Liu B. Association between GSTP1 Ile105Val polymorphism and glioma risk: a systematic review and meta-analysis. Tumour Biol J Int Soc Oncodev Biol Med. 2014a;35:493.CrossRef Xie P, Liang Y, Liang G, Liu B. Association between GSTP1 Ile105Val polymorphism and glioma risk: a systematic review and meta-analysis. Tumour Biol J Int Soc Oncodev Biol Med. 2014a;35:493.CrossRef
19.
go back to reference Wang T, Arifoglu P, Ronai Z, Tew KD. Glutathione S-transferase P1–1 (GSTP1-1) inhibits c-Jun N-terminal kinase (JNK1) signaling through interaction with the C terminus. J Biol Chem. 2001;276:20999–1003.PubMedCrossRef Wang T, Arifoglu P, Ronai Z, Tew KD. Glutathione S-transferase P1–1 (GSTP1-1) inhibits c-Jun N-terminal kinase (JNK1) signaling through interaction with the C terminus. J Biol Chem. 2001;276:20999–1003.PubMedCrossRef
20.
go back to reference Mahadevan D, Sutton GR. Ezatiostat hydrochloride for the treatment of myelodysplastic syndromes. Exp Opin Investig Drugs. 2015;24:725–33.CrossRef Mahadevan D, Sutton GR. Ezatiostat hydrochloride for the treatment of myelodysplastic syndromes. Exp Opin Investig Drugs. 2015;24:725–33.CrossRef
21.
go back to reference Tan XL, Shi M, Tang H, Han WG, Spivack SD. Candidate dietary phytochemicals modulate expression of phase II enzymes GSTP1 and NQO1 in human lung cells. J Nutr. 2010;140:1404.PubMedPubMedCentralCrossRef Tan XL, Shi M, Tang H, Han WG, Spivack SD. Candidate dietary phytochemicals modulate expression of phase II enzymes GSTP1 and NQO1 in human lung cells. J Nutr. 2010;140:1404.PubMedPubMedCentralCrossRef
22.
go back to reference Johns MA, Meyerkord-Belton CL, Du Y, Fu H. The emory chemical biology discovery center: leveraging academic innovation to advance novel targets through HTS and beyond. Comb Chem High Throughput Screening. 2014;17:290–6.CrossRef Johns MA, Meyerkord-Belton CL, Du Y, Fu H. The emory chemical biology discovery center: leveraging academic innovation to advance novel targets through HTS and beyond. Comb Chem High Throughput Screening. 2014;17:290–6.CrossRef
23.
go back to reference Mo X, Tang C, Niu Q, Ma T, Du Y, Fu H. HTiP: high-throughput immunomodulator phenotypic screening platform to reveal IAP antagonists as anti-cancer immune enhancers. Cell Chem Biol. 2019;26(331–339):e333. Mo X, Tang C, Niu Q, Ma T, Du Y, Fu H. HTiP: high-throughput immunomodulator phenotypic screening platform to reveal IAP antagonists as anti-cancer immune enhancers. Cell Chem Biol. 2019;26(331–339):e333.
24.
go back to reference Zhang JH, Chung TD, Oldenburg KR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen. 1999;4:67–73.PubMedCrossRef Zhang JH, Chung TD, Oldenburg KR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen. 1999;4:67–73.PubMedCrossRef
25.
go back to reference Hu Y, Smyth GK. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods. 2009;347:70–8.PubMedCrossRef Hu Y, Smyth GK. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods. 2009;347:70–8.PubMedCrossRef
26.
go back to reference Müller J, Sidler D, Nachbur U, Wastling J, Brunner T, Hemphill A. Thiazolides inhibit growth and induce glutathione-S-transferase Pi (GSTP1)-dependent cell death in human colon cancer cells. Int J Cancer. 2010;123:1797–806.CrossRef Müller J, Sidler D, Nachbur U, Wastling J, Brunner T, Hemphill A. Thiazolides inhibit growth and induce glutathione-S-transferase Pi (GSTP1)-dependent cell death in human colon cancer cells. Int J Cancer. 2010;123:1797–806.CrossRef
27.
go back to reference Müller J, Hemphill A. Identification of a host cell target for the thiazolide class of broad-spectrum anti-parasitic drugs. Exp Parasitol. 2011;128:145–50.PubMedCrossRef Müller J, Hemphill A. Identification of a host cell target for the thiazolide class of broad-spectrum anti-parasitic drugs. Exp Parasitol. 2011;128:145–50.PubMedCrossRef
28.
go back to reference Zhang Z, Kang SS, Liu X, Ahn EH, Zhang Z, He L, et al. Asparagine endopeptidase cleaves α-synuclein and mediates pathologic activities in Parkinson’s disease. Nat Struct Mol Biol. 2017;24:632–42.PubMedPubMedCentralCrossRef Zhang Z, Kang SS, Liu X, Ahn EH, Zhang Z, He L, et al. Asparagine endopeptidase cleaves α-synuclein and mediates pathologic activities in Parkinson’s disease. Nat Struct Mol Biol. 2017;24:632–42.PubMedPubMedCentralCrossRef
29.
go back to reference Chen H, Wu G, Gao S, Guo R, Zhao Z, Yuan H, et al. Discovery of potentsmall-molecule inhibitors of ubiquitin-conjugating enzyme UbcH5c from α‑santonin derivatives. J Med Chem Chen H, Wu G, Gao S, Guo R, Zhao Z, Yuan H, et al. Discovery of potentsmall-molecule inhibitors of ubiquitin-conjugating enzyme UbcH5c from α‑santonin derivatives. J Med Chem
30.
go back to reference Otwinowski Z, Minor, W. [20] Processing of X-ray diffraction data collected in oscillation mode. In: Methods in enzymology, vol. 276. Amsterdam: Elsevier. 1997. p. 307–326. Otwinowski Z, Minor, W. [20] Processing of X-ray diffraction data collected in oscillation mode. In: Methods in enzymology, vol. 276. Amsterdam: Elsevier. 1997. p. 307–326.
31.
go back to reference McCoy AJ, Grosse-Kunstleve RW, Storoni LC, Read RJ. Likelihood-enhanced fast translation functions. Acta Crystallogr D Biol Crystallogr. 2005;61:458–64.PubMedCrossRef McCoy AJ, Grosse-Kunstleve RW, Storoni LC, Read RJ. Likelihood-enhanced fast translation functions. Acta Crystallogr D Biol Crystallogr. 2005;61:458–64.PubMedCrossRef
32.
go back to reference Federici L, Sterzo CL, Pezzola S, Di Matteo A, Scaloni F, Federici G, et al. Structural basis for the binding of the anticancer compound 6-(7-nitro-2, 1, 3-benzoxadiazol-4-ylthio) hexanol to human glutathione s-transferases. Can Res. 2009;69:8025–34.CrossRef Federici L, Sterzo CL, Pezzola S, Di Matteo A, Scaloni F, Federici G, et al. Structural basis for the binding of the anticancer compound 6-(7-nitro-2, 1, 3-benzoxadiazol-4-ylthio) hexanol to human glutathione s-transferases. Can Res. 2009;69:8025–34.CrossRef
33.
go back to reference Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–32.PubMedCrossRef Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–32.PubMedCrossRef
34.
go back to reference Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997;53:240–55.PubMedCrossRef Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997;53:240–55.PubMedCrossRef
35.
go back to reference Abagyan R, Totrov M, Kuznetsov D. ICM—a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comput Chem. 1994;15:488–506.CrossRef Abagyan R, Totrov M, Kuznetsov D. ICM—a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comput Chem. 1994;15:488–506.CrossRef
36.
go back to reference Marie S, Eva F, Bruno S, Klára S, Vladimira M, Martina L, et al. Human cytosolic enzymes involved in the metabolic activation of carcinogenic aristolochic acid: evidence for reductive activation by human NAD(P)H:quinone oxidoreductase. Carcinogenesis. 2003;24:1695–703.CrossRef Marie S, Eva F, Bruno S, Klára S, Vladimira M, Martina L, et al. Human cytosolic enzymes involved in the metabolic activation of carcinogenic aristolochic acid: evidence for reductive activation by human NAD(P)H:quinone oxidoreductase. Carcinogenesis. 2003;24:1695–703.CrossRef
37.
go back to reference Kunyan H, Qi Q, Chi-Bun C, Ge X, Xia L, Carol TB, et al. Blockade of glioma proliferation through allosteric inhibition of JAK2. Sci Signaling. 2013;6:55. Kunyan H, Qi Q, Chi-Bun C, Ge X, Xia L, Carol TB, et al. Blockade of glioma proliferation through allosteric inhibition of JAK2. Sci Signaling. 2013;6:55.
38.
go back to reference Chandrashekar DS, Bashel B, Sah B, Creighton CJ, Ponce-Rodriguez I, Bvsk C, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19:649–58.PubMedPubMedCentralCrossRef Chandrashekar DS, Bashel B, Sah B, Creighton CJ, Ponce-Rodriguez I, Bvsk C, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19:649–58.PubMedPubMedCentralCrossRef
39.
go back to reference Bowman RL, Wang Q, Carro A, Verhaak RG, Squatrito M. GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro-Oncol. 2017;19:139–41.PubMedCrossRef Bowman RL, Wang Q, Carro A, Verhaak RG, Squatrito M. GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro-Oncol. 2017;19:139–41.PubMedCrossRef
40.
go back to reference Allen M, Bjerke M, Edlund H, Nelander S, Westermark B. Origin of the U87MG glioma cell line: good news and bad news. Sci Transl Med. 2016;8:353–4.CrossRef Allen M, Bjerke M, Edlund H, Nelander S, Westermark B. Origin of the U87MG glioma cell line: good news and bad news. Sci Transl Med. 2016;8:353–4.CrossRef
41.
go back to reference Asher G, Dym O, Tsvetkov P, Adler J, Shaul Y. The crystal structure of NAD (P) H quinone oxidoreductase 1 in complex with its potent inhibitor dicoumarol. Biochemistry. 2006;45:6372–8.PubMedCrossRef Asher G, Dym O, Tsvetkov P, Adler J, Shaul Y. The crystal structure of NAD (P) H quinone oxidoreductase 1 in complex with its potent inhibitor dicoumarol. Biochemistry. 2006;45:6372–8.PubMedCrossRef
43.
go back to reference Ergen HA, Gormus U, Narter F, Zeybek U, Bulgurcuoglu S, Isbir T. Investigation of NAD(P)H:quinone oxidoreductase 1 (NQO1) C609T polymorphism in prostate cancer. Anticancer Res. 2007;27:4107.PubMed Ergen HA, Gormus U, Narter F, Zeybek U, Bulgurcuoglu S, Isbir T. Investigation of NAD(P)H:quinone oxidoreductase 1 (NQO1) C609T polymorphism in prostate cancer. Anticancer Res. 2007;27:4107.PubMed
45.
go back to reference Gurioli G, Martignano F, Salvi S, Costantini M, Gunelli R, Casadio V. GSTP1 methylation in cancer: a liquid biopsy biomarker? Clin Chem Lab Med. 2018;56:702–17.PubMedCrossRef Gurioli G, Martignano F, Salvi S, Costantini M, Gunelli R, Casadio V. GSTP1 methylation in cancer: a liquid biopsy biomarker? Clin Chem Lab Med. 2018;56:702–17.PubMedCrossRef
46.
go back to reference Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 2005;353:2012–24.PubMedCrossRef Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 2005;353:2012–24.PubMedCrossRef
47.
go back to reference Fan Q-W, Cheng CK, Gustafson WC, Charron E, Zipper P, Wong RA, et al. EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma. Cancer Cell. 2013;24:438–49.PubMedCrossRef Fan Q-W, Cheng CK, Gustafson WC, Charron E, Zipper P, Wong RA, et al. EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma. Cancer Cell. 2013;24:438–49.PubMedCrossRef
48.
go back to reference Nathanson DA, Gini B, Mottahedeh J, Visnyei K, Koga T, Gomez G, et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science. 2014;343:72–6.PubMedCrossRef Nathanson DA, Gini B, Mottahedeh J, Visnyei K, Koga T, Gomez G, et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science. 2014;343:72–6.PubMedCrossRef
49.
go back to reference Akhavan D, Pourzia AL, Nourian AA, Williams KJ, Nathanson D, Babic I, et al. De-repression of PDGFRβ transcription promotes acquired resistance to EGFR tyrosine kinase inhibitors in glioblastoma patients. Cancer Discov. 2013;3:534–47.PubMedPubMedCentralCrossRef Akhavan D, Pourzia AL, Nourian AA, Williams KJ, Nathanson D, Babic I, et al. De-repression of PDGFRβ transcription promotes acquired resistance to EGFR tyrosine kinase inhibitors in glioblastoma patients. Cancer Discov. 2013;3:534–47.PubMedPubMedCentralCrossRef
51.
go back to reference Reardon DA, Ligon KL, Chiocca EA, Wen PY. One size should not fit all: advancing toward personalized glioblastoma therapy. Discov Med. 2015;19:471–7.PubMed Reardon DA, Ligon KL, Chiocca EA, Wen PY. One size should not fit all: advancing toward personalized glioblastoma therapy. Discov Med. 2015;19:471–7.PubMed
52.
go back to reference Yun SB, Sang WK, Min SS, Baines IC, Tekle E, Chock PB, et al. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide role in egf receptor-mediated tyrosine phosphorylation. J Biol Chem. 1997;272:217–21.CrossRef Yun SB, Sang WK, Min SS, Baines IC, Tekle E, Chock PB, et al. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide role in egf receptor-mediated tyrosine phosphorylation. J Biol Chem. 1997;272:217–21.CrossRef
53.
go back to reference Miller EW, Tulyathan O, Isacoff EY, Chang CJ. Molecular imaging of hydrogen peroxide produced for cell signaling. Nat Chem Biol. 2007;3:263–7.PubMedCrossRef Miller EW, Tulyathan O, Isacoff EY, Chang CJ. Molecular imaging of hydrogen peroxide produced for cell signaling. Nat Chem Biol. 2007;3:263–7.PubMedCrossRef
54.
go back to reference Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275:1943–7.PubMedCrossRef Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275:1943–7.PubMedCrossRef
55.
go back to reference Myers MP, Pass I, Batty IH, Kaay JVD, Stolarov JP, Hemmings BA, et al. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci USA. 1998;95:13513–8.PubMedCrossRefPubMedCentral Myers MP, Pass I, Batty IH, Kaay JVD, Stolarov JP, Hemmings BA, et al. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci USA. 1998;95:13513–8.PubMedCrossRefPubMedCentral
56.
go back to reference Kwon J, Lee SR, Yang KS, Ahn Y, Kim YJ, Stadtman ER, et al. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc Natl Acad Sci USA. 2004;101:16419–24.PubMedCrossRefPubMedCentral Kwon J, Lee SR, Yang KS, Ahn Y, Kim YJ, Stadtman ER, et al. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc Natl Acad Sci USA. 2004;101:16419–24.PubMedCrossRefPubMedCentral
57.
go back to reference Lee SR, Yang KS, Kwon J, Lee C, Jeong W, Rhee SG. Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem. 2002;277:20336–42.PubMedCrossRef Lee SR, Yang KS, Kwon J, Lee C, Jeong W, Rhee SG. Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem. 2002;277:20336–42.PubMedCrossRef
58.
go back to reference Luo S, Lei, K, Xiang, D, Ye K. NQO1 is regulated by pten in glioblastoma, mediating cell proliferation and oxidative stress. Oxidative Med Cellular Longevity 2018. Luo S, Lei, K, Xiang, D, Ye K. NQO1 is regulated by pten in glioblastoma, mediating cell proliferation and oxidative stress. Oxidative Med Cellular Longevity 2018.
59.
go back to reference Agnihotri S, Golbourn B, Huang X, Remke M, Younger S, Cairns RA, et al. PINK1 is a negative regulator of growth and the warburg effect in glioblastoma. Cancer Res. 2016;76:4708–19.PubMedCrossRef Agnihotri S, Golbourn B, Huang X, Remke M, Younger S, Cairns RA, et al. PINK1 is a negative regulator of growth and the warburg effect in glioblastoma. Cancer Res. 2016;76:4708–19.PubMedCrossRef
60.
go back to reference Zhang J, Yan B, Späth SS, Hu Q, Cornelius S, Guan D, et al. Integrated transcriptional profiling and genomic analyses reveal RPN2 and HMGB1 as promising biomarkers in colorectal cancer. Cell Biosci. 2015;5:53.PubMedPubMedCentralCrossRef Zhang J, Yan B, Späth SS, Hu Q, Cornelius S, Guan D, et al. Integrated transcriptional profiling and genomic analyses reveal RPN2 and HMGB1 as promising biomarkers in colorectal cancer. Cell Biosci. 2015;5:53.PubMedPubMedCentralCrossRef
61.
go back to reference O’Brien ML, Vulevic B, Freer S, Boyd J, Shen H, Tew KD. Glutathione peptidomimetic drug modulator of multidrug resistance-associated protein. J Pharmacol Exp Ther. 1999;291:1348–55.PubMed O’Brien ML, Vulevic B, Freer S, Boyd J, Shen H, Tew KD. Glutathione peptidomimetic drug modulator of multidrug resistance-associated protein. J Pharmacol Exp Ther. 1999;291:1348–55.PubMed
62.
go back to reference Xiang-Lin T, Miao S, Hui T, Weiguo H, Spivack SD. Candidate dietary phytochemicals modulate expression of phase II enzymes GSTP1 and NQO1 in human lung cells. J Nutr. 2010;140:1404.CrossRef Xiang-Lin T, Miao S, Hui T, Weiguo H, Spivack SD. Candidate dietary phytochemicals modulate expression of phase II enzymes GSTP1 and NQO1 in human lung cells. J Nutr. 2010;140:1404.CrossRef
63.
go back to reference Madajewski B, Boatman MA, Chakrabarti G, Boothman DA, Bey EA. Depleting tumor-NQO1 potentiates anoikis and inhibits growth of NSCLC. Mol Cancer Res Mcr. 2015;14:14–25.PubMedCrossRef Madajewski B, Boatman MA, Chakrabarti G, Boothman DA, Bey EA. Depleting tumor-NQO1 potentiates anoikis and inhibits growth of NSCLC. Mol Cancer Res Mcr. 2015;14:14–25.PubMedCrossRef
64.
go back to reference Ogino S, Konishi H, Ichikawa D, Matsubara D, Otsuji E. Glutathione S-transferase Pi 1 is a valuable predictor for cancer drug resistance in esophageal squamous cell carcinoma. Can Sci. 2018;110:795–804.CrossRef Ogino S, Konishi H, Ichikawa D, Matsubara D, Otsuji E. Glutathione S-transferase Pi 1 is a valuable predictor for cancer drug resistance in esophageal squamous cell carcinoma. Can Sci. 2018;110:795–804.CrossRef
65.
go back to reference Traver RD, Horikoshi T, Danenberg KD, Stadlbauer TH, Danenberg PV, Ross D, et al. NAD (P) H: quinone oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity. Can Res. 1992;52:797–802. Traver RD, Horikoshi T, Danenberg KD, Stadlbauer TH, Danenberg PV, Ross D, et al. NAD (P) H: quinone oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity. Can Res. 1992;52:797–802.
66.
go back to reference Siegel D, Yan C, Ross D. NAD (P) H: quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. Biochem Pharmacol. 2012;83:1033–40.PubMedCrossRef Siegel D, Yan C, Ross D. NAD (P) H: quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. Biochem Pharmacol. 2012;83:1033–40.PubMedCrossRef
67.
go back to reference Pan S-s, Forrest GL, Akman SA, Hu L-T. NAD (P) H: quinone oxidoreductase expression and mitomycin C resistance developed by human colon cancer HCT 116 cells. Can Res. 1995;55:330–5. Pan S-s, Forrest GL, Akman SA, Hu L-T. NAD (P) H: quinone oxidoreductase expression and mitomycin C resistance developed by human colon cancer HCT 116 cells. Can Res. 1995;55:330–5.
68.
go back to reference Glorieux C, Calderon PB. Cancer cell sensitivity to redox-cycling quinones is influenced by NAD (P) H: quinone oxidoreductase 1 polymorphism. Antioxidants. 2019;8:369.PubMedCentralCrossRef Glorieux C, Calderon PB. Cancer cell sensitivity to redox-cycling quinones is influenced by NAD (P) H: quinone oxidoreductase 1 polymorphism. Antioxidants. 2019;8:369.PubMedCentralCrossRef
69.
go back to reference Cai Q, Wu T, Zhang W, Guo X, Shang Z, Jiang N, et al. Genetic polymorphisms in glutathione S-transferases P1 (GSTP1) Ile105Val and prostate cancer risk: a systematic review and meta-analysis. Tumor Biol. 2013b;34:3913–22.CrossRef Cai Q, Wu T, Zhang W, Guo X, Shang Z, Jiang N, et al. Genetic polymorphisms in glutathione S-transferases P1 (GSTP1) Ile105Val and prostate cancer risk: a systematic review and meta-analysis. Tumor Biol. 2013b;34:3913–22.CrossRef
70.
go back to reference Xie P, Liang Y, Liang G, Liu B. Association between GSTP1 Ile105Val polymorphism and glioma risk: a systematic review and meta-analysis. Tumor Biol. 2014b;35:493–9.CrossRef Xie P, Liang Y, Liang G, Liu B. Association between GSTP1 Ile105Val polymorphism and glioma risk: a systematic review and meta-analysis. Tumor Biol. 2014b;35:493–9.CrossRef
71.
go back to reference Sun N, Sun X, Chen B, Cheng H, Feng J, Cheng L, et al. MRP2 and GSTP1 polymorphisms and chemotherapy response in advanced non-small cell lung cancer. Cancer Chemother Pharmacol. 2010;65:437.PubMedCrossRef Sun N, Sun X, Chen B, Cheng H, Feng J, Cheng L, et al. MRP2 and GSTP1 polymorphisms and chemotherapy response in advanced non-small cell lung cancer. Cancer Chemother Pharmacol. 2010;65:437.PubMedCrossRef
72.
go back to reference Musher DM, Logan N, Bressler AM, Johnson DP, Rossignol JF. Nitazoxanide versus vancomycin in Clostridium difficile infection: a randomized, double-blind study. Clin Infect Dis. 2009;48:e41.PubMedCrossRef Musher DM, Logan N, Bressler AM, Johnson DP, Rossignol JF. Nitazoxanide versus vancomycin in Clostridium difficile infection: a randomized, double-blind study. Clin Infect Dis. 2009;48:e41.PubMedCrossRef
73.
go back to reference Stachulski AV, Santoro MG, Piacentini S, Belardo G, Frazia S, Pidathala C, et al. Second-generation nitazoxanide derivatives: thiazolides are effective inhibitors of the influenza A virus. Fut Med Chem. 2018;10:851–62.CrossRef Stachulski AV, Santoro MG, Piacentini S, Belardo G, Frazia S, Pidathala C, et al. Second-generation nitazoxanide derivatives: thiazolides are effective inhibitors of the influenza A virus. Fut Med Chem. 2018;10:851–62.CrossRef
74.
go back to reference Zhao Z, Xue F, Zhang L, Zhang K, Fei C, Zheng W, et al. The pharmacokinetics of nitazoxanide active metabolite (tizoxanide) in goats and its protein binding ability in vitro. J Vet Pharmacol Ther. 2010;33:147–53.PubMedCrossRef Zhao Z, Xue F, Zhang L, Zhang K, Fei C, Zheng W, et al. The pharmacokinetics of nitazoxanide active metabolite (tizoxanide) in goats and its protein binding ability in vitro. J Vet Pharmacol Ther. 2010;33:147–53.PubMedCrossRef
75.
go back to reference Shakya A, Bhat HR, Ghosh SK. Update on nitazoxanide: a multifunctional chemotherapeutic agent. Curr Drug Discov Technol. 1969;15:201–13.CrossRef Shakya A, Bhat HR, Ghosh SK. Update on nitazoxanide: a multifunctional chemotherapeutic agent. Curr Drug Discov Technol. 1969;15:201–13.CrossRef
76.
go back to reference Rampa A, Gobbi S, Rm CDM, Belluti F, Bisi A. Dual BACE-1/GSK-3β inhibitors to combat Alzheimer’s disease: a focused review. Curr Top Med Chem. 2017;17:3361.PubMedCrossRef Rampa A, Gobbi S, Rm CDM, Belluti F, Bisi A. Dual BACE-1/GSK-3β inhibitors to combat Alzheimer’s disease: a focused review. Curr Top Med Chem. 2017;17:3361.PubMedCrossRef
77.
go back to reference Li Z, Ding J, Chen C, Chang J, Huang B, Geng Z, et al. Dual-target cancer theranostic for glutathione S-transferase and hypoxia-inducible factor-1α inhibition. Chem Commun: Cambridge, England. 2017;53:12406.CrossRef Li Z, Ding J, Chen C, Chang J, Huang B, Geng Z, et al. Dual-target cancer theranostic for glutathione S-transferase and hypoxia-inducible factor-1α inhibition. Chem Commun: Cambridge, England. 2017;53:12406.CrossRef
78.
go back to reference Li D, Ni S, Miao KS, Zhuang C. PI3K/Akt and caspase pathways mediate oxidative stress-induced chondrocyte apoptosis. Cell Stress Chaperones. 2019;24:195–202.PubMedCrossRef Li D, Ni S, Miao KS, Zhuang C. PI3K/Akt and caspase pathways mediate oxidative stress-induced chondrocyte apoptosis. Cell Stress Chaperones. 2019;24:195–202.PubMedCrossRef
79.
go back to reference Yang H, Lou C, Sun L, Li J, Cai Y, Wang Z, et al. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 2019;35:1067–9.PubMedCrossRef Yang H, Lou C, Sun L, Li J, Cai Y, Wang Z, et al. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 2019;35:1067–9.PubMedCrossRef
80.
go back to reference Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, et al. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. Washington, DC: ACS Publications; 2012. Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, et al. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. Washington, DC: ACS Publications; 2012.
Metadata
Title
Discovery of a dual inhibitor of NQO1 and GSTP1 for treating glioblastoma
Authors
Kecheng Lei
Xiaoxia Gu
Alvaro G. Alvarado
Yuhong Du
Shilin Luo
Eun Hee Ahn
Seong Su Kang
Bing Ji
Xia Liu
Hui Mao
Haian Fu
Harley I. Kornblum
Lingjing Jin
Hua Li
Keqiang Ye
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2020
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-020-00979-y

Other articles of this Issue 1/2020

Journal of Hematology & Oncology 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine