Skip to main content
Top
Published in: Cancer Cell International 1/2020

01-12-2020 | Glioblastoma | Primary research

CREB1-induced miR-1204 promoted malignant phenotype of glioblastoma through targeting NR3C2

Authors: Xinli Zhao, Fazheng Shen, Jiwei Ma, Shupeng Zhao, Lei Meng, Xiangyang Wang, Shufeng Liang, Jianing Liang, Chaoshuai Hu, Xinzhong Zhang

Published in: Cancer Cell International | Issue 1/2020

Login to get access

Abstract

Background

Glioblastoma (GBM) is a subclass of brain malignancy with unsatisfactory prognosis. MicroRNAs (miRNAs) are a group of non-coding RNAs (ncRNAs) that exert key function on tumorigenesis and tumor development.

Purposes

The purpose of this work was to unravel the biological behavior and mechanism of miR-1204 in GBM.

Methods

Expressions of miR-1204, NR3C2 and CREB1 were detected by RT-qPCR and western blot. Proliferation and apoptosis of GBM cells were detected by CCK-8, colony formation, caspase-3 activity and TUNEL assays. Molecular interplays were examined by ChIP, RIP, and luciferase reporter assays.

Results

MiR-1204 level was elevated in GBM cell lines. Functionally, miR-1204 aggravated cell proliferation whereas suppressed cell apoptosis in GBM cells. Mechanistically, cAMP Responsive Element Binding Protein 1 (CREB1) bound to the promoter of miR-1204 and activated the transcription of miR-1204. Furthermore, miR-1204 targeted and inhibited Nuclear receptor subfamily 3 group C member 2 (NR3C2), a tumor suppressor gene in GBM cells. Rescue assays indicated that NR3C2 participated in the regulation of miR-1204 on the malignant phenotype of GBM cells.

Conclusions

We observed for the first time that CREB1-induced miR-1204 promoted malignant phenotype of GBM through targeting NR3C2, indicating that miR-1204 acted as a novel oncogenic miRNA in GBM.
Literature
1.
go back to reference Cloughesy TF, Cavenee WK, Mischel PS. Glioblastoma: from molecular pathology to targeted treatment. Annu Rev Pathol. 2014;9(1):1–25.CrossRef Cloughesy TF, Cavenee WK, Mischel PS. Glioblastoma: from molecular pathology to targeted treatment. Annu Rev Pathol. 2014;9(1):1–25.CrossRef
2.
go back to reference Parker NR, Khong P, Parkinson JF, Howell VM, Wheeler HR. Molecular heterogeneity in glioblastoma: potential clinical implications. Front Oncol. 2015;5:55.PubMedPubMedCentral Parker NR, Khong P, Parkinson JF, Howell VM, Wheeler HR. Molecular heterogeneity in glioblastoma: potential clinical implications. Front Oncol. 2015;5:55.PubMedPubMedCentral
3.
go back to reference Swanton C. Intratumor heterogeneity: evolution through space and time. Cancer Res. 2012;72(19):4875–82.CrossRef Swanton C. Intratumor heterogeneity: evolution through space and time. Cancer Res. 2012;72(19):4875–82.CrossRef
4.
go back to reference Hoda S. Rubin’s pathology: clinicopathologic foundations of medicine. JAMA J Am Med Assoc. 2004;292:1376–7.CrossRef Hoda S. Rubin’s pathology: clinicopathologic foundations of medicine. JAMA J Am Med Assoc. 2004;292:1376–7.CrossRef
5.
go back to reference Meyer M, Reimand J, Lan X, Head R, Zhu X, Kushida M, Bayani J, Pressey JC, Lionel AC, Clarke ID, et al. Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proc Natl Acad Sci USA. 2015;112(3):851–6.CrossRef Meyer M, Reimand J, Lan X, Head R, Zhu X, Kushida M, Bayani J, Pressey JC, Lionel AC, Clarke ID, et al. Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proc Natl Acad Sci USA. 2015;112(3):851–6.CrossRef
6.
go back to reference Bonavia R, Inda M-d-M, Cavenee WK, Furnari FB. Heterogeneity maintenance in glioblastoma: a social network. Cancer Res. 2011;71(12):4055–60.CrossRef Bonavia R, Inda M-d-M, Cavenee WK, Furnari FB. Heterogeneity maintenance in glioblastoma: a social network. Cancer Res. 2011;71(12):4055–60.CrossRef
7.
go back to reference Sottoriva A, Spiteri I, Piccirillo SGM, Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C, Tavaré S. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA. 2013;110(10):4009–14.CrossRef Sottoriva A, Spiteri I, Piccirillo SGM, Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C, Tavaré S. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA. 2013;110(10):4009–14.CrossRef
8.
go back to reference Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M. microRNAs in cancer management. Lancet Oncol. 2012;13(6):e249–58.CrossRef Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M. microRNAs in cancer management. Lancet Oncol. 2012;13(6):e249–58.CrossRef
9.
go back to reference Monroig PDC, Chen L, Zhang S, Calin GA. Small molecule compounds targeting miRNAs for cancer therapy. Adv Drug Deliv Rev. 2015;81:104–16.CrossRef Monroig PDC, Chen L, Zhang S, Calin GA. Small molecule compounds targeting miRNAs for cancer therapy. Adv Drug Deliv Rev. 2015;81:104–16.CrossRef
10.
go back to reference Ge Y-Z, Xin H, Lu T-Z, Xu Z, Yu P, Zhao Y-C, Li M-H, Zhao Y, Zhong B, Xu X, et al. MicroRNA expression profiles predict clinical phenotypes and prognosis in chromophobe renal cell carcinoma. Sci Rep. 2015;5:10328.CrossRef Ge Y-Z, Xin H, Lu T-Z, Xu Z, Yu P, Zhao Y-C, Li M-H, Zhao Y, Zhong B, Xu X, et al. MicroRNA expression profiles predict clinical phenotypes and prognosis in chromophobe renal cell carcinoma. Sci Rep. 2015;5:10328.CrossRef
11.
go back to reference Osman A. MicroRNAs in health and disease—basic science and clinical applications. Clin Lab. 2012;58(5–6):393.PubMed Osman A. MicroRNAs in health and disease—basic science and clinical applications. Clin Lab. 2012;58(5–6):393.PubMed
12.
go back to reference Salvianti F, Canu L, Poli G, Armignacco R, Scatena C, Cantini G, Di Franco A, Gelmini S, Ercolino T, Pazzagli M, et al. New insights in the clinical and translational relevance of miR483-5p in adrenocortical cancer. Oncotarget. 2017;8(39):65525–33.CrossRef Salvianti F, Canu L, Poli G, Armignacco R, Scatena C, Cantini G, Di Franco A, Gelmini S, Ercolino T, Pazzagli M, et al. New insights in the clinical and translational relevance of miR483-5p in adrenocortical cancer. Oncotarget. 2017;8(39):65525–33.CrossRef
13.
go back to reference Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016;1(1):15004.CrossRef Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016;1(1):15004.CrossRef
14.
go back to reference Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;20(8):460–9.CrossRef Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;20(8):460–9.CrossRef
15.
go back to reference Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.CrossRef Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.CrossRef
16.
go back to reference Cao ZH, Cheng JL, Zhang Y, Bo CX, Li YL. MicroRNA-375 inhibits oral squamous cell carcinoma cell migration and invasion by targeting platelet-derived growth factor-A. Mol Med Rep. 2017;15:922–8.CrossRef Cao ZH, Cheng JL, Zhang Y, Bo CX, Li YL. MicroRNA-375 inhibits oral squamous cell carcinoma cell migration and invasion by targeting platelet-derived growth factor-A. Mol Med Rep. 2017;15:922–8.CrossRef
17.
go back to reference Chandrasekaran KS, Sathyanarayanan A, Karunagaran D. MicroRNA-214 suppresses growth, migration and invasion through a novel target, high mobility group AT-hook 1, in human cervical and colorectal cancer cells. Br J Cancer. 2016;115(6):741–51.CrossRef Chandrasekaran KS, Sathyanarayanan A, Karunagaran D. MicroRNA-214 suppresses growth, migration and invasion through a novel target, high mobility group AT-hook 1, in human cervical and colorectal cancer cells. Br J Cancer. 2016;115(6):741–51.CrossRef
18.
go back to reference Deng YH, Deng ZH, Hao H, Wu XL, Gao H, Tang SH, Tang H. MicroRNA-23a promotes colorectal cancer cell survival by targeting PDK4. Exp Cell Res. 2018;373(1):171–9.CrossRef Deng YH, Deng ZH, Hao H, Wu XL, Gao H, Tang SH, Tang H. MicroRNA-23a promotes colorectal cancer cell survival by targeting PDK4. Exp Cell Res. 2018;373(1):171–9.CrossRef
19.
go back to reference Duan J, Zhang H, Qu Y, Deng T, Huang D, Liu R, Zhang L, Bai M, Zhou L, Ying G, et al. Onco-miR-130 promotes cell proliferation and migration by targeting TGFβR2 in gastric cancer. Oncotarget. 2016;7(28):44522–33.CrossRef Duan J, Zhang H, Qu Y, Deng T, Huang D, Liu R, Zhang L, Bai M, Zhou L, Ying G, et al. Onco-miR-130 promotes cell proliferation and migration by targeting TGFβR2 in gastric cancer. Oncotarget. 2016;7(28):44522–33.CrossRef
20.
go back to reference Xu X, Cai N, Zhi T, Bao Z, Wang D, Liu Y, Jiang K, Fan L, Ji J, Liu N. MicroRNA-1179 inhibits glioblastoma cell proliferation and cell cycle progression via directly targeting E2F transcription factor 5. Am J Cancer Res. 2017;7(8):1680–92.PubMedPubMedCentral Xu X, Cai N, Zhi T, Bao Z, Wang D, Liu Y, Jiang K, Fan L, Ji J, Liu N. MicroRNA-1179 inhibits glioblastoma cell proliferation and cell cycle progression via directly targeting E2F transcription factor 5. Am J Cancer Res. 2017;7(8):1680–92.PubMedPubMedCentral
21.
go back to reference Wang SS, Feng L, Hu BG, Lu YF, Wang WM, Guo W, Suen CW, Jiao BH, Pang JX, Fu WM, et al. miR-133a promotes TRAIL resistance in glioblastoma via suppressing death receptor 5 and activating NF-κB signaling. Mol Ther Nucleic Acids. 2017;8:482–92.CrossRef Wang SS, Feng L, Hu BG, Lu YF, Wang WM, Guo W, Suen CW, Jiao BH, Pang JX, Fu WM, et al. miR-133a promotes TRAIL resistance in glioblastoma via suppressing death receptor 5 and activating NF-κB signaling. Mol Ther Nucleic Acids. 2017;8:482–92.CrossRef
22.
go back to reference Li D, Shan W, Fang Y, Wang P, Li J. miR-137 acts as a tumor suppressor via inhibiting CXCL12 in human glioblastoma. Oncotarget. 2017;8(60):101262–70.PubMedPubMedCentral Li D, Shan W, Fang Y, Wang P, Li J. miR-137 acts as a tumor suppressor via inhibiting CXCL12 in human glioblastoma. Oncotarget. 2017;8(60):101262–70.PubMedPubMedCentral
23.
go back to reference Franceschi S, Mazzanti CM, Lessi F, Aretini P, Carbone FG, La Ferla M, Scatena C, Ortenzi V, Vannozzi R, Fanelli G, et al. Investigating molecular alterations to profile short- and long-term recurrence-free survival in patients with primary glioblastoma. Oncol Lett. 2015;10(6):3599–606.CrossRef Franceschi S, Mazzanti CM, Lessi F, Aretini P, Carbone FG, La Ferla M, Scatena C, Ortenzi V, Vannozzi R, Fanelli G, et al. Investigating molecular alterations to profile short- and long-term recurrence-free survival in patients with primary glioblastoma. Oncol Lett. 2015;10(6):3599–606.CrossRef
25.
go back to reference Liu X, Bi L, Wang Q, Wen M, Li C, Ren Y, Jiao Q, Mao JH, Wang C, Wei G, et al. miR-1204 targets VDR to promotes epithelial–mesenchymal transition and metastasis in breast cancer. Oncogene. 2018;37(25):3426–39.CrossRef Liu X, Bi L, Wang Q, Wen M, Li C, Ren Y, Jiao Q, Mao JH, Wang C, Wei G, et al. miR-1204 targets VDR to promotes epithelial–mesenchymal transition and metastasis in breast cancer. Oncogene. 2018;37(25):3426–39.CrossRef
26.
go back to reference Wang L, Sun L, Wang Y, Yao B, Liu R, Chen T, Tu K, Liu Q, Liu Z. miR-1204 promotes hepatocellular carcinoma progression through activating MAPK and c-Jun/AP1 signaling by targeting ZNF418. Int J Biol Sci. 2019;15(7):1514–22.CrossRef Wang L, Sun L, Wang Y, Yao B, Liu R, Chen T, Tu K, Liu Q, Liu Z. miR-1204 promotes hepatocellular carcinoma progression through activating MAPK and c-Jun/AP1 signaling by targeting ZNF418. Int J Biol Sci. 2019;15(7):1514–22.CrossRef
27.
go back to reference Jiang W, He Y, Shi Y, Guo Z, Yang S, Wei K, Pan C, Xia Y, Chen Y. MicroRNA-1204 promotes cell proliferation by regulating PITX1 in non-small-cell lung cancer. Cell Biol Int. 2019;43(3):253–64.PubMed Jiang W, He Y, Shi Y, Guo Z, Yang S, Wei K, Pan C, Xia Y, Chen Y. MicroRNA-1204 promotes cell proliferation by regulating PITX1 in non-small-cell lung cancer. Cell Biol Int. 2019;43(3):253–64.PubMed
28.
go back to reference Luo W, Liu L, Yang L, Dong Y, Liu T, Wei X, Liu D, Hui G, Kong J, Yuan Z, et al. The vitamin D receptor regulates miR-140-5p and targets the MAPK pathway in bone development. Metabolism. 2018;85:139–50.CrossRef Luo W, Liu L, Yang L, Dong Y, Liu T, Wei X, Liu D, Hui G, Kong J, Yuan Z, et al. The vitamin D receptor regulates miR-140-5p and targets the MAPK pathway in bone development. Metabolism. 2018;85:139–50.CrossRef
29.
go back to reference Sha Z, Zhu X, Li N, Li Y, Li D. Proto-oncogenic miR-744 is upregulated by transcription factor c-Jun via a promoter activation mechanism. Oncotarget. 2016;7(40):64977–86.CrossRef Sha Z, Zhu X, Li N, Li Y, Li D. Proto-oncogenic miR-744 is upregulated by transcription factor c-Jun via a promoter activation mechanism. Oncotarget. 2016;7(40):64977–86.CrossRef
30.
go back to reference Tan X, Wang S, Zhu L, Wu C, Yin B, Zhao J, Yuan J, Qiang B, Peng X. cAMP response element-binding protein promotes gliomagenesis by modulating the expression of oncogenic microRNA-23a. Proc Natl Acad Sci USA. 2012;109(39):15805–10.CrossRef Tan X, Wang S, Zhu L, Wu C, Yin B, Zhao J, Yuan J, Qiang B, Peng X. cAMP response element-binding protein promotes gliomagenesis by modulating the expression of oncogenic microRNA-23a. Proc Natl Acad Sci USA. 2012;109(39):15805–10.CrossRef
31.
go back to reference Chen J, Zhang C, Mi Y, Chen F, Du D. CREB1 regulates glucose transport of glioma cell line U87 by targeting GLUT1. Mol Cell Biochem. 2017;436:79–86.CrossRef Chen J, Zhang C, Mi Y, Chen F, Du D. CREB1 regulates glucose transport of glioma cell line U87 by targeting GLUT1. Mol Cell Biochem. 2017;436:79–86.CrossRef
32.
go back to reference Gu L, Lu L-S, Zhou D-L, Liu Z-C. UCA1 promotes cell proliferation and invasion of gastric cancer by targeting CREB1 sponging to miR-590-3p. Cancer Med. 2018;7(4):1253–63.CrossRef Gu L, Lu L-S, Zhou D-L, Liu Z-C. UCA1 promotes cell proliferation and invasion of gastric cancer by targeting CREB1 sponging to miR-590-3p. Cancer Med. 2018;7(4):1253–63.CrossRef
33.
go back to reference Li Q-Q, Zhang L, Wan H-Y, Liu M, Li X, Tang H. CREB1-driven expression of miR-320a promotes mitophagy by down-regulating VDAC1 expression during serum starvation in cervical cancer cells. Oncotarget. 2015;6(33):34924–40.PubMedPubMedCentral Li Q-Q, Zhang L, Wan H-Y, Liu M, Li X, Tang H. CREB1-driven expression of miR-320a promotes mitophagy by down-regulating VDAC1 expression during serum starvation in cervical cancer cells. Oncotarget. 2015;6(33):34924–40.PubMedPubMedCentral
34.
go back to reference Horisberger JD, Rossier BC. Aldosterone regulation of gene transcription leading to control of ion transport. Hypertension. 1992;19(3):221–7.CrossRef Horisberger JD, Rossier BC. Aldosterone regulation of gene transcription leading to control of ion transport. Hypertension. 1992;19(3):221–7.CrossRef
35.
go back to reference Tiberio L, Nascimbeni R, Villanacci V, Casella C, Fra A, Vezzoli V, Furlan L, Meyer G, Parrinello G, Baroni MD, et al. The decrease of mineralcorticoid receptor drives angiogenic pathways in colorectal cancer. PLoS ONE. 2013;8(3):e59410.CrossRef Tiberio L, Nascimbeni R, Villanacci V, Casella C, Fra A, Vezzoli V, Furlan L, Meyer G, Parrinello G, Baroni MD, et al. The decrease of mineralcorticoid receptor drives angiogenic pathways in colorectal cancer. PLoS ONE. 2013;8(3):e59410.CrossRef
36.
go back to reference Jeong Y, Xie Y, Xiao G, Behrens C, Girard L, Wistuba II, Minna JD, Mangelsdorf DJ. Nuclear receptor expression defines a set of prognostic biomarkers for lung cancer. PLoS Med. 2010;7(12):e1000378.CrossRef Jeong Y, Xie Y, Xiao G, Behrens C, Girard L, Wistuba II, Minna JD, Mangelsdorf DJ. Nuclear receptor expression defines a set of prognostic biomarkers for lung cancer. PLoS Med. 2010;7(12):e1000378.CrossRef
37.
go back to reference Zhang Z, Che X, Yang N, Bai Z, Wu Y, Zhao L, Pei H. miR-135b-5p promotes migration, invasion and EMT of pancreatic cancer cells by targeting NR3C2. Biomed Pharmacother. 2017;96:1341–8.CrossRef Zhang Z, Che X, Yang N, Bai Z, Wu Y, Zhao L, Pei H. miR-135b-5p promotes migration, invasion and EMT of pancreatic cancer cells by targeting NR3C2. Biomed Pharmacother. 2017;96:1341–8.CrossRef
38.
go back to reference Zhao Z, Zhang M, Duan X, Deng T, Qiu H, Zeng G. Low NR3C2 levels correlate with aggressive features and poor prognosis in non-distant metastatic clear-cell renal cell carcinoma. J Cell Physiol. 2018;233(10):6825–38.CrossRef Zhao Z, Zhang M, Duan X, Deng T, Qiu H, Zeng G. Low NR3C2 levels correlate with aggressive features and poor prognosis in non-distant metastatic clear-cell renal cell carcinoma. J Cell Physiol. 2018;233(10):6825–38.CrossRef
39.
go back to reference Liu X, Bi L, Wang Q, Wen M, Li C, Ren Y, Jiao Q, Mao JH, Wang C, Wei G, et al. miR-1204 targets VDR to promotes epithelial-mesenchymal transition and metastasis in breast cancer. Oncogene. 2018;37:3426–39.CrossRef Liu X, Bi L, Wang Q, Wen M, Li C, Ren Y, Jiao Q, Mao JH, Wang C, Wei G, et al. miR-1204 targets VDR to promotes epithelial-mesenchymal transition and metastasis in breast cancer. Oncogene. 2018;37:3426–39.CrossRef
Metadata
Title
CREB1-induced miR-1204 promoted malignant phenotype of glioblastoma through targeting NR3C2
Authors
Xinli Zhao
Fazheng Shen
Jiwei Ma
Shupeng Zhao
Lei Meng
Xiangyang Wang
Shufeng Liang
Jianing Liang
Chaoshuai Hu
Xinzhong Zhang
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2020
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-020-01176-0

Other articles of this Issue 1/2020

Cancer Cell International 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine