Skip to main content
Top
Published in: Acta Neuropathologica Communications 1/2013

Open Access 01-12-2013 | Research

Glial scaffold required for cerebellar granule cell migration is dependent on dystroglycan function as a receptor for basement membrane proteins

Authors: Huy Nguyen, Adam P Ostendorf, Jakob S Satz, Steve Westra, Susan E Ross-Barta, Kevin P Campbell, Steven A Moore

Published in: Acta Neuropathologica Communications | Issue 1/2013

Login to get access

Abstract

Background

Cobblestone lissencephaly is a severe neuronal migration disorder associated with congenital muscular dystrophies (CMD) such as Walker-Warburg syndrome, muscle-eye-brain disease, and Fukuyama-type CMD. In these severe forms of dystroglycanopathy, the muscular dystrophy and other tissue pathology is caused by mutations in genes involved in O-linked glycosylation of alpha-dystroglycan. While cerebellar dysplasia is a common feature of dystroglycanopathy, its pathogenesis has not been thoroughly investigated.

Results

Here we evaluate the role of dystroglycan during cerebellar development. Brain-selective deletion of dystroglycan does not affect overall cerebellar growth, yet causes malformations associated with glia limitans disruptions and granule cell heterotopia that recapitulate phenotypes found in dystroglycanopathy patients. Cerebellar pathology in these mice is not evident until birth even though dystroglycan is lost during the second week of embryogenesis. The severity and spatial distribution of glia limitans disruption, Bergmann glia disorganization, and heterotopia exacerbate during postnatal development. Astrogliosis becomes prominent at these same sites by the time cerebellar development is complete. Interestingly, there is spatial heterogeneity in the glia limitans and granule neuron migration defects that spares the tips of lobules IV-V and VI.

Conclusions

The full spectrum of developmental pathology is caused by loss of dystroglycan from Bergmann glia, as neither granule cell- nor Purkinje cell-specific deletion of dystroglycan results in similar pathology. These data illustrate the importance of dystroglycan function in radial/Bergmann glia, not neurons, for normal cerebellar histogenesis. The spatial heterogeneity of pathology suggests that the dependence on dystroglycan is not uniform.
Appendix
Available only for authorised users
Literature
1.
go back to reference Goldowitz D, Hamre K: The cells and molecules that make a cerebellum. Trends Neurosci 1998, 21: 375–382. 10.1016/S0166-2236(98)01313-7CrossRefPubMed Goldowitz D, Hamre K: The cells and molecules that make a cerebellum. Trends Neurosci 1998, 21: 375–382. 10.1016/S0166-2236(98)01313-7CrossRefPubMed
2.
go back to reference Clement E, Mercuri E, Godfrey C, et al.: Brain involvement in muscular dystrophies with defective dystroglycan glycosylation. Ann Neurol 2008, 64: 573–582. doi:10.1002/ana.21482 10.1002/ana.21482CrossRefPubMed Clement E, Mercuri E, Godfrey C, et al.: Brain involvement in muscular dystrophies with defective dystroglycan glycosylation. Ann Neurol 2008, 64: 573–582. doi:10.1002/ana.21482 10.1002/ana.21482CrossRefPubMed
3.
go back to reference Devisme L, Bouchet C, Gonzales M, et al.: Cobblestone lissencephaly: neuropathological subtypes and correlations with genes of dystroglycanopathies. Brain 2012, 135: 469–482. doi:10.1093/brain/awr357 10.1093/brain/awr357CrossRefPubMed Devisme L, Bouchet C, Gonzales M, et al.: Cobblestone lissencephaly: neuropathological subtypes and correlations with genes of dystroglycanopathies. Brain 2012, 135: 469–482. doi:10.1093/brain/awr357 10.1093/brain/awr357CrossRefPubMed
4.
go back to reference Michele DE, Barresi R, Kanagawa M, et al.: Post-translational disruption of dystroglycan–ligand interactions in congenital muscular dystrophies. Nature 2002, 418: 417–421. doi:10.1038/nature00837 10.1038/nature00837CrossRefPubMed Michele DE, Barresi R, Kanagawa M, et al.: Post-translational disruption of dystroglycan–ligand interactions in congenital muscular dystrophies. Nature 2002, 418: 417–421. doi:10.1038/nature00837 10.1038/nature00837CrossRefPubMed
5.
go back to reference Moore SA, Saito F, Chen J, et al.: Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature 2002, 418: 422–425. doi:10.1038/nature00838 10.1038/nature00838CrossRefPubMed Moore SA, Saito F, Chen J, et al.: Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature 2002, 418: 422–425. doi:10.1038/nature00838 10.1038/nature00838CrossRefPubMed
6.
go back to reference Satz JS, Philp AR, Nguyen H, et al.: Visual impairment in the absence of dystroglycan. J Neurosci 2009, 29: 13136–13146. doi:10.1523/JNEUROSCI.0474–09.2009 10.1523/JNEUROSCI.0474-09.2009PubMedCentralCrossRefPubMed Satz JS, Philp AR, Nguyen H, et al.: Visual impairment in the absence of dystroglycan. J Neurosci 2009, 29: 13136–13146. doi:10.1523/JNEUROSCI.0474–09.2009 10.1523/JNEUROSCI.0474-09.2009PubMedCentralCrossRefPubMed
7.
go back to reference Satz JS, Ostendorf AP, Hou S, et al.: Distinct functions of glial and neuronal dystroglycan in the developing and adult mouse brain. J Neurosci 2010, 30: 14560–14572. doi:10.1523/JNEUROSCI.3247–10.2010 10.1523/JNEUROSCI.3247-10.2010PubMedCentralCrossRefPubMed Satz JS, Ostendorf AP, Hou S, et al.: Distinct functions of glial and neuronal dystroglycan in the developing and adult mouse brain. J Neurosci 2010, 30: 14560–14572. doi:10.1523/JNEUROSCI.3247–10.2010 10.1523/JNEUROSCI.3247-10.2010PubMedCentralCrossRefPubMed
8.
go back to reference Myshrall TD, Moore SA, Ostendorf AP, et al.: Dystroglycan on radial glia end feet is required for pial basement membrane integrity and columnar organization of the developing cerebral cortex. J Neuropathol Exp Neurol 2012, 71: 1047–1063. doi:10.1097/NEN.0b013e318274a128 10.1097/NEN.0b013e318274a128PubMedCentralCrossRefPubMed Myshrall TD, Moore SA, Ostendorf AP, et al.: Dystroglycan on radial glia end feet is required for pial basement membrane integrity and columnar organization of the developing cerebral cortex. J Neuropathol Exp Neurol 2012, 71: 1047–1063. doi:10.1097/NEN.0b013e318274a128 10.1097/NEN.0b013e318274a128PubMedCentralCrossRefPubMed
9.
go back to reference Ervasti JM, Campbell KP: Membrane organization of the dystrophin-glycoprotein complex. Cell 1991, 66: 1121–1131. 10.1016/0092-8674(91)90035-WCrossRefPubMed Ervasti JM, Campbell KP: Membrane organization of the dystrophin-glycoprotein complex. Cell 1991, 66: 1121–1131. 10.1016/0092-8674(91)90035-WCrossRefPubMed
10.
go back to reference Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, et al.: Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 1992, 355: 696–702. doi:10.1038/355696a0 10.1038/355696a0CrossRefPubMed Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, et al.: Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 1992, 355: 696–702. doi:10.1038/355696a0 10.1038/355696a0CrossRefPubMed
11.
go back to reference Bowe MA, Deyst KA, Leszyk JD, Fallon JR: Identification and purification of an agrin receptor from torpedo postsynaptic membranes: A heteromeric complex related to the dystroglycans. Neuron 1994, 12: 1173–1180. doi:10.1016/0896–6273(94)90324–7 10.1016/0896-6273(94)90324-7CrossRefPubMed Bowe MA, Deyst KA, Leszyk JD, Fallon JR: Identification and purification of an agrin receptor from torpedo postsynaptic membranes: A heteromeric complex related to the dystroglycans. Neuron 1994, 12: 1173–1180. doi:10.1016/0896–6273(94)90324–7 10.1016/0896-6273(94)90324-7CrossRefPubMed
12.
go back to reference Sugiyama J, Bowen DC, Hall ZW: Dystroglycan binds nerve and muscle agrin. Neuron 1994, 13: 103–115. 10.1016/0896-6273(94)90462-6CrossRefPubMed Sugiyama J, Bowen DC, Hall ZW: Dystroglycan binds nerve and muscle agrin. Neuron 1994, 13: 103–115. 10.1016/0896-6273(94)90462-6CrossRefPubMed
13.
go back to reference Sugita S, Saito F, Tang J, et al.: A stoichiometric complex of neurexins and dystroglycan in brain. J Cell Biol 2001, 154: 435–445. 10.1083/jcb.200105003PubMedCentralCrossRefPubMed Sugita S, Saito F, Tang J, et al.: A stoichiometric complex of neurexins and dystroglycan in brain. J Cell Biol 2001, 154: 435–445. 10.1083/jcb.200105003PubMedCentralCrossRefPubMed
14.
go back to reference Wright KM, Lyon KA, Leung H, et al.: Dystroglycan organizes axon guidance cue localization and axonal pathfinding. Neuron 2012, 76: 931–944. doi:10.1016/j.neuron.2012.10.009 10.1016/j.neuron.2012.10.009PubMedCentralCrossRefPubMed Wright KM, Lyon KA, Leung H, et al.: Dystroglycan organizes axon guidance cue localization and axonal pathfinding. Neuron 2012, 76: 931–944. doi:10.1016/j.neuron.2012.10.009 10.1016/j.neuron.2012.10.009PubMedCentralCrossRefPubMed
15.
go back to reference Sato S, Omori Y, Katoh K, et al.: Pikachurin, a dystroglycan ligand, is essential for photoreceptor ribbon synapse formation. Nat Neurosci 2008, 11: 923–931. doi:10.1038/nn.2160 10.1038/nn.2160CrossRefPubMed Sato S, Omori Y, Katoh K, et al.: Pikachurin, a dystroglycan ligand, is essential for photoreceptor ribbon synapse formation. Nat Neurosci 2008, 11: 923–931. doi:10.1038/nn.2160 10.1038/nn.2160CrossRefPubMed
16.
go back to reference Matsumura K, Ervasti JM, Ohlendieck K, et al.: Association of dystrophin-related protein with dystrophin-associated proteins in mdx mouse muscle. Nature 1992, 360: 588–591. doi:10.1038/360588a0 10.1038/360588a0CrossRefPubMed Matsumura K, Ervasti JM, Ohlendieck K, et al.: Association of dystrophin-related protein with dystrophin-associated proteins in mdx mouse muscle. Nature 1992, 360: 588–591. doi:10.1038/360588a0 10.1038/360588a0CrossRefPubMed
17.
go back to reference Jung D, Yang B, Meyer J, et al.: Identification and characterization of the dystrophin anchoring site on beta-dystroglycan. J Biol Chem 1995, 270: 27305–27310. 10.1074/jbc.270.45.27305CrossRefPubMed Jung D, Yang B, Meyer J, et al.: Identification and characterization of the dystrophin anchoring site on beta-dystroglycan. J Biol Chem 1995, 270: 27305–27310. 10.1074/jbc.270.45.27305CrossRefPubMed
18.
go back to reference Finn DM, Ohlendieck K: Oligomerization of β-dystroglycan in rabbit diaphragm and brain as revealed by chemical crosslinking. Biochimica et Biophysica Acta (BBA) - Biomembranes 1998, 1370: 325–336. doi:10.1016/S0005–2736(97)00283–6 10.1016/S0005-2736(97)00283-6CrossRef Finn DM, Ohlendieck K: Oligomerization of β-dystroglycan in rabbit diaphragm and brain as revealed by chemical crosslinking. Biochimica et Biophysica Acta (BBA) - Biomembranes 1998, 1370: 325–336. doi:10.1016/S0005–2736(97)00283–6 10.1016/S0005-2736(97)00283-6CrossRef
19.
go back to reference Chung W, Campanelli JT: WW and EF Hand Domains of Dystrophin-Family Proteins Mediate Dystroglycan Binding. Mol Cell Biol Res Commun 1999, 2: 162–171. doi:10.1006/mcbr.1999.0168 10.1006/mcbr.1999.0168CrossRefPubMed Chung W, Campanelli JT: WW and EF Hand Domains of Dystrophin-Family Proteins Mediate Dystroglycan Binding. Mol Cell Biol Res Commun 1999, 2: 162–171. doi:10.1006/mcbr.1999.0168 10.1006/mcbr.1999.0168CrossRefPubMed
20.
go back to reference Satz JS, Barresi R, Durbeej M, et al.: Brain and eye malformations resembling Walker-Warburg syndrome are recapitulated in mice by dystroglycan deletion in the epiblast. J Neurosci 2008, 28: 10567–10575. doi:10.1523/JNEUROSCI.2457–08.2008 10.1523/JNEUROSCI.2457-08.2008PubMedCentralCrossRefPubMed Satz JS, Barresi R, Durbeej M, et al.: Brain and eye malformations resembling Walker-Warburg syndrome are recapitulated in mice by dystroglycan deletion in the epiblast. J Neurosci 2008, 28: 10567–10575. doi:10.1523/JNEUROSCI.2457–08.2008 10.1523/JNEUROSCI.2457-08.2008PubMedCentralCrossRefPubMed
21.
go back to reference Henion TR, Qu Q, Smith FI: Expression of dystroglycan, fukutin and POMGnT1 during mouse cerebellar development. Brain Res Mol Brain Res 2003, 112: 177–181. doi:10.1016/S0169–328X(03)00055-X 10.1016/S0169-328X(03)00055-XCrossRefPubMed Henion TR, Qu Q, Smith FI: Expression of dystroglycan, fukutin and POMGnT1 during mouse cerebellar development. Brain Res Mol Brain Res 2003, 112: 177–181. doi:10.1016/S0169–328X(03)00055-X 10.1016/S0169-328X(03)00055-XCrossRefPubMed
22.
go back to reference Tian M, Jacobson C, Gee SH, et al.: Dystroglycan in the cerebellum is a laminin alpha 2-chain binding protein at the glial-vascular interface and is expressed in Purkinje cells. Eur J Neurosci 1996, 8: 2739–2747. 10.1111/j.1460-9568.1996.tb01568.xCrossRefPubMed Tian M, Jacobson C, Gee SH, et al.: Dystroglycan in the cerebellum is a laminin alpha 2-chain binding protein at the glial-vascular interface and is expressed in Purkinje cells. Eur J Neurosci 1996, 8: 2739–2747. 10.1111/j.1460-9568.1996.tb01568.xCrossRefPubMed
23.
go back to reference Barski JJ, Dethleffsen K, Meyer M: Cre recombinase expression in cerebellar Purkinje cells. Genesis 2000, 28: 93–98. doi:10.1002/1526–968X(200011/12)28:3/4<93::AID-GENE10>3.0.CO;2-W 10.1002/1526-968X(200011/12)28:3/4<93::AID-GENE10>3.0.CO;2-WCrossRefPubMed Barski JJ, Dethleffsen K, Meyer M: Cre recombinase expression in cerebellar Purkinje cells. Genesis 2000, 28: 93–98. doi:10.1002/1526–968X(200011/12)28:3/4<93::AID-GENE10>3.0.CO;2-W 10.1002/1526-968X(200011/12)28:3/4<93::AID-GENE10>3.0.CO;2-WCrossRefPubMed
24.
go back to reference Fünfschilling U, Reichardt LF: Cre-mediated recombination in rhombic lip derivatives. Genesis 2002, 33: 160–169. doi:10.1002/gene.10104 10.1002/gene.10104PubMedCentralCrossRefPubMed Fünfschilling U, Reichardt LF: Cre-mediated recombination in rhombic lip derivatives. Genesis 2002, 33: 160–169. doi:10.1002/gene.10104 10.1002/gene.10104PubMedCentralCrossRefPubMed
25.
go back to reference Duclos F, Straub V, Moore SA, et al.: Progressive muscular dystrophy in alpha-sarcoglycan-deficient mice. J Cell Biol 1998, 142: 1461–1471. 10.1083/jcb.142.6.1461PubMedCentralCrossRefPubMed Duclos F, Straub V, Moore SA, et al.: Progressive muscular dystrophy in alpha-sarcoglycan-deficient mice. J Cell Biol 1998, 142: 1461–1471. 10.1083/jcb.142.6.1461PubMedCentralCrossRefPubMed
26.
go back to reference Blaess S, Graus-Porta D, Belvindrah R, et al.: Beta1-integrins are critical for cerebellar granule cell precursor proliferation. J Neurosci 2004, 24: 3402–3412. doi:10.1523/JNEUROSCI.5241–03.2004 10.1523/JNEUROSCI.5241-03.2004PubMedCentralCrossRefPubMed Blaess S, Graus-Porta D, Belvindrah R, et al.: Beta1-integrins are critical for cerebellar granule cell precursor proliferation. J Neurosci 2004, 24: 3402–3412. doi:10.1523/JNEUROSCI.5241–03.2004 10.1523/JNEUROSCI.5241-03.2004PubMedCentralCrossRefPubMed
27.
go back to reference Tronche F, Kellendonk C, Kretz O, et al.: Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 1999, 23: 99–103. doi:10.1038/12703 10.1038/12703CrossRefPubMed Tronche F, Kellendonk C, Kretz O, et al.: Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 1999, 23: 99–103. doi:10.1038/12703 10.1038/12703CrossRefPubMed
28.
go back to reference Zhuo L, Theis M, Alvarez-Maya I, et al.: hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 2001, 31: 85–94. doi:10.1002/gene.10008 10.1002/gene.10008CrossRefPubMed Zhuo L, Theis M, Alvarez-Maya I, et al.: hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 2001, 31: 85–94. doi:10.1002/gene.10008 10.1002/gene.10008CrossRefPubMed
29.
go back to reference Amiry-Moghaddam M, Otsuka T, Hurn PD, et al.: An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci U S A 2003, 100: 2106–2111. doi:10.1073/pnas.0437946100 10.1073/pnas.0437946100PubMedCentralCrossRefPubMed Amiry-Moghaddam M, Otsuka T, Hurn PD, et al.: An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci U S A 2003, 100: 2106–2111. doi:10.1073/pnas.0437946100 10.1073/pnas.0437946100PubMedCentralCrossRefPubMed
30.
go back to reference Xenaki D, Martin IB, Yoshida L, et al.: F3/contactin and TAG1 play antagonistic roles in the regulation of sonic hedgehog-induced cerebellar granule neuron progenitor proliferation. Development 2011, 138: 519–529. doi:10.1242/dev.051912 10.1242/dev.051912PubMedCentralCrossRefPubMed Xenaki D, Martin IB, Yoshida L, et al.: F3/contactin and TAG1 play antagonistic roles in the regulation of sonic hedgehog-induced cerebellar granule neuron progenitor proliferation. Development 2011, 138: 519–529. doi:10.1242/dev.051912 10.1242/dev.051912PubMedCentralCrossRefPubMed
31.
go back to reference Yamasaki T, Kawaji K, Ono K, et al.: Pax6 regulates granule cell polarization during parallel fiber formation in the developing cerebellum. Development 2001, 128: 3133–3144.PubMed Yamasaki T, Kawaji K, Ono K, et al.: Pax6 regulates granule cell polarization during parallel fiber formation in the developing cerebellum. Development 2001, 128: 3133–3144.PubMed
32.
go back to reference Muntoni F, Voit T: The congenital muscular dystrophies in 2004: a century of exciting progress. Neuromuscul Disord 2004, 14: 635–649. doi:10.1016/j.nmd.2004.06.009 10.1016/j.nmd.2004.06.009CrossRefPubMed Muntoni F, Voit T: The congenital muscular dystrophies in 2004: a century of exciting progress. Neuromuscul Disord 2004, 14: 635–649. doi:10.1016/j.nmd.2004.06.009 10.1016/j.nmd.2004.06.009CrossRefPubMed
33.
go back to reference Mercuri E, Muntoni F: Muscular dystrophies. Lancet 2013. doi:10.1016/S0140–6736(12)61897–2 Mercuri E, Muntoni F: Muscular dystrophies. Lancet 2013. doi:10.1016/S0140–6736(12)61897–2
34.
go back to reference Graus-Porta D, Blaess S, Senften M, et al.: β1-Class Integrins Regulate the Development of Laminae and Folia in the Cerebral and Cerebellar Cortex. Neuron 2001, 31: 367–379. doi:10.1016/S0896–6273(01)00374–9 10.1016/S0896-6273(01)00374-9CrossRefPubMed Graus-Porta D, Blaess S, Senften M, et al.: β1-Class Integrins Regulate the Development of Laminae and Folia in the Cerebral and Cerebellar Cortex. Neuron 2001, 31: 367–379. doi:10.1016/S0896–6273(01)00374–9 10.1016/S0896-6273(01)00374-9CrossRefPubMed
35.
go back to reference Belvindrah R, Nalbant P, Ding S, et al.: Integrin-linked kinase regulates Bergmann glial differentiation during cerebellar development. Mol Cell Neurosci 2006, 33: 109–125. doi:10.1016/j.mcn.2006.06.013 10.1016/j.mcn.2006.06.013CrossRefPubMed Belvindrah R, Nalbant P, Ding S, et al.: Integrin-linked kinase regulates Bergmann glial differentiation during cerebellar development. Mol Cell Neurosci 2006, 33: 109–125. doi:10.1016/j.mcn.2006.06.013 10.1016/j.mcn.2006.06.013CrossRefPubMed
36.
go back to reference Mills J: Critical Role of Integrin-Linked Kinase in Granule Cell Precursor Proliferation and Cerebellar Development. J Neurosci 2006, 26: 830–840. doi:10.1523/JNEUROSCI.1852–05.2006 10.1523/JNEUROSCI.1852-05.2006PubMedCentralCrossRefPubMed Mills J: Critical Role of Integrin-Linked Kinase in Granule Cell Precursor Proliferation and Cerebellar Development. J Neurosci 2006, 26: 830–840. doi:10.1523/JNEUROSCI.1852–05.2006 10.1523/JNEUROSCI.1852-05.2006PubMedCentralCrossRefPubMed
37.
go back to reference Yoshida-Moriguchi T, Yu L, Stalnaker SH, et al.: O-Mannosyl Phosphorylation of Alpha-Dystroglycan Is Required for Laminin Binding. Science 2009, 327: 88–92. doi:10.1126/science.1180512CrossRef Yoshida-Moriguchi T, Yu L, Stalnaker SH, et al.: O-Mannosyl Phosphorylation of Alpha-Dystroglycan Is Required for Laminin Binding. Science 2009, 327: 88–92. doi:10.1126/science.1180512CrossRef
38.
go back to reference Inamori K-I, Yoshida-Moriguchi T, Hara Y, et al.: Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science 2012, 335: 93–96. doi:10.1126/science.1214115 10.1126/science.1214115PubMedCentralCrossRefPubMed Inamori K-I, Yoshida-Moriguchi T, Hara Y, et al.: Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science 2012, 335: 93–96. doi:10.1126/science.1214115 10.1126/science.1214115PubMedCentralCrossRefPubMed
39.
go back to reference Grewal PK, Hewitt JE: Mutation of Large, which encodes a putative glycosyltransferase, in an animal model of muscular dystrophy. Biochim Biophys Acta 2002, 1573: 216–224. 10.1016/S0304-4165(02)00387-2CrossRefPubMed Grewal PK, Hewitt JE: Mutation of Large, which encodes a putative glycosyltransferase, in an animal model of muscular dystrophy. Biochim Biophys Acta 2002, 1573: 216–224. 10.1016/S0304-4165(02)00387-2CrossRefPubMed
40.
go back to reference Holzfeind PJ, Grewal PK, Reitsamer HA, et al.: Skeletal, cardiac and tongue muscle pathology, defective retinal transmission, and neuronal migration defects in the Large(myd) mouse defines a natural model for glycosylation-deficient muscle - eye - brain disorders. Hum Mol Genet 2002, 11: 2673–2687. 10.1093/hmg/11.21.2673CrossRefPubMed Holzfeind PJ, Grewal PK, Reitsamer HA, et al.: Skeletal, cardiac and tongue muscle pathology, defective retinal transmission, and neuronal migration defects in the Large(myd) mouse defines a natural model for glycosylation-deficient muscle - eye - brain disorders. Hum Mol Genet 2002, 11: 2673–2687. 10.1093/hmg/11.21.2673CrossRefPubMed
41.
go back to reference Qu Q, Smith F: Neuronal migration defects in cerebellum of the Large myd mouse are associated with disruptions in Bergmann glia organization and delayed migration of granule neurons. MCER 2005, 4: 261–270. doi:10.1080/14734220500358351 10.1080/14734220500358351CrossRef Qu Q, Smith F: Neuronal migration defects in cerebellum of the Large myd mouse are associated with disruptions in Bergmann glia organization and delayed migration of granule neurons. MCER 2005, 4: 261–270. doi:10.1080/14734220500358351 10.1080/14734220500358351CrossRef
42.
go back to reference Hara Y, Balci-Hayta B, Yoshida-Moriguchi T, et al.: A dystroglycan mutation associated with limb-girdle muscular dystrophy. N Engl J Med 2011, 364: 939–946. doi:10.1056/NEJMoa1006939 10.1056/NEJMoa1006939PubMedCentralCrossRefPubMed Hara Y, Balci-Hayta B, Yoshida-Moriguchi T, et al.: A dystroglycan mutation associated with limb-girdle muscular dystrophy. N Engl J Med 2011, 364: 939–946. doi:10.1056/NEJMoa1006939 10.1056/NEJMoa1006939PubMedCentralCrossRefPubMed
43.
go back to reference Hatten ME, Mason CA: Mechanisms of glial-guided neuronal migration in vitro and in vivo. Experientia 1990, 46: 907–916. 10.1007/BF01939383CrossRefPubMed Hatten ME, Mason CA: Mechanisms of glial-guided neuronal migration in vitro and in vivo. Experientia 1990, 46: 907–916. 10.1007/BF01939383CrossRefPubMed
44.
go back to reference Yurchenco PD: Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol 2011. doi:10.1101/cshperspect.a004911 Yurchenco PD: Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol 2011. doi:10.1101/cshperspect.a004911
45.
go back to reference Hu H, Candiello J, Zhang P, et al.: Retinal ectopias and mechanically weakened basement membrane in a mouse model of muscle-eye-brain (MEB) disease congenital muscular dystrophy. Mol Vis 2010, 16: 1415–1428.PubMedCentralPubMed Hu H, Candiello J, Zhang P, et al.: Retinal ectopias and mechanically weakened basement membrane in a mouse model of muscle-eye-brain (MEB) disease congenital muscular dystrophy. Mol Vis 2010, 16: 1415–1428.PubMedCentralPubMed
Metadata
Title
Glial scaffold required for cerebellar granule cell migration is dependent on dystroglycan function as a receptor for basement membrane proteins
Authors
Huy Nguyen
Adam P Ostendorf
Jakob S Satz
Steve Westra
Susan E Ross-Barta
Kevin P Campbell
Steven A Moore
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Acta Neuropathologica Communications / Issue 1/2013
Electronic ISSN: 2051-5960
DOI
https://doi.org/10.1186/2051-5960-1-58

Other articles of this Issue 1/2013

Acta Neuropathologica Communications 1/2013 Go to the issue