Skip to main content
Top
Published in: Clinical & Experimental Metastasis 5/2011

Open Access 01-06-2011 | Research Paper

Gli1 enhances migration and invasion via up-regulation of MMP-11 and promotes metastasis in ERα negative breast cancer cell lines

Authors: Yeon-Jin Kwon, Douglas R. Hurst, Adam D. Steg, Kun Yuan, Kedar S. Vaidya, Danny R. Welch, Andra R. Frost

Published in: Clinical & Experimental Metastasis | Issue 5/2011

Login to get access

Abstract

Gli1 is an established oncogene and its expression in Estrogen Receptor (ER) α negative and triple negative breast cancers is predictive of a poor prognosis; however, the biological functions regulated by Gli1 in breast cancer have not been extensively evaluated. Herein, Gli1 was over-expressed or down-regulated (by RNA interference and by expression of the repressor form of Gli3) in the ERα negative, human breast cancer cell lines MDA-MB-231 and SUM1315. Reduced expression of Gli1 in these two cell lines resulted in a decrease in migration and invasion. Gli1 over-expression increased the migration and invasion of MDA-MB-231 cells with a corresponding increase in expression of MMP-11. Silencing MMP-11 in MDA-MB-231 cells that over-expressed Gli1 abrogated the Gli1-induced enhancement of migration and invasion. Sustained suppression of Gli1 expression decreased growth of MDA-MB-231 in vitro by increasing apoptosis and decreasing proliferation. In addition, silencing of Gli1 reduced the numbers and sizes of pulmonary metastases of MDA-MB-231 in an in vivo experimental metastasis assay. In summary, Gli1 promotes the growth, survival, migration, invasion and metastasis of ERα negative breast cancer. Additionally, MMP-11 is up-regulated by Gli1 and mediates the migration and invasion induced by Gli1 in MDA-MB-231.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fernandez-Zapico ME (2008) Primers on molecular pathways GLI: more than just Hedgehog? Pancreatology 8(3):227–229PubMedCrossRef Fernandez-Zapico ME (2008) Primers on molecular pathways GLI: more than just Hedgehog? Pancreatology 8(3):227–229PubMedCrossRef
2.
go back to reference Stecca B, Ruiz IAA (2010) Context-dependent regulation of the GLI code in cancer by HEDGEHOG and non-HEDGEHOG signals. J Mol Cell Biol 2(2):84–95PubMedCrossRef Stecca B, Ruiz IAA (2010) Context-dependent regulation of the GLI code in cancer by HEDGEHOG and non-HEDGEHOG signals. J Mol Cell Biol 2(2):84–95PubMedCrossRef
3.
go back to reference Dennler S, Andre J, Alexaki I et al (2007) Induction of sonic hedgehog mediators by transforming growth factor-beta: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo. Cancer Res 67(14):6981–6986PubMedCrossRef Dennler S, Andre J, Alexaki I et al (2007) Induction of sonic hedgehog mediators by transforming growth factor-beta: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo. Cancer Res 67(14):6981–6986PubMedCrossRef
4.
go back to reference Ji Z, Mei FC, Xie J et al (2007) Oncogenic KRAS activates hedgehog signaling pathway in pancreatic cancer cells. J Biol Chem 282(19):14048–14055PubMedCrossRef Ji Z, Mei FC, Xie J et al (2007) Oncogenic KRAS activates hedgehog signaling pathway in pancreatic cancer cells. J Biol Chem 282(19):14048–14055PubMedCrossRef
5.
go back to reference Stecca B, Mas C, Clement V et al (2007) Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci USA 104(14):5895–5900PubMedCrossRef Stecca B, Mas C, Clement V et al (2007) Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci USA 104(14):5895–5900PubMedCrossRef
6.
go back to reference Noubissi FK, Goswami S, Sanek NA et al (2009) Wnt signaling stimulates transcriptional outcome of the Hedgehog pathway by stabilizing GLI1 mRNA. Cancer Res 69(22):8572–8578PubMedCrossRef Noubissi FK, Goswami S, Sanek NA et al (2009) Wnt signaling stimulates transcriptional outcome of the Hedgehog pathway by stabilizing GLI1 mRNA. Cancer Res 69(22):8572–8578PubMedCrossRef
7.
go back to reference Kinzler KW, Ruppert JM, Bigner SH et al (1988) The GLI gene is a member of the Kruppel family of zinc finger proteins. Nature 332(6162):371–374PubMedCrossRef Kinzler KW, Ruppert JM, Bigner SH et al (1988) The GLI gene is a member of the Kruppel family of zinc finger proteins. Nature 332(6162):371–374PubMedCrossRef
8.
go back to reference Hahn H, Wojnowski L, Zimmer AM et al (1998) Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat Med 4(5):619–622PubMedCrossRef Hahn H, Wojnowski L, Zimmer AM et al (1998) Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat Med 4(5):619–622PubMedCrossRef
9.
go back to reference Nagai S, Nakamura M, Yanai K et al (2008) Gli1 contributes to the invasiveness of pancreatic cancer through matrix metalloproteinase-9 activation. Cancer Sci 99(7):1377–1384PubMedCrossRef Nagai S, Nakamura M, Yanai K et al (2008) Gli1 contributes to the invasiveness of pancreatic cancer through matrix metalloproteinase-9 activation. Cancer Sci 99(7):1377–1384PubMedCrossRef
10.
go back to reference Karhadkar SS, Steven Bova G, Abdallah N et al (2004) Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431(7009):707–712PubMedCrossRef Karhadkar SS, Steven Bova G, Abdallah N et al (2004) Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431(7009):707–712PubMedCrossRef
11.
go back to reference Nolan-Stevaux O, Lau J, Truitt ML et al (2009) GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev 23(1):24–36PubMedCrossRef Nolan-Stevaux O, Lau J, Truitt ML et al (2009) GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev 23(1):24–36PubMedCrossRef
12.
go back to reference Fiaschi M, Rozell B, Bergstrom A et al (2009) Development of mammary tumors by conditional expression of GLI1. Cancer Res 69(11):4810–4817PubMedCrossRef Fiaschi M, Rozell B, Bergstrom A et al (2009) Development of mammary tumors by conditional expression of GLI1. Cancer Res 69(11):4810–4817PubMedCrossRef
13.
go back to reference Mukherjee S, Frolova N, Sadlonova A et al (2006) Hedgehog signaling and response to cyclopamine differ in epithelial and stromal cells in benign breast and breast cancer. Cancer Biol Ther 5(6):674–683PubMedCrossRef Mukherjee S, Frolova N, Sadlonova A et al (2006) Hedgehog signaling and response to cyclopamine differ in epithelial and stromal cells in benign breast and breast cancer. Cancer Biol Ther 5(6):674–683PubMedCrossRef
14.
go back to reference Kubo M, Nakamura M, Tasaki A et al (2004) Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 64(17):6071–6074PubMedCrossRef Kubo M, Nakamura M, Tasaki A et al (2004) Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 64(17):6071–6074PubMedCrossRef
15.
go back to reference ten Haaf A, Bektas N, von Serenyi S et al (2009) Expression of the glioma-associated oncogene homolog (GLI) 1 in human breast cancer is associated with unfavourable overall survival. BMC Cancer 9:298PubMedCrossRef ten Haaf A, Bektas N, von Serenyi S et al (2009) Expression of the glioma-associated oncogene homolog (GLI) 1 in human breast cancer is associated with unfavourable overall survival. BMC Cancer 9:298PubMedCrossRef
16.
go back to reference Xu L, Kwon YJ, Frolova N et al (2010) Gli1 promotes cell survival and is predictive of a poor outcome in ERalpha-negative breast cancer. Breast Cancer Res Treat 123(1):59–71PubMedCrossRef Xu L, Kwon YJ, Frolova N et al (2010) Gli1 promotes cell survival and is predictive of a poor outcome in ERalpha-negative breast cancer. Breast Cancer Res Treat 123(1):59–71PubMedCrossRef
17.
go back to reference Rakha EA, Ellis IO (2009) Triple-negative/basal-like breast cancer: review. Pathology 41(1):40–47PubMedCrossRef Rakha EA, Ellis IO (2009) Triple-negative/basal-like breast cancer: review. Pathology 41(1):40–47PubMedCrossRef
18.
go back to reference Sadlonova A, Novak Z, Johnson MR et al (2005) Breast fibroblasts modulate epithelial cell proliferation in three-dimensional in vitro co-culture. Breast Cancer Res 7(1):R46–R59PubMedCrossRef Sadlonova A, Novak Z, Johnson MR et al (2005) Breast fibroblasts modulate epithelial cell proliferation in three-dimensional in vitro co-culture. Breast Cancer Res 7(1):R46–R59PubMedCrossRef
19.
go back to reference Louro ID, Bailey EC, Li X et al (2002) Comparative gene expression profile analysis of GLI and c-MYC in an epithelial model of malignant transformation. Cancer Res 62(20):5867–5873PubMed Louro ID, Bailey EC, Li X et al (2002) Comparative gene expression profile analysis of GLI and c-MYC in an epithelial model of malignant transformation. Cancer Res 62(20):5867–5873PubMed
20.
go back to reference Foster KW, Ren S, Louro ID et al (1999) Oncogene expression cloning by retroviral transduction of adenovirus E1A-immortalized rat kidney RK3E cells: transformation of a host with epithelial features by c-MYC and the zinc finger protein GKLF. Cell Growth Differ 10(6):423–434PubMed Foster KW, Ren S, Louro ID et al (1999) Oncogene expression cloning by retroviral transduction of adenovirus E1A-immortalized rat kidney RK3E cells: transformation of a host with epithelial features by c-MYC and the zinc finger protein GKLF. Cell Growth Differ 10(6):423–434PubMed
21.
go back to reference Sadlonova A, Mukherjee S, Bowe DB et al (2007) Human breast fibroblasts inhibit growth of the MCF10AT xenograft model of proliferative breast disease. Am J Pathol 170(3):1064–1076PubMedCrossRef Sadlonova A, Mukherjee S, Bowe DB et al (2007) Human breast fibroblasts inhibit growth of the MCF10AT xenograft model of proliferative breast disease. Am J Pathol 170(3):1064–1076PubMedCrossRef
22.
go back to reference Welch DR, Neri A, Nicolson GL (1983) Comparison of ‘spontaneous’ and ‘experimental’ metastasis using rat 13762 mammary adenocarcinoma metastatic cell clones. Invasion Metastasis 3(2):65–80PubMed Welch DR, Neri A, Nicolson GL (1983) Comparison of ‘spontaneous’ and ‘experimental’ metastasis using rat 13762 mammary adenocarcinoma metastatic cell clones. Invasion Metastasis 3(2):65–80PubMed
23.
go back to reference Neve RM, Chin K, Fridlyand J et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527PubMedCrossRef Neve RM, Chin K, Fridlyand J et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527PubMedCrossRef
24.
go back to reference Kim IS, Baek SH (2010) Mouse models for breast cancer metastasis. Biochem Biophys Res Commun 394(3):443–447PubMedCrossRef Kim IS, Baek SH (2010) Mouse models for breast cancer metastasis. Biochem Biophys Res Commun 394(3):443–447PubMedCrossRef
25.
go back to reference Li Y, Zhang H, Choi SC et al (2004) Sonic hedgehog signaling regulates Gli3 processing, mesenchymal proliferation, and differentiation during mouse lung organogenesis. Dev Biol 270(1):214–231PubMedCrossRef Li Y, Zhang H, Choi SC et al (2004) Sonic hedgehog signaling regulates Gli3 processing, mesenchymal proliferation, and differentiation during mouse lung organogenesis. Dev Biol 270(1):214–231PubMedCrossRef
26.
go back to reference Kuperwasser C, Dessain S, Bierbaum BE et al (2005) A mouse model of human breast cancer metastasis to human bone. Cancer Res 65(14):6130–6138PubMedCrossRef Kuperwasser C, Dessain S, Bierbaum BE et al (2005) A mouse model of human breast cancer metastasis to human bone. Cancer Res 65(14):6130–6138PubMedCrossRef
27.
go back to reference Nakopoulou L, Panayotopoulou EG, Giannopoulou I et al (2002) Stromelysin-3 protein expression in invasive breast cancer: relation to proliferation, cell survival and patients’ outcome. Mod Pathol 15(11):1154–1161PubMedCrossRef Nakopoulou L, Panayotopoulou EG, Giannopoulou I et al (2002) Stromelysin-3 protein expression in invasive breast cancer: relation to proliferation, cell survival and patients’ outcome. Mod Pathol 15(11):1154–1161PubMedCrossRef
28.
go back to reference Engel G, Heselmeyer K, Auer G et al (1994) Correlation between stromelysin-3 mRNA level and outcome of human breast cancer. Int J Cancer 58(6):830–835PubMedCrossRef Engel G, Heselmeyer K, Auer G et al (1994) Correlation between stromelysin-3 mRNA level and outcome of human breast cancer. Int J Cancer 58(6):830–835PubMedCrossRef
29.
go back to reference Jia L, Wang S, Cao J et al (2007) siRNA targeted against matrix metalloproteinase 11 inhibits the metastatic capability of murine hepatocarcinoma cell Hca-F to lymph nodes. Int J Biochem Cell Biol 39(11):2049–2062PubMedCrossRef Jia L, Wang S, Cao J et al (2007) siRNA targeted against matrix metalloproteinase 11 inhibits the metastatic capability of murine hepatocarcinoma cell Hca-F to lymph nodes. Int J Biochem Cell Biol 39(11):2049–2062PubMedCrossRef
30.
go back to reference Pei D, Weiss SJ (1995) Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375(6528):244–247PubMedCrossRef Pei D, Weiss SJ (1995) Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375(6528):244–247PubMedCrossRef
31.
go back to reference Delany AM, Canalis E (2001) The metastasis-associated metalloproteinase stromelysin-3 is induced by transforming growth factor-beta in osteoblasts and fibroblasts. Endocrinology 142(4):1561–1566PubMedCrossRef Delany AM, Canalis E (2001) The metastasis-associated metalloproteinase stromelysin-3 is induced by transforming growth factor-beta in osteoblasts and fibroblasts. Endocrinology 142(4):1561–1566PubMedCrossRef
32.
go back to reference Hyman JM, Firestone AJ, Heine VM et al (2009) Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc Natl Acad Sci USA 106(33):14132–14137PubMedCrossRef Hyman JM, Firestone AJ, Heine VM et al (2009) Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc Natl Acad Sci USA 106(33):14132–14137PubMedCrossRef
33.
go back to reference Kameda C, Tanaka H, Yamasaki A et al (2009) The Hedgehog pathway is a possible therapeutic target for patients with estrogen receptor-negative breast cancer. Anticancer Res 29(3):871–879PubMed Kameda C, Tanaka H, Yamasaki A et al (2009) The Hedgehog pathway is a possible therapeutic target for patients with estrogen receptor-negative breast cancer. Anticancer Res 29(3):871–879PubMed
34.
go back to reference Das S, Harris LG, Metge BJ et al (2009) The hedgehog pathway transcription factor GLI1 promotes malignant behavior of cancer cells by up-regulating osteopontin. J Biol Chem 284(34):22888–22897PubMedCrossRef Das S, Harris LG, Metge BJ et al (2009) The hedgehog pathway transcription factor GLI1 promotes malignant behavior of cancer cells by up-regulating osteopontin. J Biol Chem 284(34):22888–22897PubMedCrossRef
35.
go back to reference Rae JM, Creighton CJ, Meck JM et al (2007) MDA-MB-435 cells are derived from M14 melanoma cells—a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat 104(1):13–19PubMedCrossRef Rae JM, Creighton CJ, Meck JM et al (2007) MDA-MB-435 cells are derived from M14 melanoma cells—a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat 104(1):13–19PubMedCrossRef
36.
go back to reference Chambers AF (2009) MDA-MB-435 and M14 cell lines: identical but not M14 melanoma? Cancer Res 69(13):5292–5293PubMedCrossRef Chambers AF (2009) MDA-MB-435 and M14 cell lines: identical but not M14 melanoma? Cancer Res 69(13):5292–5293PubMedCrossRef
37.
go back to reference Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3(6):537–549PubMedCrossRef Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3(6):537–549PubMedCrossRef
38.
go back to reference Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436(7050):518–524PubMedCrossRef Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436(7050):518–524PubMedCrossRef
39.
go back to reference Yoon JW, Kita Y, Frank DJ et al (2002) Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation. J Biol Chem 277(7):5548–5555PubMedCrossRef Yoon JW, Kita Y, Frank DJ et al (2002) Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation. J Biol Chem 277(7):5548–5555PubMedCrossRef
40.
go back to reference Shevde LA, Samant RS, Paik JC et al (2006) Osteopontin knockdown suppresses tumorigenicity of human metastatic breast carcinoma, MDA-MB-435. Clin Exp Metastasis 23(2):123–133PubMedCrossRef Shevde LA, Samant RS, Paik JC et al (2006) Osteopontin knockdown suppresses tumorigenicity of human metastatic breast carcinoma, MDA-MB-435. Clin Exp Metastasis 23(2):123–133PubMedCrossRef
41.
go back to reference Martin MD, Carter KJ, Jean-Philippe SR et al (2008) Effect of ablation or inhibition of stromal matrix metalloproteinase-9 on lung metastasis in a breast cancer model is dependent on genetic background. Cancer Res 68(15):6251–6259PubMedCrossRef Martin MD, Carter KJ, Jean-Philippe SR et al (2008) Effect of ablation or inhibition of stromal matrix metalloproteinase-9 on lung metastasis in a breast cancer model is dependent on genetic background. Cancer Res 68(15):6251–6259PubMedCrossRef
42.
go back to reference Olmeda D, Moreno-Bueno G, Flores JM et al (2007) SNAI1 is required for tumor growth and lymph node metastasis of human breast carcinoma MDA-MB-231 cells. Cancer Res 67(24):11721–11731PubMedCrossRef Olmeda D, Moreno-Bueno G, Flores JM et al (2007) SNAI1 is required for tumor growth and lymph node metastasis of human breast carcinoma MDA-MB-231 cells. Cancer Res 67(24):11721–11731PubMedCrossRef
43.
go back to reference Jechlinger M, Sommer A, Moriggl R et al (2006) Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Investig 116(6):1561–1570PubMedCrossRef Jechlinger M, Sommer A, Moriggl R et al (2006) Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Investig 116(6):1561–1570PubMedCrossRef
44.
go back to reference Motrescu ER, Rio MC (2008) Cancer cells, adipocytes and matrix metalloproteinase 11: a vicious tumor progression cycle. Biol Chem 389(8):1037–1041PubMedCrossRef Motrescu ER, Rio MC (2008) Cancer cells, adipocytes and matrix metalloproteinase 11: a vicious tumor progression cycle. Biol Chem 389(8):1037–1041PubMedCrossRef
45.
go back to reference Manes S, Mira E, Barbacid MM et al (1997) Identification of insulin-like growth factor-binding protein-1 as a potential physiological substrate for human stromelysin-3. J Biol Chem 272(41):25706–25712PubMedCrossRef Manes S, Mira E, Barbacid MM et al (1997) Identification of insulin-like growth factor-binding protein-1 as a potential physiological substrate for human stromelysin-3. J Biol Chem 272(41):25706–25712PubMedCrossRef
46.
go back to reference Motrescu ER, Blaise S, Etique N et al (2008) Matrix metalloproteinase-11/stromelysin-3 exhibits collagenolytic function against collagen VI under normal and malignant conditions. Oncogene 27(49):6347–6355PubMedCrossRef Motrescu ER, Blaise S, Etique N et al (2008) Matrix metalloproteinase-11/stromelysin-3 exhibits collagenolytic function against collagen VI under normal and malignant conditions. Oncogene 27(49):6347–6355PubMedCrossRef
47.
go back to reference Fiorentino M, Fu L, Shi YB (2009) Mutational analysis of the cleavage of the cancer-associated laminin receptor by stromelysin-3 reveals the contribution of flanking sequences to site recognition and cleavage efficiency. Int J Mol Med 23(3):389–397PubMed Fiorentino M, Fu L, Shi YB (2009) Mutational analysis of the cleavage of the cancer-associated laminin receptor by stromelysin-3 reveals the contribution of flanking sequences to site recognition and cleavage efficiency. Int J Mol Med 23(3):389–397PubMed
48.
go back to reference Basset P, Bellocq JP, Wolf C et al (1990) A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348(6303):699–704PubMedCrossRef Basset P, Bellocq JP, Wolf C et al (1990) A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348(6303):699–704PubMedCrossRef
49.
go back to reference Wolf C, Rouyer N, Lutz Y et al (1993) Stromelysin 3 belongs to a subgroup of proteinases expressed in breast carcinoma fibroblastic cells and possibly implicated in tumor progression. Proc Natl Acad Sci USA 90(5):1843–1847PubMedCrossRef Wolf C, Rouyer N, Lutz Y et al (1993) Stromelysin 3 belongs to a subgroup of proteinases expressed in breast carcinoma fibroblastic cells and possibly implicated in tumor progression. Proc Natl Acad Sci USA 90(5):1843–1847PubMedCrossRef
50.
go back to reference Ahmad A, Hanby A, Dublin E et al (1998) Stromelysin 3: an independent prognostic factor for relapse-free survival in node-positive breast cancer and demonstration of novel breast carcinoma cell expression. Am J Pathol 152(3):721–728PubMed Ahmad A, Hanby A, Dublin E et al (1998) Stromelysin 3: an independent prognostic factor for relapse-free survival in node-positive breast cancer and demonstration of novel breast carcinoma cell expression. Am J Pathol 152(3):721–728PubMed
51.
go back to reference Fromigue O, Louis K, Wu E et al (2003) Active stromelysin-3 (MMP-11) increases MCF-7 survival in three-dimensional Matrigel culture via activation of p42/p44 MAP-kinase. Int J Cancer 106(3):355–363PubMedCrossRef Fromigue O, Louis K, Wu E et al (2003) Active stromelysin-3 (MMP-11) increases MCF-7 survival in three-dimensional Matrigel culture via activation of p42/p44 MAP-kinase. Int J Cancer 106(3):355–363PubMedCrossRef
52.
go back to reference Dillon RL, Muller WJ (2010) Distinct biological roles for the akt family in mammary tumor progression. Cancer Res 70(11):4260–4264PubMedCrossRef Dillon RL, Muller WJ (2010) Distinct biological roles for the akt family in mammary tumor progression. Cancer Res 70(11):4260–4264PubMedCrossRef
53.
go back to reference Viala E, Pouyssegur J (2004) Regulation of tumor cell motility by ERK mitogen-activated protein kinases. Ann N Y Acad Sci 1030:208–218PubMedCrossRef Viala E, Pouyssegur J (2004) Regulation of tumor cell motility by ERK mitogen-activated protein kinases. Ann N Y Acad Sci 1030:208–218PubMedCrossRef
54.
go back to reference Clemmons DR (2007) Modifying IGF1 activity: an approach to treat endocrine disorders, atherosclerosis and cancer. Nat Rev Drug Discov 6(10):821–833PubMedCrossRef Clemmons DR (2007) Modifying IGF1 activity: an approach to treat endocrine disorders, atherosclerosis and cancer. Nat Rev Drug Discov 6(10):821–833PubMedCrossRef
55.
go back to reference Furstenberger G, Senn HJ (2002) Insulin-like growth factors and cancer. Lancet Oncol 3(5):298–302PubMedCrossRef Furstenberger G, Senn HJ (2002) Insulin-like growth factors and cancer. Lancet Oncol 3(5):298–302PubMedCrossRef
56.
go back to reference Kasper G, Reule M, Tschirschmann M et al (2007) Stromelysin-3 over-expression enhances tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines: involvement of the IGF-1 signalling pathway. BMC Cancer 7:12PubMedCrossRef Kasper G, Reule M, Tschirschmann M et al (2007) Stromelysin-3 over-expression enhances tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines: involvement of the IGF-1 signalling pathway. BMC Cancer 7:12PubMedCrossRef
Metadata
Title
Gli1 enhances migration and invasion via up-regulation of MMP-11 and promotes metastasis in ERα negative breast cancer cell lines
Authors
Yeon-Jin Kwon
Douglas R. Hurst
Adam D. Steg
Kun Yuan
Kedar S. Vaidya
Danny R. Welch
Andra R. Frost
Publication date
01-06-2011
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 5/2011
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-011-9382-z

Other articles of this Issue 5/2011

Clinical & Experimental Metastasis 5/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine