Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 1/2024

Open Access 28-06-2023 | Glaucoma | Basic Science

TRPP2 is located in the primary cilia of human non-pigmented ciliary epithelial cells

Authors: Wenxu Zheng, Focke Ziemssen, Daniela Suesskind, Bogomil Voykov, Sven Schnichels

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 1/2024

Login to get access

Abstract

Purpose

Mechanosensitive channels (MSCs) and primary cilium possess a possible relevance for the sensation of intraocular pressure (IOP). However, there is only limited data on their expression and localization in the ciliary body epithelium (CBE). The purpose of this study was to characterize the expression and localization of TRPP2 in a human non-pigmented ciliary epithelial cell (HNPCE) line.

Methods

The expression of the TRPP2 was studied by quantitative (q)RT-PCR and in situ hybridization in rat and human tissue. Protein expression and distribution were studied by western blot analysis, immunohistochemistry, and immunoelectron microscopy. Cellular location of TRPP2 was determined in rat and human CBE by immunofluorescence and immunoblot analysis. Electron microscopy studies were conducted to evaluate where and with substructure TRPP2 is localized in the HNPCE cell line.

Results

The expression of TRPP2 in rat and human non-pigmented ciliary epithelium was detected. TRPP2 was mainly located in nuclei, but also showed a punctate distribution pattern in the cytoplasm of HNPCE of the tissue and the cell line. In HNPCE cell culture, primary cilia did exhibit different length following serum starvation and hydrostatic pressure. TRPP2 was found to be colocalized with these cilia in HNPCE cells.

Conclusion

The expression of TRPP2 and the primary cilium in the CB may indicate a possible role, such as the sensing of hydrostatic pressure, for the regulation of IOP. Functional studies via patch clamp or pharmacological intervention have yet to clarify the relevance for the physiological situation or aqueous humor regulation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Luo N, Conwell MD, Chen X, Kettenhofen CI, Westlake CJ, Cantor LB, Wells CD, Weinreb RN, Corson TW, Spandau DF, Joos KM, Iomini C, Obukhov AG, Sun Y (2014) Primary cilia signaling mediates intraocular pressure sensation. Proc Natl Acad Sci USA 111:12871-12876 Luo N, Conwell MD, Chen X, Kettenhofen CI, Westlake CJ, Cantor LB, Wells CD, Weinreb RN, Corson TW, Spandau DF, Joos KM, Iomini C, Obukhov AG, Sun Y (2014) Primary cilia signaling mediates intraocular pressure sensation. Proc Natl Acad Sci USA 111:12871-12876
2.
go back to reference Masyuk AI, Masyuk TV, Splinter PL, Huang BQ, Stroope AJ, LaRusso NF (2006) Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology 131:911–920CrossRefPubMed Masyuk AI, Masyuk TV, Splinter PL, Huang BQ, Stroope AJ, LaRusso NF (2006) Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology 131:911–920CrossRefPubMed
3.
go back to reference Iomini C, Tejada K, Mo W, Vaananen H, Piperno G (2004) Primary cilia of human endothelial cells disassemble under laminar shear stress. J Cell Biol 164:811–817CrossRefPubMedPubMedCentral Iomini C, Tejada K, Mo W, Vaananen H, Piperno G (2004) Primary cilia of human endothelial cells disassemble under laminar shear stress. J Cell Biol 164:811–817CrossRefPubMedPubMedCentral
4.
go back to reference Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117:1161–1171CrossRefPubMedPubMedCentral Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117:1161–1171CrossRefPubMedPubMedCentral
5.
go back to reference Liu X, Vien T, Duan J, Sheu SH, DeCaen PG, Clapham DE (2018) Polycystin-2 is an essential ion channel subunit in the primary cilium of the renal collecting duct epithelium. Elife 7:e33183CrossRefPubMedPubMedCentral Liu X, Vien T, Duan J, Sheu SH, DeCaen PG, Clapham DE (2018) Polycystin-2 is an essential ion channel subunit in the primary cilium of the renal collecting duct epithelium. Elife 7:e33183CrossRefPubMedPubMedCentral
6.
go back to reference Wann AK, Zuo N, Haycraft CJ, Jensen CG, Poole CA, McGlashan SR, Knight MM (2012) Primary cilia mediate mechanotransduction through control of ATP-induced Ca2+ signaling in compressed chondrocytes. Faseb J 26:1663–1671CrossRefPubMedPubMedCentral Wann AK, Zuo N, Haycraft CJ, Jensen CG, Poole CA, McGlashan SR, Knight MM (2012) Primary cilia mediate mechanotransduction through control of ATP-induced Ca2+ signaling in compressed chondrocytes. Faseb J 26:1663–1671CrossRefPubMedPubMedCentral
7.
8.
go back to reference Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137CrossRefPubMed Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137CrossRefPubMed
9.
go back to reference AbouAlaiwi WA, Takahashi M, Mell BR, Jones TJ, Ratnam S, Kolb RJ, Nauli SM (2009) Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ Res 104:860–869CrossRefPubMedPubMedCentral AbouAlaiwi WA, Takahashi M, Mell BR, Jones TJ, Ratnam S, Kolb RJ, Nauli SM (2009) Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ Res 104:860–869CrossRefPubMedPubMedCentral
10.
go back to reference Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342CrossRefPubMed Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342CrossRefPubMed
11.
go back to reference Civan MM, Macknight AD (2004) The ins and outs of aqueous humour secretion. Exp Eye Res 78:625–631CrossRefPubMed Civan MM, Macknight AD (2004) The ins and outs of aqueous humour secretion. Exp Eye Res 78:625–631CrossRefPubMed
12.
go back to reference Martin-Vasallo P, Ghosh S, Coca-Prados M (1989) Expression of Na, K-ATPase alpha subunit isoforms in the human ciliary body and cultured ciliary epithelial cells. J Cell Physiol 141(2):243–252CrossRefPubMed Martin-Vasallo P, Ghosh S, Coca-Prados M (1989) Expression of Na, K-ATPase alpha subunit isoforms in the human ciliary body and cultured ciliary epithelial cells. J Cell Physiol 141(2):243–252CrossRefPubMed
13.
go back to reference Suesskind D, Schatz A, Schnichels S, Coupland SE, Lake SL, Wissinger B, Bartz-Schmidt KU, Henke-Fahle S (2012) GDF-15: a novel serum marker for metastases in uveal melanoma patients. Graefes Arch Clin Exp Ophthalmol 250:887–895CrossRefPubMed Suesskind D, Schatz A, Schnichels S, Coupland SE, Lake SL, Wissinger B, Bartz-Schmidt KU, Henke-Fahle S (2012) GDF-15: a novel serum marker for metastases in uveal melanoma patients. Graefes Arch Clin Exp Ophthalmol 250:887–895CrossRefPubMed
14.
go back to reference Castellani L, Root-Mccaig J, Frendo-Cumbo S, Beaudoin MS (1985) Wright DC (2014) Exercise training protects against an acute inflammatory insult in mouse epididymal adipose tissue. J Appl Physiol 116:1272–1280CrossRef Castellani L, Root-Mccaig J, Frendo-Cumbo S, Beaudoin MS (1985) Wright DC (2014) Exercise training protects against an acute inflammatory insult in mouse epididymal adipose tissue. J Appl Physiol 116:1272–1280CrossRef
16.
go back to reference Lu CJ, Du H, Wu J, Jansen DA, Jordan KL, Xu N, Sieck GC, Qian Q (2008) Non-random distribution and sensory functions of primary cilia in vascular smooth muscle cells. Kidney Blood Press Res 31:171–184CrossRefPubMedPubMedCentral Lu CJ, Du H, Wu J, Jansen DA, Jordan KL, Xu N, Sieck GC, Qian Q (2008) Non-random distribution and sensory functions of primary cilia in vascular smooth muscle cells. Kidney Blood Press Res 31:171–184CrossRefPubMedPubMedCentral
17.
18.
go back to reference Berkley WL (1951) Glaucoma associated with polycystic kidney disease. Am J Ophthalmol 34:1539–1542CrossRefPubMed Berkley WL (1951) Glaucoma associated with polycystic kidney disease. Am J Ophthalmol 34:1539–1542CrossRefPubMed
19.
go back to reference Tran VT, Ho PT, Cabrera L, Torres JE, Bhattacharya SK (2014) Mechanotransduction channels of the trabecular meshwork. Curr Eye Res 39:291–303CrossRefPubMed Tran VT, Ho PT, Cabrera L, Torres JE, Bhattacharya SK (2014) Mechanotransduction channels of the trabecular meshwork. Curr Eye Res 39:291–303CrossRefPubMed
20.
go back to reference Obermüller N, Gallagher AR, Cai Y, Gassler N, Gretz N, Somlo S, Witzgall R (1999) The rat pkd2 protein assumes distinct subcellular distributions in different organs. Am J Physiol 277:F914-925PubMed Obermüller N, Gallagher AR, Cai Y, Gassler N, Gretz N, Somlo S, Witzgall R (1999) The rat pkd2 protein assumes distinct subcellular distributions in different organs. Am J Physiol 277:F914-925PubMed
22.
go back to reference Gallagher AR, Hoffmann S, Brown N, Cedzich A, Meruvu S, Podlich D, Feng Y, Könecke V, de Vries U, Hammes HP, Gretz N, Witzgall R (2006) A truncated polycystin-2 protein causes polycystic kidney disease and retinal degeneration in transgenic rats. J Am Soc Nephrol 17:2719–2730CrossRefPubMed Gallagher AR, Hoffmann S, Brown N, Cedzich A, Meruvu S, Podlich D, Feng Y, Könecke V, de Vries U, Hammes HP, Gretz N, Witzgall R (2006) A truncated polycystin-2 protein causes polycystic kidney disease and retinal degeneration in transgenic rats. J Am Soc Nephrol 17:2719–2730CrossRefPubMed
23.
go back to reference Choi HJ, Sun D, Jakobs TC (2015) Astrocytes in the optic nerve head express putative mechanosensitive channels. Mol Vis 21:749–766PubMedPubMedCentral Choi HJ, Sun D, Jakobs TC (2015) Astrocytes in the optic nerve head express putative mechanosensitive channels. Mol Vis 21:749–766PubMedPubMedCentral
24.
go back to reference Ishikawa H, Marshall WF (2011) Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol 12:222–234CrossRefPubMed Ishikawa H, Marshall WF (2011) Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol 12:222–234CrossRefPubMed
25.
go back to reference Scarinci N, Perez PL, Cantiello HF, Cantero MDR (2022) Polycystin-2 (TRPP2) regulates primary cilium length in LLC-PK1 renal epithelial cells. Front Physiol 4(13):995473CrossRef Scarinci N, Perez PL, Cantiello HF, Cantero MDR (2022) Polycystin-2 (TRPP2) regulates primary cilium length in LLC-PK1 renal epithelial cells. Front Physiol 4(13):995473CrossRef
26.
go back to reference Kobori T, Smith GD, Sandford R, Edwardson JM (2009) The transient receptor potential channels TRPP2 and TRPC1 form a heterotetramer with a 2:2 stoichiometry and an alternating subunit arrangement. J Biol Chem 284:35507–35513CrossRefPubMedPubMedCentral Kobori T, Smith GD, Sandford R, Edwardson JM (2009) The transient receptor potential channels TRPP2 and TRPC1 form a heterotetramer with a 2:2 stoichiometry and an alternating subunit arrangement. J Biol Chem 284:35507–35513CrossRefPubMedPubMedCentral
27.
go back to reference Zhu J, Yu Y, Ulbrich MH, Li MH, Isacoff EY, Honig B, Yang J (2011) Structural model of the TRPP2/PKD1 C-terminal coiled-coil complex produced by a combined computational and experimental approach. Proc Natl Acad Sci USA 108:10133-10138 Zhu J, Yu Y, Ulbrich MH, Li MH, Isacoff EY, Honig B, Yang J (2011) Structural model of the TRPP2/PKD1 C-terminal coiled-coil complex produced by a combined computational and experimental approach. Proc Natl Acad Sci USA 108:10133-10138
28.
go back to reference Stewart AP, Smith GD, Sandford RN, Edwardson JM (2010) Atomic force microscopy reveals the alternating subunit arrangement of the TRPP2-TRPV4 heterotetramer. Biophys J 99:790–797CrossRefPubMedPubMedCentral Stewart AP, Smith GD, Sandford RN, Edwardson JM (2010) Atomic force microscopy reveals the alternating subunit arrangement of the TRPP2-TRPV4 heterotetramer. Biophys J 99:790–797CrossRefPubMedPubMedCentral
29.
go back to reference Du J, Ma X, Shen B, Huang Y, Birnbaumer L, Yao X (2014) TRPV4, TRPC1, and TRPP2 assemble to form a flow-sensitive heteromeric channel. Faseb J 28:4677–4685CrossRefPubMedPubMedCentral Du J, Ma X, Shen B, Huang Y, Birnbaumer L, Yao X (2014) TRPV4, TRPC1, and TRPP2 assemble to form a flow-sensitive heteromeric channel. Faseb J 28:4677–4685CrossRefPubMedPubMedCentral
30.
go back to reference Kleene SJ, Siroky BJ, Landero-Figueroa JA, Dixon BP, Pachciarz NW, Lu L, Kleene NK (2019) The TRPP2-dependent channel of renal primary cilia also requires TRPM3. PLoS One 14:e0214053CrossRefPubMedPubMedCentral Kleene SJ, Siroky BJ, Landero-Figueroa JA, Dixon BP, Pachciarz NW, Lu L, Kleene NK (2019) The TRPP2-dependent channel of renal primary cilia also requires TRPM3. PLoS One 14:e0214053CrossRefPubMedPubMedCentral
31.
go back to reference Peyronnet R, Martins JR, Duprat F, Demolombe S, Arhatte M, Jodar M, Tauc M, Duranton C, Paulais M, Teulon J, Honore E, Patel A (2013) Piezo1-dependent stretch-activated channels are inhibited by polycystin-2 in renal tubular epithelial cells. EMBO Rep 14:1143–1148CrossRefPubMedPubMedCentral Peyronnet R, Martins JR, Duprat F, Demolombe S, Arhatte M, Jodar M, Tauc M, Duranton C, Paulais M, Teulon J, Honore E, Patel A (2013) Piezo1-dependent stretch-activated channels are inhibited by polycystin-2 in renal tubular epithelial cells. EMBO Rep 14:1143–1148CrossRefPubMedPubMedCentral
32.
go back to reference Li Fraine S, Patel A, Duprat F, Sharif-Naeini R (2017) Dynamic regulation of TREK1 gating by polycystin 2 via a filamin A-mediated cytoskeletal mechanism. Sci Rep 7:17403CrossRefPubMedPubMedCentral Li Fraine S, Patel A, Duprat F, Sharif-Naeini R (2017) Dynamic regulation of TREK1 gating by polycystin 2 via a filamin A-mediated cytoskeletal mechanism. Sci Rep 7:17403CrossRefPubMedPubMedCentral
33.
go back to reference Ma R, Li WP, Rundle D, Kong J, Akbarali HI, Tsiokas L (2005) PKD2 functions as an epidermal growth factor-activated plasma membrane channel. Mol Cell Biol 25:8285–8298CrossRefPubMedPubMedCentral Ma R, Li WP, Rundle D, Kong J, Akbarali HI, Tsiokas L (2005) PKD2 functions as an epidermal growth factor-activated plasma membrane channel. Mol Cell Biol 25:8285–8298CrossRefPubMedPubMedCentral
34.
go back to reference Luo N, West CC, Murga-Zamalloa CA, Sun L, Anderson RM, Wells CD, Weinreb RN, Travers JB, Khanna H, Sun Y (2012) OCRL localizes to the primary cilium: a new role for cilia in Lowe syndrome. Hum Mol Genet 21:3333–3344CrossRefPubMedPubMedCentral Luo N, West CC, Murga-Zamalloa CA, Sun L, Anderson RM, Wells CD, Weinreb RN, Travers JB, Khanna H, Sun Y (2012) OCRL localizes to the primary cilium: a new role for cilia in Lowe syndrome. Hum Mol Genet 21:3333–3344CrossRefPubMedPubMedCentral
35.
go back to reference Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peränen J, Merdes A, Slusarski DC, Scheller RH, Bazan JF, Sheffield VC, Jackson PK (2007) A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129:1201–1213CrossRefPubMed Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peränen J, Merdes A, Slusarski DC, Scheller RH, Bazan JF, Sheffield VC, Jackson PK (2007) A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129:1201–1213CrossRefPubMed
36.
go back to reference Ong AC (2000) Polycystin expression in the kidney and other tissues: complexity, consensus and controversy. Exp Nephrol 8:208–214CrossRefPubMed Ong AC (2000) Polycystin expression in the kidney and other tissues: complexity, consensus and controversy. Exp Nephrol 8:208–214CrossRefPubMed
37.
go back to reference Tian PF, Sun MM, Hu XY, Du J, He W (2022) TRPP2 ion channels: the roles in various subcellular locations. Biochimie 201:116–127CrossRefPubMed Tian PF, Sun MM, Hu XY, Du J, He W (2022) TRPP2 ion channels: the roles in various subcellular locations. Biochimie 201:116–127CrossRefPubMed
38.
go back to reference Narayanan D, Bulley S, Leo MD et al (2013) Smooth muscle cell transient receptor potential polycystin-2 (TRPP2) channels contribute to the myogenic response in cerebral arteries. J Physiol 591:5031–5046CrossRefPubMedPubMedCentral Narayanan D, Bulley S, Leo MD et al (2013) Smooth muscle cell transient receptor potential polycystin-2 (TRPP2) channels contribute to the myogenic response in cerebral arteries. J Physiol 591:5031–5046CrossRefPubMedPubMedCentral
39.
go back to reference Hisatsune C, Kuroda Y, Nakamura K et al (2004) Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 279:18887–18894CrossRefPubMed Hisatsune C, Kuroda Y, Nakamura K et al (2004) Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 279:18887–18894CrossRefPubMed
40.
go back to reference Zhao R, Zhou M, Li J et al (2015) Increased TRPP2 expression in vascular smooth muscle cells from high-salt intake hypertensive rats: the crucial role in vascular dysfunction. Mol Nutr Food Res 59:365–372CrossRefPubMed Zhao R, Zhou M, Li J et al (2015) Increased TRPP2 expression in vascular smooth muscle cells from high-salt intake hypertensive rats: the crucial role in vascular dysfunction. Mol Nutr Food Res 59:365–372CrossRefPubMed
42.
go back to reference Velázquez IF, Cantiello HF, Cantero MDR (2023) High calcium transport by polycystin-2 (TRPP2) induces channel clustering and oscillatory currents. Biochem Biophys Res Commun 660:50–57CrossRefPubMed Velázquez IF, Cantiello HF, Cantero MDR (2023) High calcium transport by polycystin-2 (TRPP2) induces channel clustering and oscillatory currents. Biochem Biophys Res Commun 660:50–57CrossRefPubMed
Metadata
Title
TRPP2 is located in the primary cilia of human non-pigmented ciliary epithelial cells
Authors
Wenxu Zheng
Focke Ziemssen
Daniela Suesskind
Bogomil Voykov
Sven Schnichels
Publication date
28-06-2023
Publisher
Springer Berlin Heidelberg
Keyword
Glaucoma
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 1/2024
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-023-06150-w

Other articles of this Issue 1/2024

Graefe's Archive for Clinical and Experimental Ophthalmology 1/2024 Go to the issue