Skip to main content
Top
Published in: BMC Ophthalmology 1/2020

Open Access 01-12-2020 | Glaucoma | Research article

Comparison of two different optical coherence tomography angiography devices in detecting healthy versus glaucomatous eyes – an observational cross-sectional study

Authors: A. R. Kee, V. C. H. Yip , E. L. T. Tay, C. W. Lim, J. Cheng, H. Y. Teo, C. H. Chua, L. W. L. Yip

Published in: BMC Ophthalmology | Issue 1/2020

Login to get access

Abstract

Background

To understand the differences between two different optical coherence tomography angiography (OCTA) devices in detecting glaucomatous from healthy eyes by comparing their vascular parameters, diagnostic accuracy and test-retest reliability.

Methods

A cross-sectional observational study was performed on healthy and glaucoma subjects, on whom two sets of OCTA images of optic disc and macula were acquired using both AngioVue (Optovue, USA) and Swept Source (Topcon, Japan) OCTA devices during one visit. A novel in-house software was used to calculate the vessel densities. Diagnostic accuracy of the machines in differentiating healthy versus glaucomatous eyes was determined using area under the receiver operating characteristic curve (AUROC) and test-retest repeatability of the machines was also evaluated.

Results

A total of 80 healthy and 38 glaucomatous eyes were evaluated. Glaucomatous eyes had reduced mean vessel density compared to healthy controls in all segmented layers of the optic disc and macula using AngioVue (p ≤ 0.001). However, glaucomatous eyes had higher mean vessel density on optic disc scans using Swept Source, with lack of statistically significant difference between healthy and glaucomatous eyes. The AUROC showed better diagnostic accuracy of AngioVue (0.761–1.000) compared to Swept Source (0.113–0.644). The test-retest reliability indices were generally better using AngioVue than Swept Source.

Conclusions

AngioVue showed better diagnostic capability and test-retest reliability compared to Swept Source. Further studies need to be undertaken to evaluate if there is any significant difference between the various machines in diagnosing and monitoring glaucoma.
Literature
1.
go back to reference Hagag AM, Gao SS, Jia Y, Huang D. Optical coherence tomography angiography: technical principles and clinical applications in ophthalmology. Taiwan J Ophthalmol. 2017;7:115–29.CrossRef Hagag AM, Gao SS, Jia Y, Huang D. Optical coherence tomography angiography: technical principles and clinical applications in ophthalmology. Taiwan J Ophthalmol. 2017;7:115–29.CrossRef
2.
go back to reference Gao SS, Jia Y, Zhang M, Su JP, Liu G, Hwang TS, et al. Optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57:OCT27–36.CrossRef Gao SS, Jia Y, Zhang M, Su JP, Liu G, Hwang TS, et al. Optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57:OCT27–36.CrossRef
3.
go back to reference Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21:359–93.CrossRef Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21:359–93.CrossRef
4.
go back to reference Grieshaber MC, Flammer J. Blood flow in glaucoma. Curr Opin Ophthalmol. 2005;16:79–83.CrossRef Grieshaber MC, Flammer J. Blood flow in glaucoma. Curr Opin Ophthalmol. 2005;16:79–83.CrossRef
5.
go back to reference Nicolela MT. Clinical clues of vascular dysregulation and its association with glaucoma. Can J Ophthalmol. 2008;43:337–41.CrossRef Nicolela MT. Clinical clues of vascular dysregulation and its association with glaucoma. Can J Ophthalmol. 2008;43:337–41.CrossRef
6.
go back to reference Pasquale LR. Vascular and autonomic dysregulation in primary open-angle glaucoma. Curr Opin Ophthalmol. 2016;27:94–101.CrossRef Pasquale LR. Vascular and autonomic dysregulation in primary open-angle glaucoma. Curr Opin Ophthalmol. 2016;27:94–101.CrossRef
7.
go back to reference Hollo G. Vessel density calculated from OCT angiography in 3 peripapillary sectors in normal, ocular hypertensive, and glaucoma eyes. Eur J Ophthalmol. 2016;26:e42–5.CrossRef Hollo G. Vessel density calculated from OCT angiography in 3 peripapillary sectors in normal, ocular hypertensive, and glaucoma eyes. Eur J Ophthalmol. 2016;26:e42–5.CrossRef
8.
go back to reference Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;121:1322–32.CrossRef Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;121:1322–32.CrossRef
9.
go back to reference Lee EJ, Lee KM, Lee SH, Kim TW. OCT angiography of the Peripapillary retina in primary open-angle Glaucoma. Invest Ophthalmol Vis Sci. 2016;57:6265–70.CrossRef Lee EJ, Lee KM, Lee SH, Kim TW. OCT angiography of the Peripapillary retina in primary open-angle Glaucoma. Invest Ophthalmol Vis Sci. 2016;57:6265–70.CrossRef
10.
go back to reference Liu L, Jia Y, Takusagawa HL, Pechauer AD, Edmunds B, Lombardi L, et al. Optical coherence tomography angiography of the Peripapillary retina in Glaucoma. JAMA Ophthalmol. 2015;133:1045–52.CrossRef Liu L, Jia Y, Takusagawa HL, Pechauer AD, Edmunds B, Lombardi L, et al. Optical coherence tomography angiography of the Peripapillary retina in Glaucoma. JAMA Ophthalmol. 2015;133:1045–52.CrossRef
11.
go back to reference Suh MH, Zangwill LM, Manalastas PI, Belghith A, Yarmohammadi A, Medeiros FA, et al. Optical coherence tomography angiography vessel density in glaucomatous eyes with focal Lamina Cribrosa defects. Ophthalmology. 2016;123:2309–17.CrossRef Suh MH, Zangwill LM, Manalastas PI, Belghith A, Yarmohammadi A, Medeiros FA, et al. Optical coherence tomography angiography vessel density in glaucomatous eyes with focal Lamina Cribrosa defects. Ophthalmology. 2016;123:2309–17.CrossRef
12.
go back to reference Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Yousefi S, Saunders LJ, et al. Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in Glaucoma. Ophthalmology. 2016;123:2498–508.CrossRef Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Yousefi S, Saunders LJ, et al. Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in Glaucoma. Ophthalmology. 2016;123:2498–508.CrossRef
13.
go back to reference Yip VCH, Wong HT, Yong VKY, Lim BA, Hee OK, Cheng J, et al. Optical coherence tomography angiography of optic disc and macula vessel density in Glaucoma and healthy eyes. J Glaucoma. 2019;28:80–7.CrossRef Yip VCH, Wong HT, Yong VKY, Lim BA, Hee OK, Cheng J, et al. Optical coherence tomography angiography of optic disc and macula vessel density in Glaucoma and healthy eyes. J Glaucoma. 2019;28:80–7.CrossRef
14.
go back to reference Li XX, Wu W, Zhou H, Deng JJ, Zhao MY, Qian TW, et al. A quantitative comparison of five optical coherence tomography angiography systems in clinical performance. Int J Ophthalmol. 2018;11:1784–95.PubMedPubMedCentral Li XX, Wu W, Zhou H, Deng JJ, Zhao MY, Qian TW, et al. A quantitative comparison of five optical coherence tomography angiography systems in clinical performance. Int J Ophthalmol. 2018;11:1784–95.PubMedPubMedCentral
15.
go back to reference Munk MR, Giannakaki-Zimmermann H, Berger L, Huf W, Ebneter A, Wolf S, et al. OCT-angiography: a qualitative and quantitative comparison of 4 OCT-A devices. PLoS One. 2017;12:e0177059.CrossRef Munk MR, Giannakaki-Zimmermann H, Berger L, Huf W, Ebneter A, Wolf S, et al. OCT-angiography: a qualitative and quantitative comparison of 4 OCT-A devices. PLoS One. 2017;12:e0177059.CrossRef
16.
go back to reference Lim CW, Cheng J, Tay ELT, Teo HY, Wong EPY, Yong VKY, et al. Optical coherence tomography angiography of the macula and optic nerve head: microvascular density and test-retest repeatability in normal subjects. BMC Ophthalmol. 2018;18:315.CrossRef Lim CW, Cheng J, Tay ELT, Teo HY, Wong EPY, Yong VKY, et al. Optical coherence tomography angiography of the macula and optic nerve head: microvascular density and test-retest repeatability in normal subjects. BMC Ophthalmol. 2018;18:315.CrossRef
17.
go back to reference Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20:4710–25.CrossRef Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20:4710–25.CrossRef
18.
go back to reference Stanga PE, Tsamis E, Papayannis A, Stringa F, Cole T, Jalil A. Swept-source optical coherence tomography Angio (Topcon Corp, Japan): technology review. Dev Ophthalmol. 2016;56:13–7.CrossRef Stanga PE, Tsamis E, Papayannis A, Stringa F, Cole T, Jalil A. Swept-source optical coherence tomography Angio (Topcon Corp, Japan): technology review. Dev Ophthalmol. 2016;56:13–7.CrossRef
19.
go back to reference Alonzo TA, Pepe MS. Distribution-free ROC analysis using binary regression techniques. Biostatistics. 2002;3:421–32.CrossRef Alonzo TA, Pepe MS. Distribution-free ROC analysis using binary regression techniques. Biostatistics. 2002;3:421–32.CrossRef
20.
go back to reference Janes H, Longton G, Pepe M. Accommodating covariates in ROC analysis. Stata J. 2009;9:17–39.CrossRef Janes H, Longton G, Pepe M. Accommodating covariates in ROC analysis. Stata J. 2009;9:17–39.CrossRef
21.
go back to reference Rao HL, Kadambi SV, Weinreb RN, Puttaiah NK, Pradhan ZS, Rao DAS, et al. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br J Ophthalmol. 2017;101:1066–70.CrossRef Rao HL, Kadambi SV, Weinreb RN, Puttaiah NK, Pradhan ZS, Rao DAS, et al. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br J Ophthalmol. 2017;101:1066–70.CrossRef
22.
go back to reference Rao HL, Pradhan ZS, Weinreb RN, Reddy HB, Riyazuddin M, Dasari S, et al. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle Glaucoma. Am J Ophthalmol. 2016;171:75–83.CrossRef Rao HL, Pradhan ZS, Weinreb RN, Reddy HB, Riyazuddin M, Dasari S, et al. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle Glaucoma. Am J Ophthalmol. 2016;171:75–83.CrossRef
23.
go back to reference Van Melkebeke L, Barbosa-Breda J, Huygens M, Stalmans I. Optical coherence tomography angiography in Glaucoma: a review. Ophthalmic Res. 2018;60:139–51.CrossRef Van Melkebeke L, Barbosa-Breda J, Huygens M, Stalmans I. Optical coherence tomography angiography in Glaucoma: a review. Ophthalmic Res. 2018;60:139–51.CrossRef
24.
go back to reference Geyman LS, Garg RA, Suwan Y, Trivedi V, Krawitz BD, Mo S, et al. Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study. Br J Ophthalmol. 2017;101:1261–8.CrossRef Geyman LS, Garg RA, Suwan Y, Trivedi V, Krawitz BD, Mo S, et al. Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study. Br J Ophthalmol. 2017;101:1261–8.CrossRef
25.
go back to reference Chen CL, Zhang A, Bojikian KD, Wen JC, Zhang Q, Xin C, et al. Peripapillary retinal nerve Fiber layer vascular microcirculation in Glaucoma using optical coherence tomography-based microangiography. Invest Ophthalmol Vis Sci. 2016;57:OCT475–85.CrossRef Chen CL, Zhang A, Bojikian KD, Wen JC, Zhang Q, Xin C, et al. Peripapillary retinal nerve Fiber layer vascular microcirculation in Glaucoma using optical coherence tomography-based microangiography. Invest Ophthalmol Vis Sci. 2016;57:OCT475–85.CrossRef
26.
go back to reference Akil H, Huang AS, Francis BA, Sadda SR, Chopra V. Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS One. 2017;12:e0170476.CrossRef Akil H, Huang AS, Francis BA, Sadda SR, Chopra V. Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS One. 2017;12:e0170476.CrossRef
27.
go back to reference Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Manalastas PI, Fatehee N, et al. Optical coherence tomography angiography vessel density in healthy, Glaucoma suspect, and Glaucoma eyes. Invest Ophthalmol Vis Sci. 2016;57:OCT451–9.CrossRef Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Manalastas PI, Fatehee N, et al. Optical coherence tomography angiography vessel density in healthy, Glaucoma suspect, and Glaucoma eyes. Invest Ophthalmol Vis Sci. 2016;57:OCT451–9.CrossRef
28.
go back to reference Rebolleda G, Perez-Sarriegui A, De Juan V, Ortiz-Toquero S, Munoz-Negrete FJ. A comparison of two optical coherence tomography-angiography devices in pseudoexfoliation glaucoma versus primary open-angle glaucoma and healthy subjects. Eur J Ophthalmol. 2018. https://doi.org/10.1177/1120672118805882. Rebolleda G, Perez-Sarriegui A, De Juan V, Ortiz-Toquero S, Munoz-Negrete FJ. A comparison of two optical coherence tomography-angiography devices in pseudoexfoliation glaucoma versus primary open-angle glaucoma and healthy subjects. Eur J Ophthalmol. 2018. https://​doi.​org/​10.​1177/​1120672118805882​.
29.
go back to reference Mihailovic N, Brand C, Lahme L, Schubert F, Bormann E, Eter N. Alnawaiseh M (2018) repeatability, reproducibility and agreement of foveal avascular zone measurements using three different optical coherence tomography angiography devices. PLoS One. 2018;13(10):e0206045.CrossRef Mihailovic N, Brand C, Lahme L, Schubert F, Bormann E, Eter N. Alnawaiseh M (2018) repeatability, reproducibility and agreement of foveal avascular zone measurements using three different optical coherence tomography angiography devices. PLoS One. 2018;13(10):e0206045.CrossRef
30.
go back to reference Lei J, Pei C, Wen C, Abdelfattah NS. Repeatability and reproducibility of quantification of superficial peri-papillary capillaries by four different optical coherence tomography angiography devices. Sci Rep. 2018;8:17866.CrossRef Lei J, Pei C, Wen C, Abdelfattah NS. Repeatability and reproducibility of quantification of superficial peri-papillary capillaries by four different optical coherence tomography angiography devices. Sci Rep. 2018;8:17866.CrossRef
31.
go back to reference Akil H, Huang AS, Francis BA, Sadda SR. Chopra V (2017) retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS One. 2018;12:e0170476.CrossRef Akil H, Huang AS, Francis BA, Sadda SR. Chopra V (2017) retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS One. 2018;12:e0170476.CrossRef
32.
go back to reference Wei Y, Jiang H, Shi Y, Qu D, Gregori G, Zheng F, et al. Age-related alterations in the retinal microvasculature, microcirculation, and microstructure. Invest Ophthalmol Vis Sci. 2017;58:3804–17.CrossRef Wei Y, Jiang H, Shi Y, Qu D, Gregori G, Zheng F, et al. Age-related alterations in the retinal microvasculature, microcirculation, and microstructure. Invest Ophthalmol Vis Sci. 2017;58:3804–17.CrossRef
33.
go back to reference Schmidl D, Schmetterer L, Garhöfer G, Popa-Cherecheanu A. Gender differences in ocular blood flow. Curr Eye Res. 2015;40:201–12.CrossRef Schmidl D, Schmetterer L, Garhöfer G, Popa-Cherecheanu A. Gender differences in ocular blood flow. Curr Eye Res. 2015;40:201–12.CrossRef
Metadata
Title
Comparison of two different optical coherence tomography angiography devices in detecting healthy versus glaucomatous eyes – an observational cross-sectional study
Authors
A. R. Kee
V. C. H. Yip
E. L. T. Tay
C. W. Lim
J. Cheng
H. Y. Teo
C. H. Chua
L. W. L. Yip
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2020
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-020-01701-9

Other articles of this Issue 1/2020

BMC Ophthalmology 1/2020 Go to the issue