Skip to main content
Top
Published in: BMC Pediatrics 1/2021

Open Access 01-12-2021 | Gestational Diabetes | Research Article

Body composition in term offspring after maternal gestational diabetes does not predict postnatal hypoglycemia

Authors: Cornelia Wiechers, Lena S. Balles, Sara Kirchhof, Romy Weber, Vanessa Avellina, Jan Pauluschke-Fröhlich, Manfred Hallschmid, Louise Fritsche, Hubert Preißl, Andreas Fritsche, Christian F. Poets, Axel R. Franz

Published in: BMC Pediatrics | Issue 1/2021

Login to get access

Abstract

Background

Offspring of mothers with gestational diabetes mellitus (GDM) have an increased risk of neonatal complications like birth trauma due to macrosomia or postnatal hypoglycemia, as well as long-term metabolic sequelae. Neonatal body composition may be a sensitive marker of metabolic effects on the fetus caused by suboptimal glycemic control during pregnancy.

Objective

To determine body composition in offspring of mothers with GDM compared to a reference cohort of healthy term neonates and to assess whether increased body fat would be associated with postnatal hypoglycemia.

Methods

This prospective, observational, cross-sectional study included 311 full-term, singleton infants born between June 2014 and July 2015. Body composition was measured within 96 h of birth using air displacement plethysmography. Results are indicated as median (1st Quartile – 3rd Quartile).

Results

Of 311 infants, 40 (12.9%) were born to mothers with GDM. Birth weight standard deviation scores (SDS) (0.24 vs. − 0.07, p = 0.04), fat mass (370 g vs. 333 g, p = 0.02) as well as fat mass/total body mass (BF%; 11.4% vs. 10.8%, p = 0.03) were significantly higher in infants following maternal GDM than in controls. In GDM offspring, anthropometric parameters, fat mass or BF% did not differ between infants with or without postnatal hypoglycemia. In this cohort, SDS for birth weight, fat mass, fat free mass, BF% or postnatal hypoglycemia were not associated with maternal blood glucose levels measured at an oral glucose tolerance test.

Conclusions

SDS for birth weight, neonatal fat mass, and BF% were significantly higher in newborns following maternal GDM. In these infants born to mothers with GDM, body composition did not differ between those with or without postnatal hypoglycemia.
Literature
1.
go back to reference Bell R, Bailey K, Cresswell T, Hawthorne G, Critchley J, Lewis-Barned N, et al. Trends in prevalence and outcomes of pregnancy in women with pre-existing type I and type II diabetes. BJOG. 2008;115(4):445–52.CrossRef Bell R, Bailey K, Cresswell T, Hawthorne G, Critchley J, Lewis-Barned N, et al. Trends in prevalence and outcomes of pregnancy in women with pre-existing type I and type II diabetes. BJOG. 2008;115(4):445–52.CrossRef
2.
go back to reference Guariguata L, Linnenkamp U, Beagley J, Whiting DR, Cho NH. Global estimates of the prevalence of hyperglycaemia in pregnancy. Diabetes Res Clin Pract. 2014;103(2):176–85.CrossRef Guariguata L, Linnenkamp U, Beagley J, Whiting DR, Cho NH. Global estimates of the prevalence of hyperglycaemia in pregnancy. Diabetes Res Clin Pract. 2014;103(2):176–85.CrossRef
3.
4.
go back to reference Ignell C, Claesson R, Anderberg E, Berntorp K. Trends in the prevalence of gestational diabetes mellitus in southern Sweden, 2003-2012. Acta Obstet Gynecol Scand. 2014;93(4):420–4.CrossRef Ignell C, Claesson R, Anderberg E, Berntorp K. Trends in the prevalence of gestational diabetes mellitus in southern Sweden, 2003-2012. Acta Obstet Gynecol Scand. 2014;93(4):420–4.CrossRef
5.
go back to reference Sacks DA, Hadden DR, Maresh M, Deerochanawong C, Dyer AR, Metzger BE, et al. Frequency of gestational diabetes mellitus at collaborating centers based on IADPSG consensus panel-recommended criteria: the hyperglycemia and adverse pregnancy outcome (HAPO) study. Diabetes Care. 2012;35(3):526–8.CrossRef Sacks DA, Hadden DR, Maresh M, Deerochanawong C, Dyer AR, Metzger BE, et al. Frequency of gestational diabetes mellitus at collaborating centers based on IADPSG consensus panel-recommended criteria: the hyperglycemia and adverse pregnancy outcome (HAPO) study. Diabetes Care. 2012;35(3):526–8.CrossRef
6.
go back to reference Group HSCR. Hyperglycemia and adverse pregnancy outcome (HAPO) study: associations with neonatal anthropometrics. Diabetes. 2009;58(2):453–9.CrossRef Group HSCR. Hyperglycemia and adverse pregnancy outcome (HAPO) study: associations with neonatal anthropometrics. Diabetes. 2009;58(2):453–9.CrossRef
7.
go back to reference Philipps LH, Santhakumaran S, Gale C, Prior E, Logan KM, Hyde MJ, et al. The diabetic pregnancy and offspring BMI in childhood: a systematic review and meta-analysis. Diabetologia. 2011;54(8):1957–66.CrossRef Philipps LH, Santhakumaran S, Gale C, Prior E, Logan KM, Hyde MJ, et al. The diabetic pregnancy and offspring BMI in childhood: a systematic review and meta-analysis. Diabetologia. 2011;54(8):1957–66.CrossRef
8.
go back to reference Kawasaki M, Arata N, Miyazaki C, Mori R, Kikuchi T, Ogawa Y, et al. Obesity and abnormal glucose tolerance in offspring of diabetic mothers: a systematic review and meta-analysis. PLoS One. 2018;13(1):e0190676.CrossRef Kawasaki M, Arata N, Miyazaki C, Mori R, Kikuchi T, Ogawa Y, et al. Obesity and abnormal glucose tolerance in offspring of diabetic mothers: a systematic review and meta-analysis. PLoS One. 2018;13(1):e0190676.CrossRef
9.
go back to reference Group HSCR, Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358(19):1991–2002.CrossRef Group HSCR, Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358(19):1991–2002.CrossRef
10.
go back to reference Pedersen J. Diabetes and pregnancy; blood sugar of newborn infants during fasting and glucose administration. Ugeskr Laeger. 1952;114(21):685.PubMed Pedersen J. Diabetes and pregnancy; blood sugar of newborn infants during fasting and glucose administration. Ugeskr Laeger. 1952;114(21):685.PubMed
11.
go back to reference McKinlay CJD, Alsweiler JM, Anstice NS, Burakevych N, Chakraborty A, Chase JG, et al. Association of Neonatal Glycemia with Neurodevelopmental Outcomes at 4.5 years. JAMA Pediatr. 2017;171(10):972–83.CrossRef McKinlay CJD, Alsweiler JM, Anstice NS, Burakevych N, Chakraborty A, Chase JG, et al. Association of Neonatal Glycemia with Neurodevelopmental Outcomes at 4.5 years. JAMA Pediatr. 2017;171(10):972–83.CrossRef
12.
go back to reference Burns CM, Rutherford MA, Boardman JP, Cowan FM. Patterns of cerebral injury and neurodevelopmental outcomes after symptomatic neonatal hypoglycemia. Pediatrics. 2008;122(1):65–74.CrossRef Burns CM, Rutherford MA, Boardman JP, Cowan FM. Patterns of cerebral injury and neurodevelopmental outcomes after symptomatic neonatal hypoglycemia. Pediatrics. 2008;122(1):65–74.CrossRef
13.
go back to reference Maayan-Metzger A, Lubin D, Kuint J. Hypoglycemia rates in the first days of life among term infants born to diabetic mothers. Neonatology. 2009;96(2):80–5.CrossRef Maayan-Metzger A, Lubin D, Kuint J. Hypoglycemia rates in the first days of life among term infants born to diabetic mothers. Neonatology. 2009;96(2):80–5.CrossRef
14.
go back to reference Agrawal RK, Lui K, Gupta JM. Neonatal hypoglycaemia in infants of diabetic mothers. J Paediatr Child Health. 2000;36(4):354–6.CrossRef Agrawal RK, Lui K, Gupta JM. Neonatal hypoglycaemia in infants of diabetic mothers. J Paediatr Child Health. 2000;36(4):354–6.CrossRef
15.
go back to reference Andersen GS, Girma T, Wells JC, Kaestel P, Michaelsen KF, Friis H. Fat and fat-free mass at birth: air displacement plethysmography measurements on 350 Ethiopian newborns. Pediatr Res. 2011;70(5):501–6.CrossRef Andersen GS, Girma T, Wells JC, Kaestel P, Michaelsen KF, Friis H. Fat and fat-free mass at birth: air displacement plethysmography measurements on 350 Ethiopian newborns. Pediatr Res. 2011;70(5):501–6.CrossRef
16.
go back to reference Yajnik CS, Fall CH, Coyaji KJ, Hirve SS, Rao S, Barker DJ, et al. Neonatal anthropometry: the thin-fat Indian baby. The Pune maternal nutrition study. Int J Obes Relat Metab Disord. 2003;27(2):173–80.CrossRef Yajnik CS, Fall CH, Coyaji KJ, Hirve SS, Rao S, Barker DJ, et al. Neonatal anthropometry: the thin-fat Indian baby. The Pune maternal nutrition study. Int J Obes Relat Metab Disord. 2003;27(2):173–80.CrossRef
17.
go back to reference Catalano PM, Thomas A, Huston-Presley L, Amini SB. Increased fetal adiposity: a very sensitive marker of abnormal in utero development. Am J Obstet Gynecol. 2003;189(6):1698–704.CrossRef Catalano PM, Thomas A, Huston-Presley L, Amini SB. Increased fetal adiposity: a very sensitive marker of abnormal in utero development. Am J Obstet Gynecol. 2003;189(6):1698–704.CrossRef
18.
go back to reference Ellis KJ, Yao M, Shypailo RJ, Urlando A, Wong WW, Heird WC. Body-composition assessment in infancy: air-displacement plethysmography compared with a reference 4-compartment model. Am J Clin Nutr. 2007;85(1):90–5.CrossRef Ellis KJ, Yao M, Shypailo RJ, Urlando A, Wong WW, Heird WC. Body-composition assessment in infancy: air-displacement plethysmography compared with a reference 4-compartment model. Am J Clin Nutr. 2007;85(1):90–5.CrossRef
19.
go back to reference Au CP, Raynes-Greenow CH, Turner RM, Carberry AE, Jeffery H. Fetal and maternal factors associated with neonatal adiposity as measured by air displacement plethysmography: a large cross-sectional study. Early Hum Dev. 2013;89(10):839–43.CrossRef Au CP, Raynes-Greenow CH, Turner RM, Carberry AE, Jeffery H. Fetal and maternal factors associated with neonatal adiposity as measured by air displacement plethysmography: a large cross-sectional study. Early Hum Dev. 2013;89(10):839–43.CrossRef
20.
go back to reference International Association of D, Pregnancy Study Groups Consensus P, Metzger BE, Gabbe SG, Persson B, Buchanan TA, et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010;33(3):676–82.CrossRef International Association of D, Pregnancy Study Groups Consensus P, Metzger BE, Gabbe SG, Persson B, Buchanan TA, et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010;33(3):676–82.CrossRef
21.
go back to reference IOM. Weight Gain During Pregnancy: Reexamining the Guidelines. nstitute of Medicine (US) and National Research Council (US) and Committee to Reexamine IOM Pregnancy Weight Guidelines. 2009. IOM. Weight Gain During Pregnancy: Reexamining the Guidelines. nstitute of Medicine (US) and National Research Council (US) and Committee to Reexamine IOM Pregnancy Weight Guidelines. 2009.
22.
go back to reference Eriksson B, Lof M, Forsum E. Body composition in full-term healthy infants measured with air displacement plethysmography at 1 and 12 weeks of age. Acta Paediatr. 2010;99(4):563–8.CrossRef Eriksson B, Lof M, Forsum E. Body composition in full-term healthy infants measured with air displacement plethysmography at 1 and 12 weeks of age. Acta Paediatr. 2010;99(4):563–8.CrossRef
23.
go back to reference Cole TJ, Freeman JV, Preece MA. British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood. Stat Med. 1998;17(4):407–29.CrossRef Cole TJ, Freeman JV, Preece MA. British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood. Stat Med. 1998;17(4):407–29.CrossRef
24.
go back to reference Freeman JV, Cole TJ, Chinn S, Jones PR, White EM, Preece MA. Cross sectional stature and weight reference curves for the UK, 1990. Arch Dis Child. 1995;73(1):17–24.CrossRef Freeman JV, Cole TJ, Chinn S, Jones PR, White EM, Preece MA. Cross sectional stature and weight reference curves for the UK, 1990. Arch Dis Child. 1995;73(1):17–24.CrossRef
25.
go back to reference Wiechers C, Kirchhof S, Balles L, Avelina V, Weber R, Mass C, Pauluschke-Fröhlich J, Hallschmid M, Preißl H, Fritsche A, Poets CF, Franz AR. Neonatal body composition: crossectional study in healthy term singletons in Germany. BMC Pediatrics. 2019;19:488 submitted.CrossRef Wiechers C, Kirchhof S, Balles L, Avelina V, Weber R, Mass C, Pauluschke-Fröhlich J, Hallschmid M, Preißl H, Fritsche A, Poets CF, Franz AR. Neonatal body composition: crossectional study in healthy term singletons in Germany. BMC Pediatrics. 2019;19:488 submitted.CrossRef
26.
go back to reference Logan KM, Gale C, Hyde MJ, Santhakumaran S, Modi N. Diabetes in pregnancy and infant adiposity: systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2017;102(1):F65–72.CrossRef Logan KM, Gale C, Hyde MJ, Santhakumaran S, Modi N. Diabetes in pregnancy and infant adiposity: systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2017;102(1):F65–72.CrossRef
27.
go back to reference Au CP, Raynes-Greenow CH, Turner RM, Carberry AE, Jeffery HE. Body composition is normal in term infants born to mothers with well-controlled gestational diabetes mellitus. Diabetes Care. 2013;36(3):562–4.CrossRef Au CP, Raynes-Greenow CH, Turner RM, Carberry AE, Jeffery HE. Body composition is normal in term infants born to mothers with well-controlled gestational diabetes mellitus. Diabetes Care. 2013;36(3):562–4.CrossRef
28.
go back to reference McKinlay CJ, Alsweiler JM, Ansell JM, Anstice NS, Chase JG, Gamble GD, et al. Neonatal Glycemia and neurodevelopmental outcomes at 2 years. N Engl J Med. 2015;373(16):1507–18.CrossRef McKinlay CJ, Alsweiler JM, Ansell JM, Anstice NS, Chase JG, Gamble GD, et al. Neonatal Glycemia and neurodevelopmental outcomes at 2 years. N Engl J Med. 2015;373(16):1507–18.CrossRef
29.
go back to reference Durnwald C, Huston-Presley L, Amini S, Catalano P. Evaluation of body composition of large-for-gestational-age infants of women with gestational diabetes mellitus compared with women with normal glucose tolerance levels. Am J Obstet Gynecol. 2004;191(3):804–8.CrossRef Durnwald C, Huston-Presley L, Amini S, Catalano P. Evaluation of body composition of large-for-gestational-age infants of women with gestational diabetes mellitus compared with women with normal glucose tolerance levels. Am J Obstet Gynecol. 2004;191(3):804–8.CrossRef
30.
go back to reference Wiechers C, Kirchhof S, Maas C, Poets CF, Franz AR. Neonatal body composition by air displacement plethysmography in healthy term singletons: a systematic review. BMC Pediatr. 2019;19(1):489.CrossRef Wiechers C, Kirchhof S, Maas C, Poets CF, Franz AR. Neonatal body composition by air displacement plethysmography in healthy term singletons: a systematic review. BMC Pediatr. 2019;19(1):489.CrossRef
31.
go back to reference Hawkes CP, Hourihane JO, Kenny LC, Irvine AD, Kiely M, Murray DM. Gender- and gestational age-specific body fat percentage at birth. Pediatrics. 2011;128(3):e645–51.PubMed Hawkes CP, Hourihane JO, Kenny LC, Irvine AD, Kiely M, Murray DM. Gender- and gestational age-specific body fat percentage at birth. Pediatrics. 2011;128(3):e645–51.PubMed
32.
go back to reference Abernathy RP, Black DR. Healthy body weights: an alternative perspective. Am J Clin Nutr. 1996;63(3 Suppl):448S–51S.CrossRef Abernathy RP, Black DR. Healthy body weights: an alternative perspective. Am J Clin Nutr. 1996;63(3 Suppl):448S–51S.CrossRef
33.
go back to reference Taylor RW, Gold E, Manning P, Goulding A. Gender differences in body fat content are present well before puberty. Int J Obes Relat Metab Disord. 1997;21(11):1082–4.CrossRef Taylor RW, Gold E, Manning P, Goulding A. Gender differences in body fat content are present well before puberty. Int J Obes Relat Metab Disord. 1997;21(11):1082–4.CrossRef
34.
go back to reference Lingwood BE, Henry AM, d'Emden MC, Fullerton AM, Mortimer RH, Colditz PB, et al. Determinants of body fat in infants of women with gestational diabetes mellitus differ with fetal sex. Diabetes Care. 2011;34(12):2581–5.CrossRef Lingwood BE, Henry AM, d'Emden MC, Fullerton AM, Mortimer RH, Colditz PB, et al. Determinants of body fat in infants of women with gestational diabetes mellitus differ with fetal sex. Diabetes Care. 2011;34(12):2581–5.CrossRef
35.
go back to reference Regnault N, Gillman MW, Rifas-Shiman SL, Eggleston E, Oken E. Sex-specific associations of gestational glucose tolerance with childhood body composition. Diabetes Care. 2013;36(10):3045–53.CrossRef Regnault N, Gillman MW, Rifas-Shiman SL, Eggleston E, Oken E. Sex-specific associations of gestational glucose tolerance with childhood body composition. Diabetes Care. 2013;36(10):3045–53.CrossRef
Metadata
Title
Body composition in term offspring after maternal gestational diabetes does not predict postnatal hypoglycemia
Authors
Cornelia Wiechers
Lena S. Balles
Sara Kirchhof
Romy Weber
Vanessa Avellina
Jan Pauluschke-Fröhlich
Manfred Hallschmid
Louise Fritsche
Hubert Preißl
Andreas Fritsche
Christian F. Poets
Axel R. Franz
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2021
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-021-02578-3

Other articles of this Issue 1/2021

BMC Pediatrics 1/2021 Go to the issue